
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 32, No. 1, October 2023, pp. 185~196 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v32.i1.pp185-196      185 

 

Journal homepage: http://ijeecs.iaescore.com 

A novel adaptive noise cancellation method based on 

minimization of error entropy for electrocardiogram denoising 
 

 

Zahraa Mousa Saad1, Nsaif Jasim Al-Chaabawi2, Saif Al_Deen H. Hassan3 
1Department of Economy, College of Administration and Economics, University of Misan, Amarah, Iraq 

2Department of Petroleum, College of Engineering, University of Misan, Amarah, Iraq 
3Electronic Computing Center, University of Misan, Amarah, Iraq 

 

 

Article Info  ABSTRACT  

Article history: 

Received Jul 27, 2022 

Revised Jun 26, 2023 

Accepted Jul 2, 2023 

 

 In this paper, we use an adaptive method that conforms to the error entropy 

criterion in order to eliminate noise from cardiac signals electrocardiogram 

(ECG). In previous works, the mean squared error (MSE) criterion has been 

used to adaptive noise cancelation of ECG signals, which only has the ability 

to minimize the second moment of error. The MSE criterion only works 

optimally on systems with Gaussian noise and stationary signals, so this is not 

suitable for ECG signals that are non-stationary and have non-Gaussian noise. 

In contrast, the use of error entropy-based algorithms like minimum error 

entropy (MEE) is very useful in ECG noise cancelation. The results of the 

proposed algorithm indicate a significant advantage in terms of signal-to-

noise ratio (SNR) and convergence value compared to the algorithm based on 

MSE criteria. 
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1. INTRODUCTION 

Electrocardiogram (ECG) is among the most important diagnostic methods for initial recognition of 

cardiac disorders. Thus, having a high-quality ECG signal is essential for accurate diagnosis and treatment of 

cardiac disorders. Numerous artifacts exist in the medical environment which their impacts on ECG signal 

quality is negative during signal recording. To improve ECG signals quality, removing these artifacts from 

them is an important issue. Some of these artifacts belong to environmental sources and others are related to 

biological resources. The most common high-amplitude ECG noises include: electrode motion (EM), baseline 

wander (BW), power line interference (PLI), and muscle artifacts the majority of these noises [1], [2] are non-

Gaussian, highly non-stationary in time, and colored. 

There are different strategies to remove these artifacts, which can be divided into two different classes, 

including adaptive and nonadaptive methods [3]–[9]. Since the ECG signals have a dynamic and non-linear 

nature, applying filters with constant coefficients in order to eliminate biomedical signal artifacts will not be 

perfect [10]. Consequently, using adaptive techniques have more advantages compared to non-adaptive ones, 

since adaptive filtering techniques have the ability to track dynamic variations of the signals.  

The user should specify a parametric mapper filter that is either linear or non-linear, an optimality 

measure, and an algorithm to weight adaptation based on adaptive filtering. Mean-squared error (MSE) 

criterion is a widely used criterion among designers. The least mean square (LMS) method introduced by 

Widrow [11] is also among the finest methods used for weight adaptations based on MSE. The performance 

of the LMS algorithm has been improved by a number of revised algorithms, which are reported in [12], [13]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Other methods use the normalized least-mean-square (NLMS) algorithm, which reduces step size to reach the 

global minimum [14], the NLMS algorithm with variable step size and faster convergence [15], and the sign 

algorithm, which lowers processing costs [16]. Although the MSE criterion is frequently used in filter 

adaptation, it can only take into account the second-order statistics of the mistake. Despite this shortcoming, it 

is obvious why second-order statistics are emphasized as the optimality criterion for adaptive filtering 

applications for three key reasons: i) analytical tractability, ii) the presumption that second-order statistics can 

adequately explain real-world random occurrences, and iii) the abundance of effective adaptive algorithms are 

the first two. The central limit theorem emphasizes that the Gaussian probability density function (PDF), which 

is only governed by first- and second-order statistics, is used to describe various real-life aberrations affecting 

the desired signals. The aberrations that taint the ECG records, however, include non-Gaussian distributions, 

as is evident from the analysis of the ECG signals. Therefore, it is necessary to employ criteria that consider 

both higher order statistical behavior of systems and signals as well as second-order statistics when evaluating 

systems and signals. 

Entropy [17]–[21] is a more universal adaptive filtering criterion since it quantifies the average 

information intrinsic in a given PDF. The MSE can be expanded if information is used as an optimality 

criterion. The major reason is that it is a function of PDF itself, whereas by MSE only the second order statistics 

of the PDF is considered. In an adaptive filter, when the entropy is minimized, all moments of the error PDF 

are constrained, compared to the MSE minimization, which constraints only the second-order statistics.  

In this study, the ECG signal is cleaned of noise and artifacts using an adaptive filter with an error 

entropy criterion. The error entropy between the main input and the reference input is reduced using this 

technique. The algorithm employed for this is known as minimum error entropy - adaptive noise canceller 

(MEE-ANC), and it updates the adaptive filter weights by minimizing error entropy in order to provide a 

denoised ECG signal. The calculation of the error entropy, which is a function of the error PDF, is a key 

component of this approach. Since no assumptions are made here regarding the PDF of the ECG anomalies, 

the suggested structure is based on a combination of a nonparametric PDF estimator and a technique to compute 

entropy. The Parzen window approach is crucial for the former [22]. For the latter, the quadratic form of a 

more general form of entropy measure, i.e. 𝛼-Renyi’s entropy [23], has been utilized as a measure of the 

entropy instead of the classic entropy definition introduced by Shannon. 

Results show that the proposed MEE based adaptive algorithm outperforms the conventional LMS 

algorithm, which uses MSE criterion, to cancel each of four main categories of ECG artifacts, i.e., PLI, BW, 

EM and MA. The MEE algorithm is described in section 2 of the following. First, we define the -order Renyi's 

entropy of error in our experiments by treating the error as the random variable. Following that, the Parzen 

windowing process is used to represent the error probability density function. We then offer the error entropy 

measurement. The adaptive noise canceller system is covered in section 3. Additionally, we'll look into the 

analytical relationships between our methodology and the traditional LMS method according to the MEE 

measure. The effectiveness of LMS and MEE-based techniques is contrasted in section 4 in terms of their 

capacity to simulate away four significant forms of disturbances that taint ECG signals. Finally, section 5 

expresses the conclusion.  

 

 

2. MINIMUM ERROR ENTROPY ALGORITHM 

Assume that e is the random variable representing the error that the adaptive system generates as a 

result of the discrepancy between the desired and actual outputs. The goal of the adaptive filtering structure is 

e minimization. The following equation [23] will be used to calculate the e's -order Renyi's entropy:  

 

𝐻𝛼(𝑒) =
1

1−𝛼
log ∫ 𝑓𝛼 (𝑒) 𝑑𝑒  (1) 

 

where 𝑓(𝑒) represents the error random variable's probability density function. Based on the following formula, 

we utilize Renyi's quadratic entropy (i.e., =2) as a measure of entropy in our experiments: 

 

𝐻2(𝑒) = − log ∫ 𝑓2 (𝑒) 𝑑𝑒  (2) 

 

Equations (1) and (2) show that the PDF of the provided random variable must be determined before the entropy 

of the random variable can be calculated. Our non-parametric adaptive method works under the premise that 

the error's PDF is unknown. Additionally, the adaptive filter processes each data sample separately. As a result, 

we require a PDF estimator to calculate the probability density function for the samples of incoming data. A 

useful tool for this is the Parzen windowing technique, which may be acquired as:  

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

A novel adaptive noise cancellation method based on minimization of error … (Zahraa Mousa Saad) 

187 

𝑓(𝑒) =
1

𝑁
∑ 𝑘𝜎

𝑁
𝑖=1 (𝑒 − 𝑒(𝑖)) (3) 

 

where 𝑘(𝑒) and 𝜎 denote Kernel function and the size of Kernel, respectively. Also, {𝑒(1), 𝑒(2), … , 𝑒(𝑁)} 

show error samples. For the Parzen window, various Kernel functions are used. For the sake of simplicity, we 

will be using the multidimensional Gaussian function with radially symmetric 𝜎2. Thus, the following 

equations are used to estimate Renyi's quadratic entropy for error samples: 

 

�̂�2(𝑒) = − log ∫ (
1

𝑁
∑ 𝐺𝜎(𝑒 − 𝑒(𝑖))𝑁

𝑖=1 )2 𝑑𝑒
+∞

−∞
 (4) 

 

�̂�2(𝑒) = − log
1

𝑁2 ∫ (∑ ∑ 𝐺𝜎(𝑒 − 𝑒(𝑗))𝐺𝜎(𝑒 − 𝑒(𝑖))𝑁
𝑗=1 ) 𝑑𝑒𝑁

𝑖=1
+∞

−∞
  

 

�̂�2(𝑒) = − log
1

𝑁2 (∑ ∑ ∫ 𝐺𝜎(𝑒 − 𝑒(𝑗))𝐺𝜎(𝑒 − 𝑒(𝑖))
+∞

−∞
𝑁
𝑗=1 ) 𝑑𝑒𝑁

𝑖=1   

 

where the kernel function with a Gaussian core is 𝐺𝜎(. ). Remember that the integral of the product of the two 

original Gaussian functions is computed using the sum of their variances to determine the value of the Gaussian 

determined at the point where the arguments diverge. Consequently, �̂�2(𝑒) can be expressed as (5). 

 

�̂�2(𝑒) = − log (
1

𝑁2
∑ ∑ 𝐺𝜎√2(𝑒(𝑗) − 𝑒(𝑖))𝑁

𝑗=1
𝑁
𝑖=1 )  (5) 

 

The phrase that is inside log operator is defined as information potential (IP), and can be obtained 

from the incoming samples using Gaussian kernels as, 

 

�̂�2(𝑒) =
1

𝑁2  ∑ ∑ 𝐺𝜎√2(𝑒(𝑗) − 𝑒(𝑖))𝑁
𝑗=1

𝑁
𝑖=1  (6) 

 

accordingly, for error random variable, we can obtain entropy: 

 

�̂�2(𝑒) = − log ( �̂�2(𝑒))  (7) 

 

since the log is a monotonic function, it is evident from (7) that minimizing Renyi's quadratic entropy is 

equivalent to increasing the information potential. The suggested adaptive noise canceller uses this expression 

of error entropy in the following section. 

 

 

3. THE PRESENTED ADAPTIVE NOISE CANCELLER SYSTEM 

Figure 1 shows the flowchart of the presented adaptive noise canceller structure using adaptive 

filtering. In this Figure 1, 𝑥(𝑛) denotes the reference input with length 𝑁 and 𝑑(𝑛) expresses the desired input. 

For utilizing above system to remove noise from ECG signal, an ECG signal, 𝑠1(𝑛) that is corrupted with noise 

𝑃1(𝑛), is exerted to the adaptive filter as the desired input 𝑑(𝑛). A noise signal, 𝑃2(𝑛), which is generated by 

another noise source is exerted as the reference input, 𝑥(𝑛). This noise is assumed to be correlated to 𝑃1(𝑛). 

Besides, signal and noise are supposed to be uncorrelated. Then, the output error is obtained as: 

 

𝑒(𝑛) = [𝑠1(𝑛) + 𝑃1(𝑛)] − 𝑦(𝑛)  (8) 

 

where the filter output is shown by 𝑦(𝑛) = 𝑾𝑇(𝑛)𝑿(𝑛). A shown in (8), 𝑾(𝑛) = [𝑤0(𝑛) 𝑤1(𝑛) … 𝑤𝐿−1(𝑛)] 
denotes the filter input vector, and 𝑿(𝑛) = [𝑥0(𝑛) 𝑥1(𝑛) … 𝑥𝐿−1(𝑛)] means the filter coefficients weight 

vector (in nth time index). The following will demonstrate how, because the ECG signal and both noises are 

uncorrelated, reducing e(n) using either the MSE or MEE measure results in the contamination noise in the 

ECG signal (𝑃1(𝑛)) being similar to y(n). Therefore, in our study, the desired denoised ECG signal is created 

using the output error signal, e(n). 

In the following subsections, we first provide an explanation of the basic LMS approach for adaptive 

noise canceller (LMS-ANC), which is utilized as the benchmark. The MEE-trained adaptive filter for noise 

canceller (MEE-ANC) is explained after that. 

 

3.1.  Adaptive noise canseller based on LMS 

The usual adaptive LMS technique can iteratively decrease the mean squared error between the 

principal input if the filter coefficients are adjusted. The reference input is a recorded noise signal that is 

correlated with the primary input, which is a noisy ECG signal. The LMS is one of the simplest adaptive 
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structures based on the MSE criterion. The LMS algorithm has many uses because of its stability and ease of 

use with signal statistics. 

 

 

 
 

Figure 1. Adaptive noise cancellation structure 

 

 

The following is how MSE is obtained in the proposed adaptive noise canceller system, which is 

shown in Figure 1: 

 

𝐸[𝑒2(𝑛)] = 𝐸[𝑠1(𝑛)2] + 𝐸[(𝑝1(𝑛) − 𝑦(𝑛))2] + 2𝐸[𝑠1(𝑛). (𝑝1(𝑛) − 𝑦(𝑛))] (9) 

 

since 𝑠1(𝑛) will be uncorrelated with both 𝑝1(𝑛) and 𝑦(𝑛), as a result: 

 

𝐸[𝑒2(𝑛)] = 𝐸[𝑠1(𝑛)2] + 𝐸[(𝑝1(𝑛) − 𝑦(𝑛))2]  (10) 

 

the problem is to adapt the filter coefficients through minimizing the MSE. Accordingly, there is no effect on 

the primitive signal 𝑠1(𝑛), and the following equation is satisfied: 

 

𝑀𝐼𝑁 𝐸[𝑒2(𝑛)] = 𝐸[𝑠1(𝑛)2] + 𝑀𝐼𝑁 𝐸[(𝑝1(𝑛) − 𝑦(𝑛))2] (11) 

 

the following formula will be used to update the filter coefficients in order to reduce MSE adaptively based on 

the preceding equation about the LMS methodology: 

 

𝑾(𝑛 + 1) = 𝑾(𝑛) + 𝜇. 𝛻𝐸[𝑒2(𝑛)]  (12) 

 

in which 𝛻𝐸[𝑒2(𝑛)] = 𝑿(𝑛)𝑒(𝑛), therefore: 

 

𝑾(𝑛 + 1)  = 𝑾(𝑛) + 𝜇𝑿(𝑛)𝑒(𝑛) (13) 

 

in which the parameter µ shows the size of step.  

It should be noted that (11) states that if the error's mean square is decreased, the best least-squares 

estimate of signal 𝑠1(𝑛) is obtained in the filter output. This shows that the created error signal shares second-

order characteristics with the original ECG signal. The LMS-based approach can extract as much information 

as is practical from the error signal because it only uses the first and second order statistics of the error signal 

𝑒(𝑛) with a Gaussian distribution to describe it. The quality of the reconstructed ECG signal is therefore 

appropriate. However, the artifacts that have higher order statistics, i.e., non-Gaussian distributions, are what 

contaminate the ECG recordings. Since this higher order statistic is not considered in the LMS method, it would 

not be capable to remove ECG artifacts entirely. So, deployment of the MEE criterion will be presented in 

order to updating the adaptive noise canceller (ANC) weights. 

 

3.2.  MEE-based ANC system  

The filter coefficients in the provided adaptive noise canceller system will be adjusted in accordance 

with the error entropy criterion minimization in order to reconstruct the ECG signal. This criterion is used to 

develop the equations required to update the active noise control/cancelation (ANC) weight vector W. As 

shown in (8)'s definition of error leads to the following calculation of error entropy (14). 

 

𝐻[𝑒] = 𝐻[𝑠1 + 𝑝1 − 𝑦]  (14) 
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Assume 𝑋 and 𝑌 denote two independent variables randomly. Generally, an equality relation for the 

entropy of summation of two random variables does not exist, but by supposing independency of them, the 

following inequality is satisfied:  

 

max{𝐻(𝑋), 𝐻(𝑌)} ≤ 𝐻(𝑋 + 𝑌) ≤ 𝐻(𝑋) + 𝐻(𝑌)  (15) 

 

by employing the above inequality and also if it is imagined that signal and noise are independent, the following 

inequality is written for (14): 

 

𝐻(𝑠1) ≤ 𝐻(𝑒) ≤ 𝐻(𝑠1) + 𝐻(𝑝1 − 𝑦) (16) 

 

adapting the filter coefficients according to MEE, leads to minimizing the entropy of error, 𝐻(𝑒). Since it has 

no effect on the primitive signal, 𝑠1(𝑛), the following inequality can be obtained regarding (16): 

 

𝐻(𝑠1) ≤ min {𝐻(𝑒)} ≤ 𝐻(𝑠1) + min {𝐻(𝑝1 − 𝑦)}  (17) 

 

if min {𝐻(𝑝1 − 𝑦)} approaches zero, then: 

 

min {𝐻(𝑒)} ≈ 𝐻(𝑠1)  (18) 

 

by decreasing the entropy of error in a filter output, the best minimum entropy estimate of the signal 𝑠1(𝑛) is 

obtained. This technique lowers the entropy of the incorrect signal, 𝑒(𝑛). If the error entropy is kept as low as 

possible, all error distribution moments will be minimized. The cause of it is because entropy is a PDF function. 

Therefore, since non-Gaussian disturbances in ECG signals have higher order statistics, this approach is 

advantageous for them. 

As shown in (7), to minimize the error entropy, it is sufficient to maximize the information potential. 

For online training methods used in the adaptive filters, IP should be estimated iteratively. To do so, the 

stochastic information gradient (SIG) can be used as: 

 

�̂�2(𝑒(𝑛)) ≈
1

𝐿
 ∑ 𝐺𝜎√2(𝑒(𝑛) − 𝑒(𝑖))𝑛−1

𝑖=𝑛−𝐿   (19) 

 

where, for 𝑛 − 𝐿 ≤ 𝑖 ≤ 𝑛, 𝑒(𝑖) = 𝑑(𝑖) − 𝑾𝑇(𝑛)𝑿(𝑖) in equation (19), the most recent L samples at time n are 

used for the summing. The coefficients are updated by implementing the MEE-SIG approach [24] using the 

following equation in order to adaptively reduce the entropy of the error signal 𝑒(𝑛): 

 

𝑾(𝑛 + 1) = 𝑾(𝑛) + 𝜇. ∇𝑉(𝑒(𝑛))  (20) 

 

in which the IP gradient will be computed as (21). 

 

∇𝑉(𝑒(𝑛)) =
1

2𝜎2𝐿
∑ 𝐺𝜎√2(𝑒(𝑛) − 𝑒(𝑖))𝑛−1

𝑖=𝑛−𝐿 {𝑒(𝑛) − 𝑒(𝑖)} {𝑿(𝑛) − 𝑿(𝑖)}  (21) 

 

It should be noted that the LMS method is a peer of the MEE-SIG adaptive filter in the group of 

adaptive filters in accordance with the MSE measure [23]. This filter builds adaptive systems in accordance 

with the MEE measure. The efficiency of the MEE-ANC filter will next be compared to that of the LMS-ANC 

filter using simulations. 

 

 

4. THE RESULTS OF SIMULATION 

We implement the benchmark LMS-ANC method and the proposed MEE-ANC methodology using 

MATLAB®. This study uses a variety of ECG recordings from the MIT-BIH arrhythmia database (MITDB) 

with a range of wave shapes to show how well the suggested approach works as a noise canceller [25]. 48 two-

channel ambulatory ECG recordings from 47 research participants at the BIH Arrhythmia Laboratory are 

included in this collection along with detailed comments. Based on this database, the adaptive filter's principal 

input, d(n), is the original ECG signal that has been damaged by noise. PLI, BW, EM, and MA are four 

significant noise types that are inherent in recorded ECG signals and are regarded as the reference signal x(n) 

(see Figure 1), which should be subtracted from the noisy ECG signal. The MIT-BIH normal sinus rhythm 

database (NSTDB) will be used to retrieve the BW, MA, and EM noise samples [26]. Without using any 

harmonics, simulations produce the PLI noise. The signal to noise ratio at the adaptive filter input is taken to 
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be 1.25 dB for the aforementioned situations. The signal-to-noise ratio improvement (SNRI) is determined by 

comparing the input and output SNR, and the obtained findings are compared with those of the LMS-ANC 

algorithm in order to assess the effectiveness of the provided approach. For the LMS method and the MEE 

method, the step-size (μ) parameter is regarded as 0.01 and 1, respectively.  

In our computations, we use 10,000 samples of the ECG signals. Table 1 gives the effectiveness 

comparison of applying MEE-ANC and LMS-ANC methods over five various ECG records in terms of SNRI 

(dB). As can be seen, MEE-ANC method has far better efficiency in eliminating all of above-mentioned noises.  

In the following, the denoising performance of the proposed algorithm is discussed in the presence of each of 

the noises in more detail, separately. All figures in this work have been plotted for first 3,000 so that the results 

can be seen more clearly. Besides, for all the figures, x-axis and y-axis indicate the samples number and the 

signals magnitude, respectively. Figure 2 shows the clean ECG signal, taken from data 105, before adding 

noise. In this regard, Figure 2(a) indicates the signal in the time domain and Figure 2(b) depicts its frequency 

spectrum. 

 

 

Table 1. Comparison of LMS- and MEE-based algorithms in terms of SNR improvement (dBs) 
Noise PLI BW MA EM 

Rec. no. LMS MEE LMS MEE LMS MEE LMS MEE 

100 13.86 18.09 6.65 20.51 9.10 15.59 7.66 16.33 

101 13.76 16.26 6.68 16.72 9.58 16.97 8.89 14.16 
102 12.91 13.47 7.59 14.55 9.77 16.72 8.29 14.79 

103 13.83 16.42 10.72 14.14 11.63 11.91 11.11 19.18 
104 13.45 15.24 11.35 15.37 10.10 15.87 10.95 21.03 

105 14.42 21.86 10.80 12.78 12.95 22.27 12.23 16.64 

average 13.705 16.89 8.967 15.678 10.51 16.555 9.855 17.02 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. ECG signal and its frequency spectrum (data 105 taken from the MIT-BIH database)  

(a) magnitude in the time domain and (b) magnitude in the frequency domain 

 

 

4.1.  Adaptive power line interference cancellation 

PLI, which is brought on by electric power lines, is viewed as high frequency noise when compared 

to the frequency content of the ECG signal. To get rid of this noise, a synthetic PLI with a 1 mV range is 

employed as the reference signal. Additionally, the main input of the adaptive filter is an ECG signal with 

synthetic PLI at a frequency of 60 Hz. Figure 3 displays the outcomes of noise removal using LMS- and MEE-

based algorithms, in which Figures 3(a) and 3(b) illustrate the raw signal and the noisy one, respectively. 

Furthermore, Figures 3(c) and 3(d) the obtained results for each algorithm. The average SNR improvement for 

the MEE technique is 16.89 dB, as opposed to 13,705 dB for the conventional LMS approach, as shown in 

Table 1. In order to show the convergence characteristics of LMS and MEE approaches, we exhibit the 

difference between signals, which comprises the clean and reconstructed signals acquired by both methods in 

Figure 4, where Figure 4(a) illustrates the elimination results for LMS algorithm and Figure 4(b) illustrates the 

elimination results for MEE algorithm. As can be seen, the MEE method speeds up convergence while also 

reducing steady state error. The frequency spectrum for MEE and LMS algorithms, both before and after 
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filtering, is shown in Figure 5. In this regard, Figure 5(a) shows the signal contaminated with 60 Hz PLI,  

Figure 5(b) illustrates its frequency spectrum after filtering by MEE, and Figure 5(c) shows its frequency 

spectrum after filtering by LMS. 

 

 

 

 
(a) 

 

 
(b) 

  

 

 
(c) 

 
(d) 

 

Figure 3. PLI elimination results (a) original ECG, (b) noisy ECG, (c) recovered by LMS algorithm, and  

(d) recovered by MEE algorithm 

 

 

 

 

 

 

(a) (b) 

 

Figure 4. The difference signals between original and reconstructed signals (a) PLI elimination results for 

LMS algorithm, and (b) PLI elimination results for MEE algorithm 

 

 

 

 
(a) 

 

 

 
(b) 

 

 
(c) 

 

Figure 5. The frequency spectrum of the ECG signal, both before and after filtering (a) frequency spectrum 

corrupted with PLI at a frequency of 60 Hz, (b) frequency spectrum after filtering by MEE, and (c) frequency 

spectrum after filtering by LMS 
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4.2.  Adaptive Baseline wander reduction 

Baseline wandering of the ECG signal is a result of factors such patient movement, respiration, and 

contact between the electrodes and skin. ECG signal that has been tampered with using BW is used as the main 

input to get rid of this noise. As seen in picture 1, real BW is also provided as the reference signal x(n).  

Figure 6 shows the outcomes of the noise removal. The average SNR improvement for MEE is 15,678 dB, 

compared to 8.967 dB for traditional LMS. Figure 7 also shows the signals that differ. Figure 7(a) shows that 

when non-Gaussian noise is present, some BW will be remined in the filter output after LMS filtering as shown 

in Figure 7(b), demonstrating the inadequacy of the MSE criterion. 

 

 

 

 
(a) 

 

 

 
(b) 

 

 

  
(c) 

 

 
(d) 

 

Figure 6. BW elimination results (a) original ECG, (b) noisy ECG, (c) recovered by LMS algorithm, and 

(d) recovered by MEE algorithm 
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Figure 7. The difference signals between original and reconstructed signals (a) BW elimination results for 

LMS algorithm and (b) BW elimination results for MEE algorithm 
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4.3.  Adaptive motion artifacts elimination 

Electrode motion (EM) artifact is a result of changes in the electrode-skin junction's impedance or 

shifts in the potential of the skin brought on by stretching of the skin. This artifact overlaps the ECG signal in 

the frequency domain because EM has a similar wave shape to ECG, including P, QRS, and T waves. 

Therefore, band-pass filtering is insufficient to get rid of this artifact. The noise removal process utilizing LMS 

and MEE algorithms is shown in Figure 8. In this regard, Figures 8(a) and 8(b) depict the raw signal and its 

noisy version. Moreover, Figure 8(b) shows the recovered signal using LMS and Figure 8(c) indicates the 

recovered signal using MEE. According to the findings of the simulation, the average SNR improvement for 

the MEE algorithm is 17.02 dB, compared to 9.855 dB for the LMS algorithm. Additionally, Figure 9 shows 

the difference signals, where Figure 9(a) indicates the obtained results using the LMS algorithm, and  

Figure 9(b) indicates the obtained results using the MEE algorithm. 
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Figure 8. EM elimination results (a) original ECG, (b) noisy ECG, (c) recovered by LMS algorithm, and  

(d) recovered by MEE algorithm 
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Figure 9. The difference signals between original and reconstructed signals (a) EM elimination results for 

LMS algorithm and (b) EM elimination results for MEE algorithm 
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4.4.  Adaptive muscle artifacts elimination 

The presence of MA is caused by muscle contractions around the electrodes. MA has a broad 

bandwidth which sometimes overlaps with the ECG signal. Due to this, simple low-pass filtering is not 

adequate to suppress this artifact. Figure 10 indicates the filtering results for MA removal by LMS- and MEE- 

based algorithms. Figures 10(a) and 10(b) show the original and noisy signals, respectively. Figures 10(c) 

demonstrates that the restored signal using LMS algorithm has a very low quality. On the other hand,  

Figure 10(d) demonstrates that the reconstructed signal by MEE algorithm has the desired quality. This 

observation is emphasized in Figure 11, which shows the difference signals for MEE and LMS algorithms. As 

can be seen in Figure 11(a), the error rate for the LMS algorithm is relatively large, while the MEE algorithm 

has shown a fast rate of convergence and little steady state error based on Figure 11(b). The average SNR 

enhancement for the MEE and LMS algorithms, according to simulation findings, is 16,555 dB and 10.51 dB, 

respectively. These findings show that the MEE algorithm can track even in the presence of non-stationary 

non-Gaussian disturbances.  
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Figure 10. MA elimination results: (a) original ECG, (b) noisy ECG, (c) recovered by LMS algorithm, and 

(d) recovered by MEE algorithm 
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Figure 11. The difference signals between original and reconstructed signals: (a) MA elimination results for 

LMS algorithm and (b) MA elimination results for MEE algorithm 

 

 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

A novel adaptive noise cancellation method based on minimization of error … (Zahraa Mousa Saad) 

195 

5. CONCLUSION 

The minimal error entropy criterion, an information-theoretic criterion, is used in this study to support 

the proposal of an adaptive noise cancelling algorithm. The Renyi's quadratic entropy is taken into account as 

the information measure in this case. To estimate this measure from the input ECG signal on a sample-by-

sample basis, an adaptive formulation is used. Since this measure is directly derived from an estimate of the 

error PDF, all data pertaining to the error distribution are considered in the process of minimizing it. In contrast, 

the well-known MSE criterion simply takes into account the second-order statistics of the error distribution. 

When denoising an ECG signal, where noises are often non-Gaussian, this is beneficial. The effectiveness of 

the suggested approach is evaluated using real ECG signals that are noisy and have different artifacts. 

According to simulation data, this strategy is superior than the LMS adaptive approach for the four primary 

types of disturbances present in recorded ECG signals. 
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