
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 28, No. 2, November 2022, pp. 909~917 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v28.i2.pp909-917      909  

 

Journal homepage: http://ijeecs.iaescore.com 

Mathematical and computer simulation of particle 

redistribution and inertial swarming in dispersed systems 
 

 

Bakhtiyar Rashidovich Ismailov1, Leyla Mukhamedjanovna Musabekova2,  

Zhanat Rysbayevna Umarova1, Khairulla Bakhtiyarovich Ismailov1, Kuttybek Arystanbayev3 
1Department of Information Systems and Modeling, M. Auezov South Kazakhstan University, Tauke Khan Avenue 5,  

Shymkent, Kazakhstan 
2Department of Computing Technology and Software, M. Auezov South Kazakhstan University, Tauke Khan Avenue 5,  

Shymkent, Kazakhstan  
3South Kazakhstan Medical Academy, Al-Farabi Square 1, Shymkent, Kazakhstan 

 

 

Article Info  ABSTRACT  

Article history: 

Received Nov 21, 2021 

Revised Jul 22, 2022 

Accepted Aug 12, 2022 

 

 This work is devoted to modeling the motion of a dispersed phase in a gas 

flow in two cases: i) the dynamic characteristics of the gas flow (velocity 

components, stream functions and vorticity, ii) are found by numerically 

solving the Navier-Stokes equations with the subsequent construction of the 

droplet trajectory; study of the coalescence of droplets in a given model gas 

flow with analysis of the swarming of dispersed particles. In the first 

approach, the size and location of vortex and stagnant zones in a channel 

with a streamlined plate and with a turning flow are determined by 

numerically solving the equations of gas dynamics in Helmholtz variables. 

To study the coalescence of drops that occurs when the trajectories of two or 

more drops come into contact, a second approach has been developed-a 

computer model of inertial swarming in dispersed systems using the 

Delphi10 programming environment based on stochastic lattice algorithms 

and computable lattice enlargement. This approach is needed to pre-define 

the media flow rate profile. Also in this article, were analyzed the grouping 

and redistribution of particles for the manifestation of the "swarm of drops" 

effect. 
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1. INTRODUCTION  

Physical phenomena of aggregation (for example, coalescence and fragmentation of droplets and 

bubbles in a gas stream) form the basis of many processes of chemical, oil refining, food and pharmaceutical 

technologies and are mainly associated with a change in the spectrum and number of particles per unit 

volume, which determine the value of the interfacial surface of mass and heat transfer. Theoretical and 

experimental studies of the processes of coalescence, fragmentation and deformation of drops and bubbles 

are presented in many works. For example, in [1], a review of works of a certain importance in the modeling 

of problems in petrochemistry is carried out. The results of theoretical studies of the phenomena of 

coalescence of two-particle collisions of small droplets in the approximation of Brownian particles in a 

homogeneous unbounded system on the simplest models were first carried out in [2], [3], the frequency and 

time of coalescence, inversely proportional to the molecular diffusion coefficient of Brownian particles, were 

determined. It should be noted that in rarefied gas-droplet flows the probability of collision of droplets is 

https://creativecommons.org/licenses/by-sa/4.0/
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small, but their consequences are important for the correct calculation of mass transfer processes. Therefore, 

the problem of modeling the phenomena after the collision of drops in general, and swarming, in particular, is 

relevant. 

The swarming process can be accompanied by the aggregation of particles with the formation of 

clusters with a complex internal structure [4] or proceed without aggregation. In the first case, i.e. when 

aggregated clusters are formed, their aggregation activity can depend on both the order of the clusters and 

their age [5]. The term “cluster age” [6] here means the time elapsed from the moment of completion of its 

primary formation to the moment of changing its size or order, ie. change in the number of its constituent 

nanoparticles or internal structure. The age of a cluster plays an important role in the process of aggregation, 

since it affects its morphology and aggregation activity [6]. In this case, the kinetic equations for the 

aggregation process must be non-Markovian [7]. The manifestation of memory effects in non-Markov 

processes can significantly transform the kinetic equations, which, in particular, leads to the appearance of 

nonlinear wave solutions. 

At the same time, the swarming process itself can be considered as a kind of weak (correlative) 

aggregation, when the connection between the particles that make up the swarm is determined by the 

correlation of the spatial coordinates and velocities of the swarm particles [8]. Further in this work, the main 

attention is paid to the inertial type of swarming, the description of which is very important for the correct 

calculation of many technological processes. 

The main formulation of the problem of this work is to study the redistribution of the dispersed 

phase in terms of the size and mass of particles during its interaction with the flow of a continuous medium. 

Particles of one size can be in one area of the flow, and of another size in another area of the flow, i.e. 

swarms of particles of different average sizes are formed. In contact zones, where vortices are formed, small 

particles can be trapped, while large ones fly by. The paper shows two approaches to calculating this 

phenomenon, each of which has its own advantages and disadvantages. 

The first approach describes the structure of the flow of a continuous medium and the motion of 

particles in this flow using the equation of continuum mechanics and a numerical algorithm developed in [9], 

[10], [11]. The movement of particles in this complex-structured flow is described. To ensure the 

convergence of the numerical algorithm for the implementation of the mathematical model, the method of 

hydrodynamic establishment is used, which is described in the most complete form in [12]. The mathematical 

model of the trajectory of liquid droplets is based on the ideas of [13], in particular, on the relative velocity of 

the droplets. The uniqueness of the solution of the differential Navier-Stokes equations, the convergence of 

our numerical algorithms for their solution are ensured by the fulfillment of the corresponding conditions 

given in [14]-[17]. This approach is quite strict, but it has drawbacks in the interpretation of numerical 

results. For example, additional difficulties arise for taking into account possible aggregation due to the 

difference in volumes and masses of particles. In the processes of aggregation of nanoparticles, 

intermolecular forces prevail [18], and in this problem these are the mass forces of gas and droplets, the force 

of interaction of continuous and dispersed flows. It should be noted as a disadvantage of this approach that it 

is difficult to solve the equations of gas dynamics, especially in a turbulent regime. 

To overcome the disadvantages of the first approach, a second approach has been developed: the 

flow structure is presented in a model form. It can be taken from theory or from experiment. The structure 

then describes the formation of the swarm. At the same time, accounting for aggregation and the formation of 

a swarm becomes easier. A flow was modeled, the dynamic characteristics of which are specified, its 

structure is simplified, and another calculation concept was applied-the method of stochastic lattices. In 

papers [19]-[22] aggregation is described and a swarming algorithm is given. The key point in the swarming 

algorithm is the idea of coarsening or coarsening of the lattice, which makes it possible to describe the 

change in concentration in separate regions of the flow, and two points are studied: the total change in the 

concentration of particles of different sizes and the total change in the order of particles. Using them, the 

average particle size can be calculated. The results of computer modeling and numerical experiments are 

presented to describe the phenomenon of swarming [23], [24], proceeding according to an inertial 

mechanism, using both computer hydrodynamic modeling and the approach of stochastic lattices, specially 

adapted in the presented work to describe the phenomenon in swarms [25], [26]. 
 

 

2. ALGORITHM FOR FINDING THE DYNAMIC CHARACTERISTICS OF A GAS 

2.1.  Gas velocity distribution 

To simulate and generate an inhomogeneous gas flow, two cases are considered (Figure 1): Figure 

1(a) flow around the plate; Figure 1(b) a turning stream. The basis of the mathematical model of gas 

dynamics in is the two-dimensional Navier-Stokes equations in variables, the stream function  (x,y,t) and 

vorticity   (x,y,t) [9]-[14]. 
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When specifying the initial and boundary conditions, the geometry of the channel and the shape of the 

nozzles are taken into account. 

 

2.2.  Solution domain and finite difference scheme 

To solve problem (1)-(6), we use the finite-difference method. The area of the numerical solution of 

the problem is shown in Figure 1, therefore the area for solving the equations of gas motion is the flow 

around the plate in case Figure 1(a) and the Figure 1(b) case is a turning stream. 
 
 

  
(a) (b) 

 

Figure 1. The area for solving the equations of gas motion, (a) the flow around the plate and (b) a turning 

stream 
 
 

Let’s use the following explicit scheme for the vortex equation: 
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where 𝑅ℎ- is the remainder whose order is O(h). 

We now turn to solving the Poisson equation for the stream function (1). Let us denote by s the 

index of the inner cycle and write down the scheme for solving this equation on the time layer n+1 in the 

form: 
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where is the 
0

 - iterative parameter defined through the grid parameters. 

 

σ, h (α0 = 4σ/h2) (5) 

 

The z values of the iterative parameter depend on the Reynolds number and are selected according to the 

recommendations [12]. 

A fragment of our algorithm in the ABC Pascal language, which implements the method of 

hydrodynamic settling, as applied to the problem of gas flow around a plate, has the following form 

(Algorithm 1): 
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Algorithm 1. Fragment of the algorithm for calculating the flow of gas around the plate 
Begin { Calculating derivatives } 

a1:=(f[i,j+1]-f[i,j])/h; {u} 

a2:=-(f[i+1,j]-f[i,j])/h; {V} 

a3:=(w[i+1,j]-w[i,j])/h; {dw/dx} 

a4:=(w[i,j+1]-w[i,j])/h; {dw/dy} 

a5:=(w[i+1,j]-2*w[i,j]+w[i-1,j])/h/h; {d^2w/dx^2} 

a6:=(w[i,j+1]-2*w[i,j]+w[i,j-1])/h/h; {d^2w/dy^2} 

a7:=a1*a3+a2*a4; 

a8:=a5+a6; a10:=tau*(a8/Re-a7); 

w[i,j]:=w[i,j]+a10; 

if maxw<abs(a10) then maxw:=abs(a10);end; 

l3: iterf:=iterf+1; { start of inner loop for stream function } 

writeln('iterf=',iterf:3); 

for i:=0 to n do { updating } 

for j:=0 to m do 

f1[i,j]:=f[i,j]; 

if iterf>nf then stop; 

for i:=1 to n-1 do { stream and vorticity functions at the plate boundaries } 

 for j:=1 to m-1 do 

begin 

if (i=n1) and (j>=m1) and (j<=m2) then 

f[i,j]:=0.5; begin  

w[i,j]:=(2*(f[i,m1-1]-f[i,m1]))/h/h;end; 

 else 

begin { vorticity function calculation } 

b1:=(f[i+1,j]-2*f[i,j]+f1[i-1,j])/h/h; 

b2:=(f[i,j+1]-2*f[i,j]+f1[i,j-1])/h/h; 

b3:=b1+b2-w1[i,j]; 

f1[i,j]:=f[i,j]+sigma*b3; 

if maxf<abs(sigma*b3) then maxf:=abs(sigma*b3); 

f[i,j]:=f1[i,j]; 

end; end; 

 

2.3.  Modeling and calculation of droplet trajectories 

The differential equation of the droplet motion is written in the form [27]: 
 

𝑚𝑑
𝑑𝑊𝑑

𝑑𝑡
= −

𝑑

2
𝜌𝑔 𝑓𝑑𝑊𝑟𝑠

2𝑒 + 𝑚𝑑�⃗� (6) 

 

where 𝜉𝑑 = 𝑓(𝑅𝑒, 𝑊 𝑒) - coefficient depending on the Reynolds and Weber numbers; 𝑓𝑑- drop cross-

sectional area; 𝑊𝑟𝑠- relative droplet velocity; 𝑒- unit direction vector 𝑊𝑟𝑠; g–free fall acceleration vector.  

After transformation of the last equation and reduction to dimensionless form, a system of equations 

for the relative velocity of the drop and the angle between the direction of the drop and the gas was obtained 

[27]. This system was solved numerically by the Runge-Kutta method with automatic step selection. 

Dynamic characteristics of an inhomogeneous gas flow - numerical values of stream functions and vorticity 

at the nodes of the finite-difference grid. The solution continues until the drop hits the channel boundary, 

plate surface, or meets another drop. Figures 2 and 3 show the contour lines obtained for the Reynolds 

number equal to 100 in the channel with the plate and in the turning channel. In vortex zones, the maximum 

values of the vertical component of the velocity are twice or higher than the average flow rate, due to the 

thickening of the streamlines. 
 

 

 
 

Figure 2. Profiles of the longitudinal gas velocity when flowing around the plate, Re = 100.  

х – distance from channel  entrance 1 – х = 0,3; 2 – х = 0,5; 3 – х = 0,6; 4 – х = 0,8 
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Figure 3. Profiles of the longitudinal gas velocity in a turning flow, Re=100.  

х–distance from channel entrance, 1–х= 0,3; 2–х=0,5; 3–х=0,6;4–х=0,8 

 

 

Figure 4 shows the calculated trajectories of drops with a diameter of 3 mm in a channel with a 

plate. Single drops are "placed" on the first vertical line, after the gas enters. The dotted line shows the 

isolines of the gas flow function. Under the influence of the forces of gravity and the inhomogeneity of the 

gas flow, a swarm of particles is formed in zones 1 and 2 with an average velocity directed to the upper and 

boundary, respectively. Zones 1 and 2 can be called zones of "swarm" of drops, falling into which the drops 

lose their spherical shape and flow into the film. In these zones, the probability of droplet aggregation 

increases: in zone 1, due to the thickening of streamlines, in zone 2, due to the accumulation of drops. 

Because, in these zones, the probability of particle aggregation increases due to an increase in their local 

concentration and a decrease in relative velocities. 

 

 

 
 

Figure 4. Trajectories of drops in an inhomogeneous gas flow, d=3mm 

 

 

3. STOCHASTIC LATTICE SWARMING MODEL 

The above approach has sufficient completeness and rigor in theoretical and computational terms. It 

is difficult to generalize this approach to create a conjugate model taking into account particle aggregation in 

collisions. Therefore, a numerical experiment was carried out on the basis of a stochastic lattice model [19], 

[20], [21] at different profiles of the carrier phase flow velocity. This approach requires preliminary 

specification of the carrier flow rate profile, but at the same time it becomes possible to effectively take into 

account the kinetics of aggregation processes, including collisions of many particles, which is fundamentally 

applicable to aggregation in dense disperse systems [22]-[26], [27]-[30]. The algorithm and the main part of 

the code for the stochastic lattice method have been published earlier [19]-[21]. Also presented were the 

results of testing this approach to the calculation of aggregation processes in dispersed systems in cases of 

diffusion-limited aggregation (DLA), and with mixed kinetics [19]-[21]. Special algorithms are used for 

computer simulation of swarming processes [31]. To adapt this method to simulating swarming, especially 

taking into account the aggregation process and the influence of random drift, a special lattice enlargement 
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algorithm was developed, which is presented in this paper. The main steps of this algorithm in the case of 

DLA are described below. i) The following matrices are created: the main matrix of concentrations 𝐶(𝐼, 𝐽) 

and a rough matrix of the total number of clusters in blocks 𝐶𝑂(𝑋, 𝑌), where M, N the dimensions of the 

matrix 𝐶(𝐼, 𝐽) and 𝑅, 𝑇the dimensions of the matrix 𝐶𝑂(𝑋, 𝑌). Here 𝑅 = 𝑀/𝑎;  𝑇 = 𝑁/𝑏; and 𝑎, 𝑏 - the 

dimensions of the coarse lattice block (that is, the number of rows and columns of the matrix𝐶(𝐼, 𝐽), captured 

in the block to generate the matrix.𝐶𝑂(𝑋, 𝑌); ii) The block with specific coordinates (𝑋𝑠, 𝑌𝑠) in the rough 

matrix 𝐶𝑂(𝑋, 𝑌) is built from the elements of the matrix 𝐶(𝐼, 𝐽), which make up rows with numbers from 

(aXs-1 +1) to aXs and columns with numbers from (bYs-1 +1) to bYs; iii) The element of the matrix 𝐶𝑂(𝑋, 𝑌) 

must be calculated as the sum of all numbers𝑑𝑘𝑙 , determined from the elements of the matrix 𝑐𝑋𝑠𝑌𝑠
, that fall 

into the block (𝑋𝑠, 𝑌𝑠). Namely: 𝑐𝑜𝑋𝑠𝑌𝑠
= ∑ ∑ 𝑑𝑘𝑙

𝑎𝑋𝑠
𝑎𝑋𝑠−1+1

𝑏𝑌𝑠
𝑏𝑌𝑠−1+1 . Here the elements 𝑑𝑘𝑙  should be calculated 

according to the following algorithm (А): If 𝑐𝑋𝑠𝑌𝑠
≠ 0, then 𝑑𝑘𝑙 = 1, Else 𝑑𝑘𝑙 = 0. A rough matrix of the 

total number of orders of clusters in blocks 𝐶𝑂1(𝑋, 𝑌) should be calculated similarly to the matrix 𝐶𝑂(𝑋, 𝑌). 

The only difference is that positions 𝑐𝑜1𝑋𝑠𝑌𝑠
 are calculated using a formula𝑐𝑜𝑋𝑠𝑌𝑠

= ∑ ∑ 𝑐𝑘𝑙
𝑎𝑋𝑠
𝑎𝑋𝑠−1+1

𝑏𝑌𝑠
𝑏𝑌𝑠−1+1 . 

That is, it is not necessary to pre-calculate by Algorithm 1. 

A fragment of the program for calculating the flow rate by the horizontal component for four types of 

uniform and non-uniform distribution of flows, the principles of which were described in [24] (Algorithm 2). 

 

Algorithm 2. Fragment of the algorithm for calculating the horizontal component of the velocity 
If uw.ItemIndex=0 then// equable distribution 

If l>=w1 then vg[l,i]:= vg[l,i]+w1; 

If uw.ItemIndex=1 then // unequable distribution, the №1 type 

 begin if (i<=wn1) then vg[l,i]:= vg[l,i]+w1; 

 if (i>wn1) and (i<=(wn1+wn2)) then vg[l,i]:=vg[l,i]+w2; 

 if (i>(wn1+wn2)) and (i<=n1) then vg[l,i]:=vg[l,i]+w1; end; 

if uw.ItemIndex=2 then // unequable distribution, the №2 type 

 begin if (i<=wn1) then vg[l,i]:= vg[l,i]+w1; 

 if (i>wn1) and (i<=(wn1+wn2)) then vg[l,i]:=vg[l,i]+w2; 

 if (i>(wn1+wn2)) and (i<=n1) then vg[l,i]:=vg[l,i]+round(w3); end; 

if uw.ItemIndex=3 then // unequable distribution, the №3 type  

 begin if (l>=r1_4) and (i>wn3) then begin vg[l,i]:= vg[l,i]; end; 

 if (i<=wn3) and (l>r1_4) then vg[l,i]:= vg[l,i]+3*w1; 

 if (l<r1_4) then vg[l,i]:= vg[l,i]+w1;end; 

if uw.ItemIndex=4 then // unequable distribution, the №4 type 

 begin if (l<=r1_4) then vg[l,i]:= vg[l,i]+w1; 

 if (l>=r1_4) and (i<=wn3) then begin vg[l,i,j]:= vg[l,i]; end; 

 if (l>=r1_4) and (i>(wn3+wn1*2)) then begin vg[l,i]:= vg[l,i]; end; 

 if (i>wn3) and (i<=(wn3+wn1*2)) and (l>r1_4) then vg[l,i]:= vg[l,i]+3*w1;end; 

 

Some results of this simulation are shown in Figure 5. Different color intensities of different blocks of 

rough matrices correspond to different concentrations of clusters, both without taking into account their orders 

(cold colors) and different sums of orders of cluster aggregates (warm colors). To color the blocks, we used the 

RGB code of the additive color model [32]. The step of change was 20 units, both in the number of clusters and 

in the sum of their orders. The overall range observed during the simulation was from 0 to 200 units. 

The dimensions of the computational matrix are 20x200, the dimensions of any block of the coarse 

matrix are 4x40. The calculations were performed for three different initial carrier flow velocity profiles: 

uniform flow, symmetric irregular flow, and asymmetric irregular flow. 
 

 

 
1 2 3 

 

Figure 5. Illustration for calculating swarming using a stochastic lattice model. Explanation of symbols 

 in the text above 
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The conditional flow rates W for these three cases are equal: 1-W=2; 2-Ww=2 at the baffles, Wc=6 on 

the central axis of the flow; 3- Ww1=2 at the upper baffle, Wc=6 at the central axis of the flow, Ww1=4 at the 

lower baffle. Flow direction from left to right. The order of all particles introduced by the carrier flux into the 

circuit is assumed to be 1. Then particles of different orders appear due to DLA aggregation [19]. 

 

 

4. CONCLUSION 

The analysis of the results of the first approach showed that when the gas flows around the plate, the 

streamlines become thicker, respectively, at the edge of the plate, the horizontal and vertical components of 

the velocity increase by 1,5-2 times. Getting into this zone, small drops rise up, and large ones-down due to 

the prevalence of gravity forces. This means that the droplet size distribution function changes. Thus, the 

distribution function becomes dependent on the coordinates of the points of the region of gas and droplet 

flow. If the drops were initially evenly distributed in size, then passing a certain path and staying in motion 

for a certain time, they fall into the zones in which they accumulate (the "swarm" effect). This fact must be 

taken into account when calculating mass transfer in chemical technology devices, since at each point of the 

region, the droplet size distribution function is different. 

The analysis of the second approach showed that the comparison of the results of swarming taking 

into account the total number of clusters without taking into account their orders and the results of the 

assessment by summing the orders of the clusters shows an increase in the intensity of aggregation in the 

swarm formation zone. This conclusion is quite consistent with the known laws of aggregation. With an even 

(piston) flow velocity profile, no obvious accumulations are formed, and the observed local differences in 

concentrations can be explained by the influence of random particle drift. Experiments based on the lattice 

model demonstrate a clear effect of the non-uniform profile of the carrier flow velocity on the rate of 

formation of a swarm of particles of the dispersed phase. Several swarms may form, especially in the case of 

an asymmetrical profile. The concentration of particles in the swarm in experiments carried out with an 

asymmetric profile exceeded the average value for the flow by an average of 40 percent. 
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