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 The electric vehicle (EV) is considered an attractive alternative to a 

conventional vehicle, due to its potential beneficiation in decreasing carbon 

emission. But the battery range anxiety is a key challenge to its wide adoption 

and also the EV drivers spend so much time in public charging stations (CS) 

to charge especially during peak times. In this paper, we propose a charging 

station selected system (C3S) to control and manage EVs charging plans. 

Moreover, the C3S system proposed consists of a set of algorithms that are 

proposed to recommend a suitable CS for EV charging requests. The CS 

selection is based on minimizing travel time and takes into account in real-

time the queuing time at CS, EVs' charging reservations, and the predicted 

time of EVs' future charging requests. Besides, we proposed three different 

strategies for predicting the EVs incoming and controlling the uncertainty 

matter of the dynamic arrival of EV charging requests. As part of the Helsinki 

City scenario, the evaluation results demonstrate the performance, especially 

at peak times, of our proposed C3S with regard to the CS recommendation 

which has the minimum total trip duration. 
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1. INTRODUCTION  

Over the last few years, the government has become more encouraging of policy action related to 

climate change [1]. With the rapid development of cities and associated vehicle numbers, the transportation 

sector has become responsible for a large increase in the world’s energy consumption and therefore its air 

pollution levels [2]. electric vehicles (EVs) have been playing an ever-more important role in urban 

transportation systems for their capability of energy-saving, carbon reduction, environmental protection, 

promoting renewable energy, and introducing a sustainable transportation system [3], [4]. Compared to 

traditional internal combustion engine (ICE) vehicles, EVs are more efficient and could provide a 45% 

reduction in carbon emissions [5], [6]. Many countries around the world put up suitable policies to facilitate 

the EV industry development and its popularization [7]. Therefore the EV market will be rapidly growing, it is 

expected that more than 130 million EVs will get in the market by 2030 [8], [9], and also the public charging 

stations (CS), a large number of EVs can be connected to a power grid for charging such as fast-charging 

stations and parking lots [10], [11], will be playing an important role in charging EVs compared with home 
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charging, due to the most of EV owners do not have the capacity to charge their EVs at home. On the other 

hand, the limited range of the battery capacity, the frequently charging especially in long-distance travel, the 

high peak charging demand due to the large use of EVs in a specific time period, and therefore, a long-time 

spending by EV owners at CSs for charging unlike gas stations where the internal combustion engine (ICE) 

vehicles can get refueled in minutes are considered one of the main EV challenges that causing great 

inconvenience. Furthermore, the simple solution of increasing the CS network capacity by deploying more 

stations is impractical in view of the addition to the power needs and the constraints on the power grid [12], 

[13], there also exists a limited physical space and the CSs number can be increased to a limited number. 

Therefore, the optimal solution is how to make the EVs charging process more efficient, by better managing 

both the scheduling of charging stations and EV on-road that have planned the charging reservation and those 

can make in the near future charging reservation requests. 

Many works have proposed different EV charging schemes to effectively manage the electric vehicles 

charging plans using optimization problems. Yang et al. [14] propose an EV navigation system that is based 

on autonomic computing and a hierarchical architecture over vehicle ad-hoc network, this system improves the 

EVs travel time based on traffic information center (TIC), which works as a brain that analyzes the traffic 

information including traffic flow, state of charge (SOC), average speed, and vehicle route, and then plans 

routes.  

Razo et al. [15] presented a smart scheduling approach based on the A* algorithm and a peer-to-peer 

scheduling system. This method aims to minimize the total travel time for each EV by considering the estimated 

state of the charging stations and the individual EV information. Yang et al. [16] proposed an optimal model 

is proposed for EV route selection and charging navigation strategy, it is based on real-time crowd sensing and 

the data collected from EV drivers' mobile devices, and a mathematical model is proposed by using the queuing 

theory to estimate the waiting time at CSs. Cao et al. [17] proposed CS-selection scheme for managing EVs’ 

charging plans, the selection is depended on the knowledge of those electric vehicles locally parking at charging 

stations and those remotely sending requests of charging reservations, and therefore, the charging reservations 

of electric vehicles take into account their arrival and expected charging time at charging stations selected. Liu 

et al. [18] presented a charging control algorithm to solve shortest path problem, by formulating a route 

charging navigation problem according to pricing time varying, the decisions of routing and charging are 

impacted by electricity prices of time-dependent, in deterministic utilizing online information and a stochastic 

traffic network. Zhang et al. [19] proposed a charging management framework for optimal choice between 

battery swapping/charging stations. The proposed framework is composed by electric vehicles, battery 

swapping stations, charging stations, and global controller entity, which is responsible for CS-selected decision.  

However, the uncertainties due to the dynamically waiting time of the charging stations and changing 

traffic conditions are also another important factor. A few works have tried to address this issue, the CS 

recommendation based on the EVs reservations and the real state of CSs and the prediction of the future EVs 

charging requests in real-time, by using reinforcement learning such as the study presented in [20], here the 

authors present their proposed algorithms to recommend an appropriate charging station by minimizing the EV 

travel time. Lee et al. [21] proposed an RCS algorithm to select the optimal charging station, the selection 

based on minimizing the total EVs trip time with considering the unknowing future charging requests, which 

are predicted by using the deep reinforcement learning. In contrast, to make the good predictive based on 

machine learning model and also deep neural networks machine, the model must operate under a big and high 

quality of the dataset. This latter is considered as the main challenges which include the absence or lack of high 

dimensional datasets contain EVs driver's charging behavior [22].  

In addition, we have also proposed a strategy to mitigate the impact of future unknown EVs charging 

demands caused by the dynamic change of traffic conditions on the roads in [23], [24]. Our method based on 

the dynamic change of the charging plans of all EVs that have a charging reservation, the updating charging 

plans are made at each impact in the CSs states due to a new EV charging request. However, some EVs may 

receive significant recommendations for changing charging plans, especially at peak times [25]. 

In this paper, we propose CS selected system (C3S) to recommend the appropriate charging station 

for electric vehicles that send a charging reservation request. The C3S system consists of a collection of 

proposed algorithms to control and manage the EVs charging requests, EVs charging reservations, and queuing 

time at CSs, and also to predict the future EVs charging demands. Moreover, the selection of CS, which is 

recommended for an EV that has sent a charging request, is based on the total travel time, including the arrival 

time, the waiting and charging time, and the expecting time due to other future incoming EVs. In addition, we 

propose three strategies each one presented under an algorithm to predict the incoming EVs that may send the 

charging requests in the near future when a new EV driver need to charge it EV battery and then makes a 

charging reservation request. Eventually, we presented in section 2 the proposed C3S system model, and we 

detailed all these algorithms and the strategy that have been adopted by each one in section 3. Finaly, the 

performance comparison with previous work and conclusion are presented in sections 4 and 5 respectively. 
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2. THE PROPOSED C3S SYSTEM MODEL 

2.1.  Network entities and assumptions 

Electric vehicle: vehicle uses electric motor for propelling, it receives electricity by plugging into the 

electric grid and store it in batteries. If the EV is below the minimum of state of charge (SoC), the EV connects 

to the global aggregator (GA) in order to select a suitable charging station. Charging station: an EV charging 

station is an element in an infrastructure deployed geographically in a smart city to charge EVs in parallel. 

Therefore, each CS is equipped with many charging sockets. The CSs condition, i.e. waiting time for charging 

and number of electric vehicles parking at the charging stations, is supervised by GA. 

Global aggregator: a centralized unit to manage and control the EVs charging reservations and the 

CSs’ and the EVs’ state that are required to make CS-selection decision. In this work, we consider that all EVs 

are equipped with a global position system global positioning system (GPS) that contains its own movement 

information and tooled up with wireless communication devices such as 4G or 3G/LTE, which allows them to 

communicate with the GA through road-side unit (RSU) to find an appropriate CS for charging. We also 

assume that the CSs are geographically deployed in a city, and each CS equips with multiple charging ports 

with the result that a number of EVs can be charged in parallel. The EV charging scheduling at the CS is based 

on the first come first serve (FCFS) policy. Then if a CS is fully occupied, arriving EVs need to wait until one 

of its charging sockets is free. 

 

2.2.  EV charging management system cycle 

Based on Figure 1, the model procedure for our proposed EV charging management system is listed in: 

- Step 1: the EVs are on their journey. If an EV, namely𝐸𝑉𝑟, needs charging service as a result of a low energy 

status or the EV driver wants to make a charging plan along the trip path; it informs the GA by sending its 

status report including the information about its SOC, speed, location, and trip destination.  

- Step 2: when GA receipts the reservation request, it sends to all CSs located in the same geographical area 

of the EV across the RSU to inform it about their current queuing state.  

- Step 3: each CS runs Algorithm 1 to get the list, contains the waiting time of each charging socket in CS, 

and sends it into GA. 

- Step 4: based on running Algorithm 2 inside of Algorithm 3, GA recalculates all lists that are receipted 

taking into account the reservation table, and before deciding which the better CS for EV in terms of the 

minimized trip times including charging times, GA runs one of our three proposed algorithm (Algorithm 4, 

5, or 6) to predicts the EVs on-the-move that can send a reservation request and can arrive at CS selection 

before like 𝐸𝑉10 or EV12 in Figure 1, to select the appropriate CS to EVr, and to add them to the reservation 

table. After all, the decision is sent back toEVr.  

- Step 5: EVr moves across to its destination by following the path that including proposed CS for recharging. 

- Step 6: CS notices GA for canceling reservation of EVr when this latter arrival at CS, then EVr starts waiting 

in queue if there is not a vacant charge socket. 

 

 

 
 

Figure 1. C3S architecture 
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3. THE PROPOSED C3S SCHEDULING ALGORITHMS 

In this section, we have described our proposed model. Moreover, we have detailed each algorithm of 

the proposed scheduling algorithms which represent the core of the proposed model and are also responsible 

for the recommendation decision-making. Table 1 defines the meaning of all the variables that are used in these 

algorithms and also in the explaining of their functioning way. 

 

 

Table 1. List of nomenclatures 
Symbol Description 

𝐸𝑉𝑖 EV of index i 

𝐶𝑆𝑗 CS of index j 

𝑁𝑠𝑙𝑜𝑡 Number of charging socket at FCS or MCS 

𝑁𝐶𝑆 Number of CS in smart city 

𝑁𝑒𝑣 Number of EVs in charging queuing parked at CS 

Tslot Output including available time per charging socket at CS 

RLIST The reservation list which contains in each line an EV and the CS selected for charging. 

PLIST Temporary list of EVs with best choice of CS 

CSLIST List contains the LST array of all CS with reservations 

𝐸𝑖
𝑐𝑢𝑟𝑟 Current volume of EVi battery 

𝐸𝑖
𝑚𝑎𝑥 Full volume of 𝐸𝑉𝑖 battery 

𝐸𝑖,𝑗
𝑡𝑟𝑎𝑛𝑠 Estimation of the energy consumed for moving the EVi to the CSj 

𝑇𝑖
𝑓𝑖𝑛

 Charging finish time of EVi 

𝑇𝑐𝑢𝑟𝑟 Current time in city 
trip

jiT ,
 The time required for the EVi to reach its final destination, including the time spent at CSjfor charging 

𝑇𝑖,𝑗
𝑎𝑟𝑟 The time required for the EVi to arrive at the station CSj 

𝑇𝑖,𝑗
𝑤𝑎𝑖𝑡 The waiting time for the EVi to pass inside the CSj before starting the charging process 

𝑇𝑖,𝑗
𝑐ℎ𝑎𝑟 The time required to charge the EVibattery at CSj 

𝑇𝑖,𝑗,𝑑
𝑡𝑟𝑎𝑛𝑠 The time spent by 𝐸𝑉𝑖 between CSj and its final destination 

𝑇𝑖,𝑗
𝑡𝑟𝑎𝑛𝑠 The time spent by 𝐸𝑉𝑖 between CSj and its current position 

𝑇𝑗
𝑄

 The waiting and charging time at the CSj estimated by GA including all 𝐸𝑉𝑠 charging reservation 

𝛽𝑗 Charging power at CSj 

𝑆𝑖 Moving speed of EVi 

α Electric energy consumed per meter 

 

 

3.1.  Presentation 

The total EV trip duration by way of an intermediate CS for charging, is estimated by taking into 

account EV information state, previous reservations, CSs status, and other incoming EVs’ charging 

reservations to predict the future CSs status. We decouple our proposed model into four steps: Algorithm 1 

details the estimation charging time at CS, on which Algorithm 3 details to make decision for optimal CS-

selection to each EV sending a reservation request. The decision based on Algorithm 4, 5, or 6 for predicting 

the incoming EV into CSs in the near future and Algorithm 2 to assign each those incoming EV to an 

appropriate CS by taking into account FCFS policy. 

 

3.2.  Estimated charging time at CS 

Algorithm 1 allows calculating the queuing time at each CS according to the EVs currently parking at 

these CSs. Given the parallel charging procedure through multiple charging slots, we define a list Tslot to 

contain the estimation of the available charging time for each charging slot. Then, we initialize all slots by 

current time, denoted by𝑇𝑐𝑢𝑟𝑟, using a loop operation with 𝑁𝑠𝑙𝑜𝑡 iterations from line 1 to line 3, and 

𝑁𝑠𝑙𝑜𝑡indicates the number slots in CS.  

To distribute the EVs parked lot at a CS for charging, the loop operation starts from sorting the queue, 

based on FCFS order at line 5, and processing each 𝐸𝑉𝑖  in the queue, which has 𝑁𝑒𝑣 vehicle, from line 6 to 10. 

Furthermore, the charging finish time 𝑇𝑖
𝑓𝑖𝑛

 of each 𝐸𝑉𝑖 is expressed as line 7, where 
𝐸𝑖

𝑚𝑎𝑥− 𝐸𝑖
𝑐𝑢𝑟𝑟

𝛽
 is the time for 

𝐸𝑉𝑖 to be fully recharged and 𝑇𝑠𝑙𝑜𝑡 𝑔𝑒𝑡(0) represents the earliest available time for charging seeing all 

charging slots at a CS. 𝑇𝑠𝑙𝑜𝑡. 𝑔𝑒𝑡(0)is at the head of Tslot that will be sorted, with ascending order, once 

processing the 𝐸𝑉𝑖 for each loop, line 8 and 9. The above operations are repeated until all EVs in the queue are 

assigned to charging slots. Finally, Algorithm 1 returns the Tslot that including the minimum waiting time at 

a CS given 𝑇𝑠𝑙𝑜𝑡. 𝑔𝑒𝑡(0), line 12.  
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Algorithm 1. Charging time at CS 
Require: list of  EV, 𝑁𝑒𝑣  and  𝑁𝑠𝑙𝑜t 

Ensure: Tslot  sorted 

1: for  k=1 to  Nslot do 

2:       Tslot ⋅ add(Tcurr) 
3: end for 

4: if  Nev>  0  then 

5:      sort the queue of Nev according 

to FCFS 

6:      for i=1   to Nev do 

7: 

Ti
fin = Tslot ⋅ get(0) +

Ei

maxi
curr

β
 

8:                 replace 𝑇𝑠𝑙𝑜𝑡 ⋅ 𝑔𝑒𝑡(0) 

with  Ti
fin in  Tslot 

9:                sort  Tslot with 

ascending  order  

10:     end for 

11: end if 

12: Return  Tslot 

 

3.3.  CS update per EV for minimizing travel time 

Algorithm 2 is an intermediate algorithm. Itt is used to update the CS of each EV in the PLIST list, a 

list of predictions which is an array of dictionary type in the form of an (EV→CS) pair. The selection of the 

appropriate CS is based on the minimizing of trip time that is expressed as (1). 

 

𝑇𝑖,𝑗
𝑡𝑟𝑖𝑝

=  𝑇𝑖,𝑗
𝑡𝑟𝑎𝑛𝑠 + 𝑇𝑖,𝑗

𝑤𝑎𝑖𝑡 + 𝑇𝑖,𝑗
𝑐ℎ𝑎𝑟 + 𝑇𝑖,𝑗,𝑑

𝑡𝑟𝑎𝑛𝑠 (1) 

 

Algorithm 2. EVs reservations updating algorithm 
Require: PLIST 

Ensure: PLIST contains the new CS 

recommendation 

1: for   i=1  to PLIST ⋅ Size( )  do 
2: CSjmin

= CSk ,  such as    

Ti,k
arr = argm<NCS

 min(Ti,m
arr)    

3: T
min Trip

= Ti,k
trip

 according to Eq.1 

4: for  j=1 to  NCS  do 

5: if      trans

ji

curr

i EE ,  then 

6: Calculate  trip

jiT ,
  according 

to Eq.1  

7: 
if    Ti,j

trip
< T

min Trip
  then 

8: T
min Trip

= Ti,j
trip

   

9: CSjmin
= CSj    

10: end if 

11: end if 

12: end for 

13:   PLIST ⋅ set(EVi, CSjmin
())   

14: end for 

15: return PLIST 

 

𝑇𝑖,𝑗
𝑤𝑎𝑖𝑡 = {

0, 𝑖𝑓 𝑇𝑗
𝑄 <  𝑇𝑖,𝑗

𝑎𝑟𝑟

𝑇𝑗
𝑄 −  𝑇𝑖,𝑗

𝑎𝑟𝑟 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

 

With 𝑇𝑗
𝑄

 indicate the estimation of the waiting time at 𝐶𝑆𝑗, including the queuing times at 𝐶𝑆𝑗 and all 

EVs having a charging reservation to it and 𝑇𝑖,𝑗
𝑎𝑟𝑟 expressed as (3). 

 

𝑇𝑖,𝑗
𝑎𝑟𝑟 =  𝑇𝑐𝑢𝑟𝑟 + 𝑇𝑖,𝑗

𝑡𝑟𝑎𝑛𝑠 (3) 
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As well, the charging time expressed as (4).  

𝑇𝑖,𝑗
𝑐ℎ𝑎𝑟 =  

𝐸𝑖
𝑚𝑎𝑥− 𝐸𝑖

𝑐𝑢𝑟𝑟+ 𝐸𝑖,𝑗
𝑡𝑟𝑎𝑛𝑠

𝛽𝑗
  (4) 

 

with 𝐸𝑖,𝑗
𝑡𝑟𝑎𝑛𝑠 =  𝑆𝑖  ×  𝑇𝑖,𝑗

𝑡𝑟𝑎𝑛𝑠  ×  𝛼 (5) 

 

In Algorithm 2, lines 2 and 3, we used two variables 𝐶𝑆𝑗𝑚𝑖𝑛
 and 𝑇𝑚𝑖𝑛𝑇𝑟𝑖𝑝 to keep successively the 

optimal station and the minimum value of the EVi trip time, and they are initialized with values obtained by 

using the nearest CS toEVi, then the browsing of all CSs, the loop lines 4 to 12, in order to find where there is 

the minimum 𝑇𝑖,𝑗
𝑎𝑟𝑟. Moreover, the clause between lines 5 and 11 is to eliminate the CSs where the current 

energy of 𝐸𝑉𝑖 is not enough to move towards them. At the end of the iteration, the 𝐶𝑆𝑗𝑚𝑖𝑛
 obtained is assigned 

to the 𝐸𝑉𝑖 in the PLIST, the line 13. Finally, PLIST is returned with each EV has a CS by which their trip time 

is the minimum, line 15. 

 

3.4.  Decision algorithm to making EVs charging reservations 

When a charging request is received by GA, the latter executes Algorithm 3 whose status of EVs 

having a charging reservation, LR list, will be updated, line 1, also the ascending order of EVs in LR list will 

be carried out according to the arrival time, 𝑇𝑒𝑣
𝑎𝑟𝑟 , in order to serve those who will arrive first at their 

destination, first come first serve basis, line 2. Then GA sends to all CSs for updating their queuing times by 

executing algorithm 1, these queuing times will be stored in CSLIST list, line 3. The queuing time will be 

estimated for each CS only when taking into account the charging reservations previously made by EVs, stored 

in LR list. For that, a loop, between line 4 and 10, set up to extract each reservation i.e. 𝐸𝑉𝑖 and their reservation 

𝐶𝑆𝑗, line 5 and 6, and to update the queuing time for CSjin the CSLIST list, line 9, thereafter 𝐶𝑆𝐿𝐼𝑆𝑇(𝐶𝑆𝑗) list, 

Tslot list of𝐶𝑆𝑗, are sorted with ascending order to obtain the minimum queuing time that will be used for the 

next iteration. Eventually, CSLIST is used by one of the Algorithms 4, 5 or 6 which is responsible for selecting 

the best charging station taking into account the forecast of EVs which may request a charging reservation after 

which is being in the process, line 11, and the EV charging reservation with its optimal CS selected for charging 

is added to LR list of reservations, line 12.  

 

Algorithm 3. Decision algorithm of EV charging reservation 
Require : LR, EVr, CSLIST updated 

Ensure : Notify EVrby CSrrecommended   

1: Update  parameters of all EVs in LR 

2: Sort LR with ascending order of  Tev
arr 

3: CSLIST given by all CS using Algorithm 

1  

4: for     k=1  to 𝐿𝑅 ⋅ 𝑆𝑖𝑧𝑒( )  do 
5:      EVi = LR ⋅ getEV(k) 
6:      CSj = LR ⋅ getCS(k) 

7: Calculate  Ti,j
arr, Ti,j

wait and Ti,j
char  

according to      Eq. 3, Eq. 2 

and Eq. 4 , respectively 

8:       CSLIST(CSj) ⋅ get(0)= Ti,j
arr + Ti,j

wait + Ti,j
char 

9:      CSLIST(CSj) ⋅ sort( )  with ascending 

order 

10: end for 

11: CSr = CS    returned by Algorithm 4, 5 
or 6  

12:  LR ⋅ add(EVr, CSr ) 

 

3.5.  Detail of the optimal CS selection for EV charging request 

To select the optimal charging station based on the minimum journey time, most selection strategies 

are taken into account waiting time, charging time, arrival time, the time between charging station and the 

destination, and the number of EVs that already have a charging reservation. Furthermore, the impact between 

EVs serviced by the GA and the uncertainty of future EVs charging demands was not considered. Therefore, 

we propose three algorithms with different strategies to select CS by considering all previous parameters and 

also dynamic arrival charging requests. All these algorithms, in the first line, start by calculating the number 

of future charging requests, which is calculated by (6): 

 

𝑃𝑁𝑒𝑣 =  (𝑇𝑟,𝑗
𝑎𝑟𝑟 − 𝑇𝑐𝑢𝑟𝑟)  ×  𝜔 +  𝛿 (6) 
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where 𝑇𝑟,𝑗
𝑎𝑟𝑟 the arrival time value of 𝐸𝑉𝑟, EV charging request, to CSj, the farthest charging station, defined as 

(7). 
 

𝑇𝑟,𝑗
𝑎𝑟𝑟 =  𝑎𝑟𝑔 𝑘<𝑁𝑐𝑠

 𝑚𝑎𝑥(𝑇𝑟,𝑘
𝑎𝑟𝑟)  (7) 

 

Moreover, 𝑇𝑐𝑢𝑟𝑟is the current time when the reservation request is sent to GA, ω is the EV flow rate 

defined as the number of EV (named λ) per time unit (named τ), and δ represents the incertitude and is 

calculated as (8). 

 

𝛿 = {
0, 𝑖𝑓 ((𝑇𝑟,𝑗

𝑎𝑟𝑟 − 𝑇𝑐𝑢𝑟𝑟) × 𝜆) 𝑚𝑜𝑑 𝜏 = 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
  (8) 

 

Subsequently, the detailed description of each Algorithm 4. The idea of Algorithm 4 is to select the 

charging station which will have the maximum occurrence in the CS recommendation process for EVr charge 

request, i.e. the most frequent CS selected.  

 

Algorithm 4. Maximum frequency of CS selected 
Require: 𝐶𝑆𝑗 , CSLIST  list contains all CS queuing time and 

reservations. 

Ensure : CSr recommended 

1: Calculate 𝑃𝑁𝑒𝑣 according to Eq. 6 

2: for  k=1 to n do 

3:    PLIST ⋅ add(allEVinS, null),   S  is Calculated  

 according to Eq. 9 

4:    PLIST ⋅ add(EVr, null) 

5:    TCSLIST = CSLIST ⋅ clone( ) 

6:    While   PLIST ⋅ size( ) > 0      do 

7:        PLIST, returned by Algorithm 2 

8:        PLIST ⋅ sort( ) with ascending order of  Tev
arr 

9:        CSj = PLIST ⋅ getCS(0) 

10:        EVi = PLIST ⋅ getEV(0) 
11:        TCSLIST(CSj) ⋅ set(0, Ti,j

arr + Ti,j
wait + Ti,j

char) 

according to Eq. 3 , Eq. 2  and Eq. 4  respectively 

12:       CSLIST(CSj) ⋅ sort( )  with ascending order 

13:         if  EVr = EVi then 

14:              RKj = RKj + 1  

15:              Exit   while loop 

16:         end if  

17:         PLIST ⋅ remove(0)  

18:    end while 

19:    PLIST ⋅ removeALL( ) 

20: end for 

21: 𝐶𝑆𝑟 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘<𝑁𝐶𝑆
(𝑅𝐾𝑘) 

 

The loop, between lines 2 and 20, has for goal to perform several operations of CS recommendation 

by making a new prediction of EV future charging requests, line 3, which will be recorded in the PLIST list 

with
rEV  , line 3 and 4. The expectation of EVs incoming calculated as (9). 

 

𝑆 = {𝐸𝑉𝑖| 𝑖 𝜖 [1, 𝑃𝑁𝑒𝑣] 𝑎𝑛𝑑 𝑇𝑖
𝑟𝑒𝑞

𝜖 [𝑇𝑐𝑢𝑟𝑟 , 𝑇𝑟,𝑗
𝑎𝑟𝑟]}  (9) 

 

where,  Ti
req is the expected time for an 𝐸𝑉𝑖to send a charge request, it will be randomly obtained.  

At the line 5, the queuing time of all CS with all reservations of charging requests are copied in a 

virtual list TCSLIST, which will be used to accumulate the expected EVs incoming charging requests from 

PLIST list, line 11, after recommending a CS at each EV in PLIST list and served the first EV coming at it CS 

selection, line 7 and 8. The operation will be repeated, loop between line 6 and 18, until the EVr will be served, 

line 13, then the rank of CS selected to EVrwill be increased, line 14, and an exit loop, line 15, to extract  

another recommendation. Moreover, to obtain high precision predictions, the CS selection operation will be 

performed several times, loop between lines 2 and 20, and finally, CSr that has a maximum frequent will be 

returned, line 21.  
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Algorithm 5 works the same way of Algorithm 4, only the strategy of CS selection changed, where 

here the CS selection based on the minimum of the average of travel times which will be calculated and saved 

for each CSj selected in CST list, list in form (CS→list) pair to save Tr,j
trip predicted, line 14 and 15. To make 

high precision predictions and measurements, and that the quality of the CS selection will be improved the 

operation will be performed several times, loop between lines 2 and 21. Finally, the optimal CSrwill be returned 

when the minimum of trip time average of each CS will have calculated, line 22.  

 

Algorithm 5. Minimum trip times average of CS selected 
Require :  CSj , CSLIST  list contains all CS queuing 

time and reservations. 

Ensure : CSr recommended 

1: Calculate PNevaccording to Eq. 6 

2: for  k=1 to n do 

3:    PLIST ⋅ add(allEVinS, null),   S  is Calculated  
 according to Eq. 9 

4:    PLIST ⋅ add(EVr, null) 
5:    TCSLIST = CSLIST ⋅ clone( ) 
6:    while PLIST ⋅ size( ) > 0 do 
7:        PLIST, returned by Algorithm 2 

8:        PLIST ⋅ sort( ) with ascending order of  Tev
arr 

9:        CSj = PLIST ⋅ getCS(0) 

10:        EVi = PLIST ⋅ getEV(0) 
11:        TCSLIST(CSj) ⋅ set(0, Ti,j

arr + Ti,j
wait + Ti,j

char) 

 according to Eq. 3  , Eq. 2  and Eq. 4  

respectively 

12: 
      CSLIST(CSj) ⋅ sort( )with ascending order 

13:         if  EVr = EVi then 

14:              Calculate    Tr,j
trip

   according to Eq. 1 

15:              CST(CSj) ⋅ getList( ) ⋅ add(Tr,j
trip

) 

16:              Exit   while  loop 

17:         end if  

18:         PLIST ⋅ remove(0) 
19:    end while 

20:    PLIST ⋅ removeAll( ) 
21: end for 

22: 𝐶𝑆𝑟 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘<𝑁𝐶𝑆
(𝑎𝑣𝑔(𝐶𝑆𝑇(𝐶𝑆𝑘) ⋅ 𝑔𝑒𝑡𝐿𝑖𝑠𝑡( ))) 

 

The approach implemented by Algorithm 6 to recommend the optimal CS is the same as that presented 

in the previous algorithms in terms of determining the number of future charging requests, the parameters of 

the expected EVs such as location, and battery level, as well as the method of estimating waiting time in the 

CSs. Except, the way distribution of charging requests' activation times is planned regularly, line 2, with the 

set of the expected EVs are calculated as (10). 

 

𝑆′ =  {𝐸𝑉𝑖|𝑖 𝜖 [1, 𝑃𝑁𝑒𝑣] 𝑎𝑛𝑑 𝑇𝑖
𝑟𝑒𝑞

= 𝑇𝑐𝑢𝑟𝑟 + (
𝑇𝑟,𝑗

𝑎𝑟𝑟− 𝑇𝑐𝑢𝑟𝑟

𝑃𝑁𝑒𝑣
) × 𝑖} (10) 

 

Where,  Ti
req times when the predicted incoming EVisend the charging request. 

 

Algorithm 6. Regularly distribution of future EVs charging request 
Require :  CSj , CSLIST  list contains all CS queuing time and 

reservations. 

Ensure : CSr recommended 

1: Calculate PNevaccording to Eq. 6 

2:   PLIST ⋅ add(allEVinS', null) ,  S’  is Calculated   according 

to Eq. 10 

3:    PLIST ⋅ add(EVr, null) 

4:    TCSLIST = CSLIST ⋅ clone( ) 

5:    while PLIST ⋅ size( ) > 0 do 

6:        PLIST, returned by Algorithm 2 

7:        PLIST ⋅ sort( ) with ascending order of  Tev
arr 

8:        CSj = PLIST ⋅ getCS(0) 
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9:        EVi = PLIST ⋅ getEV(0) 
10: 

       TCSLIST(CSj) ⋅ set(0, Ti,j
arr + Ti,j

wait + Ti,j
char) according to Eq. 3  

, Eq. 2  and Eq. 4  respectively 

11:       CSLIST(CSj) ⋅ sort( )with ascending order 

12:         if  EVr = EVithen 

13:              CSr = CSj 

14:              Exit    while loop 

15:         end if  

16:         PLIST ⋅ remove(0) 

17: end while 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Simulation configurations 

In order to simulate and evaluate the C3S proposed system, we built and deployed the proposed system 

in the opportunistic network environment (ONE), a Java-based simulator for evaluation [26]. Moreover, we 

present, in this section, a detailed description of the environment parameters setting for the system simulations. 

The default scenario is represented as the city center of Helsinki city in Finland with an area of 4500×3400 m2 

as shown in Figure 2.  
 

 

 
 

Figure 2. Simulation scenario deployed on Helsinki city 

 

 

Here, we assume that we have four charging stations supplied with sufficient electrical energy, and 

each of them has equipped with five charging slots using the fast-charging rate of 80 kW, level 3. In addition, 

300 EV are initialized randomly in the network with (40-80) kW as maximum electricity capacity of a battery 

and at the start with (10%-40%) as a SOC threshold. Furthermore, the variable moving speed of each EV is 

initialized by a value within 30 and 50 km/h, and with (0.12-0.18) kWh/Km as the average energy consumption. 

Furthermore, the locations and destinations of EVs are chosen randomly by the ONE simulator, and Dijkstra's 

shortest path algorithm is applied for the movement of nodes on the map to obtain the path towards EVs' 

destination. Eventually, we set up ONE simulator to update positions, energy, and speeds of the electric 

vehicles at each second in the charging stations or on the road. 

C3S proposed system consists of three methods noted by Ag2M1, Alg2M2 and Alg2M3 is compared 

with the previous strategy, noted by Alg1, which based on the updating periodically of EV charging 

reservations at each change due to a new EV charging demand [23]-[25]. In addition, to show the performance 

of C3S system algorithms we adopted average trip time (ATT), the average time that EVs spend on their trip 

including spending time at CSs selected for charging, as a metric of evaluation. 

 

4.2.  Result and discussion 

Figure 3 shows the simulation results obtained after we had run the simulator 100 times at each 

experience, in which the simulator was set up to make a defined number of charging requests as a rate of EV 
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number per hour that needed to have a charging reservation. It is obvious from the obtained results that all the 

methods proposed in this strategy are better with regard to trip duration than the previous strategy, and their 

effectiveness increase with the increase in the number of EVs charging requests. However, the previous 

strategy is more preferable of all methods proposed in this strategy when the flux of EVs charging requests is 

lower and the ATT is more significant particularly when the number EV charging request is very high. 

Therefore, we can conclude that this proposed strategy can be used at peak times and the previous one at off-

peak times.  

 

 

 
 

Figure 3. AVG trip time by charging request flow 

 

 

Likewise, Figure 4 shows the results when we change the number of charging stations, with the setting 

of the global number of charging sockets in city to 30 charging sockets (see Table 2), and set up the rate of EV 

charging demands per hour to 300 EV, which is an EV charging request almost every 12 seconds. The curve 

indicating the previous strategy appears above all methods curves proposed in this strategy when the number 

of bounds increases and vice versa. Therefore, algorithms proposed in this work are more performance of what 

is proposed in the previous work in terms of minimizing trip time, as a consequence of the loss of time due to 

the change of direction of electric vehicles according to the periodic update of the charging plans, especially 

when the number of CS deployed in the city is greater. Finally, we can say that the strategy proposed in this 

work is more adapted than the proposed in previous work in big cities and more effective in peak times. 

 

 

Table 2. Number of charging sockets at charging stations 
CS Number Socket number at each CS 

3 10 

6 5 

10 3 

15 2 

 

 

 
 

Figure 4. AVG trip time lag between the two strategies at each change of CS number 
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5. CONCLUSIONS 

We proposed in this paper C3S which aims to recommend a suitable charging station for an EV 

charging request en route to its destination. The selection based on the minimum time spending along the EV 

trip which includes waiting and charging time, charging time of the previous EVs charging reservations, and 

an additional time of the future EVs incoming. The proposed C3S combines with the current data of CSs state 

and EVs conditions that had a charging reservation and the expected data of EVs that can send charging 

requests due to the uncertainty of EVs driver behaviors and traffic jams. Moreover, the absence of good 

dimensional datasets of the charging requests demeanors of EVs' drivers that can let us use machine learning 

to obtain the high precision about the future EVs conditions, we proposed three different strategies to achieve 

this goal, and each strategy was developed in form of a proposed algorithm. The evaluation of C3S algorithms 

compared with the previous work algorithms, based on the updating periodically of the EVs charging plans, 

shows its performance and its effectiveness in terms of the selection of the optimal charging station, particularly 

in peak times. 
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