
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 29, No. 2, February 2023, pp. 990~1005

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v29.i2.pp990-1005  990

Journal homepage: http://ijeecs.iaescore.com

Analysis of benchmark program results of worst case execution

time for multithreaded programs

Padma Priya Dharishini Paraman1, Prakriya V. Ramana Murthy2
1Department of Computer and Software Engineering, Ramaiah University of Applied Sciences, Bangalore, India

2Department of Artifical Intelligence and Data Science, Nitte Meenakshi Institute of Technology, Bangalore, India

Article Info ABSTRACT

Article history:

Received Jul 21, 2022

Revised Oct 13, 2022

Accepted Oct 21, 2022

 Worst case execution time (WCET) estimation by static analyzers is being

investigated with keen interest in view of their importance in designing

applications for embedded systems that have real- time requirements. Recent

work reported on improving precision of estimates of WCET of

multithreaded programs, by improving precision of shared instruction cache

analysis, shows significant improvement in WCET estimates. An abstraction

of a multithreaded program as Hoare’s communicating sequential processes

(CSP) specification program is realized to enable higher precision in micro-

architectural modelling unit of WCET analyzer of multithreaded programs.

A thread is viewed as a composition of CSP. The WCET of a thread may be

viewed as dependent on WCET of processes in a thread and in turn WCET

of each process is the WCET of the sub-graph of basic block nodes in the

process. Corresponding CSP in interacting threads, based on calls to

synchronization primitives wait and notify, generate shared cache

interferences to the process in a thread whose WCET is being estimated by

the analyzer. A detailed study of how partitioning of a thread into processes

yields higher reduction in WCET is performed on benchmark programs.

Furthermore, which processes in a thread yield higher reduction in WCET is

performed.

Keywords:

Multicore architecture

Multithreaded program

Shared instruction cache

Static analyzer

Worst case execution time

This is an open access article under the CC BY-SA license.

Corresponding Author:

Padma Priya Dharishini Paraman

Department of Computer and Software Engineering, Ramaiah University of Applied Sciences

Bangalore, Karnataka, India

Email: padmapriya.cs.et@msruas.ac.in

1. INTRODUCTION

Multicore processors started dominating the domain of general-purpose computing and embedded

systems as single core processors reached their power limit. Multicore processors are the key component for the

design of embedded systems because of their high performance, low cost and low power consumption. In real

time computing, the timing requirements of programs need to be satisfied in addition to functional requirements.

Therefore, real time systems must verify their timing requirements using verification or static timing analysis

tools [1]. A static timing analysis tool uses an abstract model of the program to compute safe worst case

execution time (WCET). The estimated WCET by static timing analysis tool shall be greater than or equal to

actual WCET to ensure safety, by considering program flow and micro-architectural features such as shared

cache, shared bus and branch prediction [1]. At the same time, improving the precision of statically estimated

WCET is a challenge as the best possible approximation of dynamic state of interactions in architecture have to

be approximated by simulator. Higher precision keeps the estimated WCET as close as possible to the actual

WCET statically.

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Analysis of benchmark program results of worst case execution time … (Padma Priya Dharishini Paraman)

991

WCET analysis for sequential programs is well-studied [1]-[3] and it is complex to determine

WCET of a given thread due to dynamic sharing of resources (shared cache, shared bus) between threads

running on the cores. Threads communicate through shared memory and synchronize actions on shared data

using critical sections. To estimate WCET, an abstract view of the multithreaded program having calls to

synchronization primitives is required. A multithreaded program is seen as sequential computations that

communicate with each other using calls to synchronization primitives. This is realized by transforming a

multithreaded program into an equivalent Hoare's communicating sequential processes (CSP) specification

program [4]. The main differences between WCET analysis of a sequential program and a multithreaded

program are in accounting for time estimates of shared resources by threads (or cores) such as shared

instruction cache.

Execution of a program task or thread on a core may encounter latency, for example, due to

interferences resulting in removal of the required bytes of memory, from shared instruction cache, being

accessed by a competing task or thread on another core. The current state of the art [3] indicates that the

interferences or conflicts for an instruction in a task running on a core is from the entire program region of

tasks running on other cores. A challenge in precise WCET estimate of execution time of an instruction in a

thread, statically, while using shared instruction cache, is to model, as precisely as possible, the set of

interferences from other threads (or cores). Li et al. [5], a timing analysis of concurrent programs is proposed

to derive partial order for tasks that is based on send and receive messages and the paper does not discuss

about WCET of multithreaded programs. A progressive refinement of the cost of execution of tasks, by

iterating and identifying interferences between tasks for shared cache analysis, is employed [5]. In contrast,

[6] first applies a novel interference partitioning algorithm that partitions range of interferences from entire

thread into sub-ranges or partitions of interferences to improve the precision in worst case latency

computation in accessing an instruction by a thread.

Potop-Butucaru and Puaut [7], during micro-architecture modelling phase communication edges

between threads are introduced but in [8] the program flow analysis phase creates an abstraction of a

multithreaded program as CSP specification, identifies the communication edges among threads, and collects

dependency information. Touzeau et al. [9], memory accesses are classified as always hit (AH), always miss

(AM) and unclassified (U). The developed model checker refines the unclassified memory blocks as AH or

AM. Touzeau et al. [9] assumes that every instruction requires the same number of memory bytes, which is

an unrealistic assumption. Ozaktas et al. [10], WCET of a parallel program is analyzed. The execution time

of the program is the execution time of the longest running thread. Ozaktas et al. [10] considers a simple

architecture, in which execution time of each instruction is a single clock cycle and for memory access, extra

latency is configured and the issues in shared cache analysis are not addressed. Kelter and Marwedel [11], the

problem addressed is that in multi-core systems, certain interleavings can never occur by properly analyzing

shared resource accesses by tasks. This information can make WCET analysis of tasks precise and feasible.

Carle and Cassé [12] extracts the instructions that can potentially cause or suffer from timing interferences.

The extracted instruction separates the real time tasks into a sequence of time intervals. An integer linear

programming (ILP) solver schedules the sequence of time intervals to minimize the make span time of the

program. Worst case interference placement (WCIP) approach discussed in [13] results in reduction in the

number of interferences because the effect of same interferences is not considered for all the shared cache

hits. Therefore, a larger number of shared cache accesses are classified as hits. It is reported that ILP based

approach to interference placement does not scale well for larger programs. Puaut et al. [14] compiler

optimization that results in lower WCET is explored.

Dharishini and Murthy [6] and Dharishini and Murthy [8], an approach to reduce the set of

interferences from an interacting thread during the execution of an instruction in a given thread is proposed.

Parallel processes and competing processes in threads of program are identified based on the partial order

information derived between interacting threads. The reduction, of interferences to shared instruction cache,

is to a smaller group of instructions in a thread, termed a parallel process. The multicore chronos simulator is

extended to incorporate parallel processes and competing processes enabling reduction in conflicts or

interferences to shared instruction cache resulting in more precise WCET estimates. 20%-30% reduction in

WCET estimates is observed using the implemented static analyzer. However, in Dharishini and Murthy [6]

and [8], a detailed study of the simulation of benchmark programs is not carried out to pinpoint the processes

and in particular basic blocks in sub-graphs of processes that generate interferences to shared instruction

cache leading to eviction of instruction being accessed from the shared instruction cache by a thread. An

attacking process (or set of such processes) that is/are larger than the current process(es) in the currently

active thread evict(s) the currently required instruction from shared instruction cache with a higher

probability. This is is experimentally observed during the simulation of benchmark programs. Another

contribution is that in contrast with the work reported in [6] and [8] which only report simulation results on

MPMD programs, current work performs transformation of single program multiple data (SPMD)

multithreaded programs into Hoare’s CSP and runs simulation results on SPMD benchmark programs. The

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 29, No. 2, February 2023: 990-1005

992

results are generalized for different types of applications: fork/join, SPMD and multiple program multiple

data stream (MPMD).

The main contributions of this paper are:

− Characterization of benchmark programs is performed in terms of the conditions under which our

method results in a shared instruction cache hit whereas existing methods such as in [3] encounter a

shared instruction miss.

− The WCET of a thread is viewed as dependent on WCET of processes in a thread and in turn WCET of

each process is the WCET of the sub-graph of basic block nodes in the process. This view enables us to

study in this paper not only macroscopic differences in WCET estimates at the level of a thread between

our approach and the approach in [3] but also the microscopic differences in WCET estimates or shared

instruction cache misses at different levels of granularity, process, basic block and finally at the level of

an individual instruction. The study indicates that in our method the WCET of any arbitrary instruction I

in a thread is less than or equal to that in the method used in [3]. This is not only observed in simulation

of benchmark programs but also is proven using a theoretical argument.

− An algorithm for transformation of a multithreaded program to Hoare’s CSP is designed to enable

identification of parallel processes that compete with each other to access shared instruction cache.

− To show, WCET of a Thread computed using interference partition (IP) algorithm is always lesser than

or equal to WCET of a Thread computed using Hardy, Piquet and Puaut approach [3], assuming that

worst case execution time contribution from all other architectural units other than shared instruction

cache are equal in both the approaches.

2. OVERVIEW OF STATIC WCET ANALYZER FOR MULTITHREADED PROGRAMS

The main goal of a static analyzer [8] that estimates the WCET of a multithreaded program is to

analyze the input program and to perform required transformations so that statically measured execution time

is as close as possible to the actual execution time of the program, when actually run. A static analyzer,

shown in Figure 1 that works for different programming languages such as Java threads or POSIX threads is

designed and implemented. Dharishini and Murthy [8], “Each thread (Ti) in a multithreaded program is

viewed as a composition of sequential and parallel processes, communicating with processes in other threads

and if there are n threads in a multithreaded program, n threads are viewed as n communicating sequential

processes (CSP) [4]”.

Figure 1. Overview of static WCET analyzer of multithreaded program

3. TRANSFORMATION OF MULTITHREADED PROGRAM TO COMMUNICATING

SEQUENTIAL PROCESS SPECIFICATION

An appropriate abstract view of the multithreaded program that facilitates the static analyzer that

performs WCET computation with all the information required about the order of computations in threads,

concurrency or parallel execution of computations in thread is created. The abstraction of the program is best

provided by viewing the multithreaded program as an equivalent Hoare’s CSP specification [6]. Each thread

(Tk) in a multithreaded program is viewed as a composition of parallel and sequential processes,

communicating with parallel or sequential processes in other threads. The POSIX synchronization/

communication calls or barrier synchronization primitives between threads are transformed into CSP calls to

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Analysis of benchmark program results of worst case execution time … (Padma Priya Dharishini Paraman)

993

receive ()/send () or equivalent synchronization primitives. Intra thread partial order information that is

derived from a multithreaded program is based on the happens before relation [15]. The multithreaded

program along with CFG of each thread is provided as input to the Algorithm 1 that emits inter-thread partial

order information.

Algorithm 1. To emit partial order information from input multithreaded program

Input: Control flow graph (CFG) of each thread

Output: Set of tuples indicating happens before relation between intra-thread and inter-thread

synchronization nodes (for each thread)

− Step 1: Let n1, n2, n3, .. nk be the sequence of nodes then, the partial order information is n1 < n2 < n3 …

<nk. Partial order information is essentially based on happen-before relation between nodes in the CFG

of a multithreaded program. Basic block nodes containing instructions are viewed as events of

execution of nodes leading to corresponding CSP process transitions.

− Step 2: Based on the equivalent synchronization calls to send () and receive (), inter-thread partial order

information is derived from multithreaded program. Partial order information emitted is receive node in

a thread < corresponding send node in the interacting thread. CSP specification transformer generates

CSP processes of the multithreaded program that identifies parallel processes [8] and synchronized

parallel processes.

Algorithm 2, transforms the multithreaded program into communicating sequential process (CSP) program

specification equivalent to input multithreaded program based on the partial order information emitted by

Algorithm 1.

Algorithm 2: To transform multithreaded program to communicating sequential processes

Input: Partial order information of multithreaded program and CFG of each thread of multithreaded program

Output: Communicating Sequential Process (CSP) program specification equivalent to input multithreaded

program

A start process (P0) is assumed at the start node of the CFG of each thread. The start node is denoted as P0.

The transformation rules are:

Rule1:

If the next node ni is a computation node (i.e. an event or basic block node), neither a synchronization call

node nor a decision node, in that case

Pi <ni> -> Pi+1 (Pi accepts basic block node ni as an event transitioning to process Pi+1 on its execution)

Rule 2:

If the next node ni is a conditional node, in that case

P (if Ec then Et else Ef) -> P Et, if Ec

P (if Ec then Et else Ef) -> P Ef, if !Ec

Rule 3:

If the node is receive () (Inter- thread communication primitive) then the transformation rule is

Pi <receive> -> Preceive

Similarly, If the node is send () (Inter- thread communication primitive) then the transformation rule is

Pi <send> -> Psend

Similarly, If the node is barrier synchronization primitive, then the transformation rule is

Pi <barrier node i> -> Pbarrier reached where <barrier node i > is the node in Pi just preceding the barrier.

End

Figure 2 shows the general structure of a SPMD multithreaded program (taken from Malardalen

benchmarks [16]) having medium loop size and accessing large amount of data. Each thread initializes its

own portion of data and performs computation on the initialized data and waits for all the threads to complete

the computation on the initialized data. Threads communicate using send () and receive () communication

primitives or through barrier synchronization. For the SPMD program in Figure 2(a), its corresponding

Message sequence chart (MSC) and CSP representation are shown in Figure 2(b). Each of the child threads

and main thread initializes its own portion of data and performs computation on its initialized data. Threads

wait at the barrier for the completion of all other threads. Figure 3 shows control flow graph of initialize

function of multithreaded program. Figures 3(a) and (b) show the initialize function and CSP representation

of the initialize function where basic block nodes act as events of the CSP transitions.

3.1. Micro-architectural modelling

To estimate WCET of CSP processes, various units of the underlying computer components used

for their execution, need to be considered. In order to model shared instruction cache, most of the research

efforts consider interferences, from all instructions of an interacting thread or from the entire code, while an

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 29, No. 2, February 2023: 990-1005

994

instruction in a thread is being executed, statically. Dharishini and Murthy [8], “interfering region of code in

an interacting (competing) thread is reduced by considering interferences to shared instruction cache only

from the relevant maximal region of code in the interacting thread running concurrently with an instruction

under execution in a thread and such interfering maximal regions of code in threads are identified by defining

synchronized parallel processes, parallel processes, concurrent partitions in threads and list of concurrent

partition pairs of a given thread”.

“A synchronized parallel process is defined with respect to two interacting threads. The interaction

is based on synchronization using calls to send () and receive (). The instructions in the two threads between

a consecutive pair of calls to send () or receive () is a pair of interacting synchronized parallel processes. As

special cases, in one or both of the threads, start node of a thread to its first call to send, receive call pair in

two interacting threads may be regarded as synchronized parallel process(es). Similarly, send, receive call

pair to end of one or both threads may be regarded as synchronized parallel process(es). Parallel processes

refer not only to synchronized parallel processes specifically introduced to improve the precision of WCET

analysis with reference to shared instruction cache but also other parallel processes that arise based on partial

order information in multithreaded programs”.

Figure 4 shows the CSP representation of SPMD program with CSP processes identified. All the

CSP processes from n threads have to reach the barrier before they proceed and barrier process keeps track of

the arrival of all the processes and once all the processes arrive, it issues the proceed messages [17].

Based on identified synchronized parallel processes and parallel processes, the list of concurrent

partition pairs, concurrent partitions and competing processes (P, -) for each parallel processes are

constructed as shown in Table 1.

WCET of each basic block is computed by considering the interferences from the corresponding

competing processes. The interference partition algorithm computes set of interferences for each instruction

in a basic block by considering the interferences from the corresponding competing processes from the

interacting threads. The analyzer computes the worst case latency of accessing each instruction in Thread (T)

by updating shared instruction cache based on the set of interferences from competing processes. The WCET

of each basic blocki (Ci) is computed by including latencies of all instructions in the basic block. To

determine worst case latency of accessing instructions in thread T in the presence of shared instruction cache

and to compute (Ci), interference partition (IP) algorithm is proposed and implemented. The WCET estimates

of each process and thread are computed using the cost-coefficients, computed for basic block nodes, in the

integer linear programming formulation to maximize the WCET of the process (or thread).

(a)

(b)

Figure 2. SPMD Program, (a) C-code of SPMD program and (b) MSC of SPMD program

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Analysis of benchmark program results of worst case execution time … (Padma Priya Dharishini Paraman)

995

(a)

(b)

Figure 3. Control flow graphs of threads, (a) generation of structural and functional constraints and

(b) state model view of communicating sequential processes specification of a C-function

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 29, No. 2, February 2023: 990-1005

996

Figure 4. CSP Representation of SPMD Program with identified parallel processes

Table 1. Competing processes for each identified parallel process
List of concurrent partition

pairs (PTi, PTj)

Concurrent Partition Pairs

List of concurrent

partition pairs

(PT0, PT1)

[(P0_0 -> P1_0 -> P2_0-> P3_0 -> P4_0 -> …-> Pm_0 ->Pbarrier ,

P0_1 -> P1_1 -> P2_1-> P3_1 -> P4_1 ->… ->Pm_1 ->Pbarrier),

(Ps_0 -> Ps+1_0 -> Ps+2_0-> Ps+3_0 -> Ps+4_0 -> …-> Pt_0->Pbarrier ,

(Ps_1 -> Ps+1_1 -> Ps+2_1-> Ps+3_1 -> Ps+4_1 -> … ->Pt_1->Pbarrier)]

List of concurrent

partition pairs

(PT0, PTn)

[(P0_0 -> P1_0 -> P2_0-> P3_0 -> P4_0 -> … -> Pm_0 ->Pbarrier ,

P0_n -> P1_n -> P2_n-> P3_n -> P4_n ->… -> Pm_n ->Pbarrier),

(Ps_0 -> Ps+1_0 -> Ps+2_0-> Ps+3_0 -> Ps+4_0 -> … ->Pt_0->Pbarrier ,

(Ps_n -> Ps+1_n -> Ps+2_n-> Ps+3_n -> Ps+4_n -> …-> Pt_n->Pbarrier)]

Concurrent

Partitions (PT1)

{[(P0_0 -> P1_0 -> P2_0-> P3_0 -> P4_0 -> … -> Pm_0 ->Pbarrier ,

P0_1 -> P1_1 -> P2_1-> P3_1 -> P4_1 ->… -> Pm_1 ->Pbarrier),

(Ps_0 -> Ps+1_0 -> Ps+2_0-> Ps+3_0 -> Ps+4_0 -> … ->Pt_0->Pbarrier ,

(Ps_1 -> Ps+1_1 -> Ps+2_1-> Ps+3_1 -> Ps+4_1 -> … ->Pt_1->Pbarrier)], …

[(P0_0 -> P1_0 -> P2_0-> P3_0 -> P4_0 ->… -> Pm_0 ->Pbarrier ,

P0_n -> P1_n -> P2_n-> P3_n -> P4_n ->… Pm_n ->Pbarrier),

(Ps_0 -> Ps+1_0 -> Ps+2_0-> Ps+3_0 -> Ps+4_0 -> … -> Pt_0->Pbarrier ,

(Ps_n -> Ps+1_n -> Ps+2_n-> Ps+3_n -> Ps+4_n -> … Pt_n->Pbarrier)]}

CompetingProcesses (P0_0 ->

P1_0 -> P2_0-> P3_0 -> P4_0 ->… -

>Pm_0 ->Pbarrier)

(P0_0 -> P1_0 -> P2_0-> P3_0 -> P4_0 ->… ->Pm_0 ->Pbarrier ,

P0_1 -> P1_1 -> P2_1-> P3_1 -> P4_1 ->… ->Pm_1 ->Pbarrier) …

(P0_0 -> P1_0 -> P2_0-> P3_0 -> P4_0 ->… ->Pm_0 ->Pbarrier ,

P0_n -> P1_n -> P2_n-> P3_n -> P4_n ->… ->Pm_n ->Pbarrier)

CompetingProcesses (Ps_0 ->

Ps+1_0 -> Ps+2_0-> Ps+3_0 -> Ps+4_0

-> …-> Pt_0->Pbarrier)

(Ps_0 -> Ps+1_0 -> Ps+2_0-> Ps+3_0 -> Ps+4_0 -> … ->Pt_0->Pbarrier ,

(Ps_1 -> Ps+1_1 -> Ps+2_1-> Ps+3_1 -> Ps+4_1 -> … ->Pt_1->Pbarrier) …

(Ps_0 -> Ps+1_0 -> Ps+2_0-> Ps+3_0 -> Ps+4_0 -> … -> Pt_0->Pbarrier ,

(Ps_n -> Ps+1_n -> Ps+2_n-> Ps+3_n -> Ps+4_n -> … -> Pt_n->Pbarrier)

3.2. Interference partition algorithm

Interference partition (IP) algorithm, a part of micro-architectural modelling statically executes each

instruction in a multithreaded program making required measurements such as latency in accessing

instructions, in clock cycles. The steps in IP algorithm are as follows:

− 884eIdentify all parallel processes and synchronized parallel processes for all threads (Ti), based on

synchronization/communication primitives.

− Construct list of concurrent partition pairs in the order of processes in Thread Ti for all parallel

processes.

− Construct set of concurrent partitions where set is union of list of concurrent partition pairs.

− Identify CompetingProcesses(P), set of Concurrent pairs of the form (P,-), where ‘–‘ indicates any

parallel process that is parallel to P in another thread.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Analysis of benchmark program results of worst case execution time … (Padma Priya Dharishini Paraman)

997

− Associate each instruction in process P with all instructions in each member of CompetingProcesses(P)

which can cause shared instruction cache interferences

Interference partition (IP) algorithm, a part of micro-architectural modelling statically executes each

instruction in a multithreaded program making required measurements such as latency in accessing

instructions, in clock cycles. The IP algorithm considers the concurrent partitions of each thread and keeps

track of the parallel processes. Micro-architectural modelling, being aware of competing processes, is able to

generate a reduced set of interferences from an interacting thread to an instruction in a thread, in contrast

with other approaches reported [1], [18]-[20].

3.3. WCET computation

The program under analysis is represented as CFG, a directed graph whose nodes are basic blocks

and an edge connects two basic blocks if the two basic blocks are in sequence or call to function or in case of

branches. An ILP variable is associated with each basic block and edges to represent the number of times the

basic block and edges are executed. Let xi be the variable associated with BBi to represent the execution

count of BBi, and dk be the variable associated with the edges to BBi. The execution count of the basic block

is equal to the sum of incoming edges to the basic block and sum of the outgoing edges from the basic block

[21] as in (1).

BBi: ∑ dk, BBi = xi = ∑ BBi, dk (1)

The control flow of multithreaded program is captured as structural constraints and functional

constraints and Figure 3(a) shows structural and functional constraints of initialization function of SPMD

benchmark. The worst case execution cost of each basic block nodem or eventm (Cm) is the output of the

micro-architectural modelling. The WCET of each basic block (Cm) is composed to get WCET of the each

parallel processes (sub-graph of CFG) and WCET of parallel processes are composed to obtain overall

WCET entire multithreaded program. Given the constant Cm and variable Nm, the execution time of a parallel

process Pk_j corresponding to thread (Tj) may be expressed as in (2).

Worst case Execution Timek_j= Σm Cm * Nm. (2)

The ILP variable Nm denotes the number of times eventm in CSP process k is executed and Cm, the

worst execution cost or time of each event (basic block) in process k is obtained from the micro-architectural

modelling. The worst case execution time of thread j is obtained by composing the computed worst case

execution time of all CSP processes. It is also proved theoretically that WCET computed using IP algorithm

is always lesser than or equal to WCET computed using Hardy, Piquet and Puaut approach [3] under the

assumption that the contribution from other architectural parameters are equal in both approaches.

Lemma 1: WCET of a Thread using IP algorithm<=WCET of a Thread using Hardy, Piquet and

Puaut approach, assuming that worst case execution time contribution from all other architectural units other

than shared instruction cache are equal in both the approaches. Let MP be a multi-threaded program.

WCET(MP) using interference Partitioning algorithm is always less than or equal to WCET(MP) without

using interference partitioning algorithm. WCET(MP) using Interference Partitioning algorithm <= WCET(MP) without using

Interference Partitioning algorithm

Proof: to prove that WCET (MP) using Interference Partitioning algorithm<=WCET(MP) without using Interference

Partitioning algorithm, we prove that WCET(of each thread T) using interference partitioning algorithm is less than

or equal to that without using the algorithm. To prove the above for each thread T, we prove that worst case

latency (WCL), of accessing an instruction I in a thread T from shared instruction cache, using interference

partitioning algorithm is always less then or equal to that without using the interference partitioning

algorithm.

That is, WCL (accessing I in T) using interference partitioning algorithm<=WCL (accessing I in T)

without using interference partitioning algorithm. For any instruction in a basic block, the set of interferences

from competing threads using IP algorithm is a subset of the interferences without using the algorithm.

− Case 1: the currently accessed instruction by thread T is present in shared instruction cache. If IP

algorithm is used, the probability of eviction of instruction I from shared cache is smaller than the

alternative in which IP algorithm is not used. Therefore, worst case latency in accessing an instruction

from a shared instruction cache using IP algorithm will be less than that without using the algorithm.

− Case 2: the currently accessed instruction by thread T is not present in shared instruction cache (not

present in L1 cache either). The instruction has to be fetched from RAM both when the IP algorithm is

used and when it is not. Therefore, worst case latency in accessing an instruction using IP algorithm will

be equal to that without using the algorithm.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 29, No. 2, February 2023: 990-1005

998

− Case 3: The currently accessed instruction by thread T is present in L1 cache itself. Therefore, worst

case latency in accessing an instruction using IP algorithm will be equal to that without using the

algorithm.

− Considering all the three cases mentioned above, WCL (accessing I in T) using interference partitioning

algorithm<=WCL (accessing I in T) without using interference partitioning algorithm.

The above is true for all instructions in a basic block. Assuming less than or equal relation for (worst

case) execution time contribution from all other architectural units other than shared instruction cache,

WCET of an instruction using IP Algorithm<=WCET of an instruction using Hardy, Piquet and Puaut

approach. Sum of worst case latencies of all instructions in a basic block is less than or equal to the sum of

worst case latencies of all instructions using Hardy, Piquet and Puaut approach. Assuming less than or equal

worst case execution time contribution from all other architectural units, other than shared instruction cache,

WCET of a Basic block using IP algorithm<=WCET of a basic block using Hardy, Piquet and Puaut

approach. A process in IP algorithm approach is a sub-graph of basic block nodes. The sum of worst case

latencies of instructions in a sub-graph corresponding to a process using IP algorithm is always less than or

equal to the sum of worst case latencies of the instructions in the corresponding sub-graphs in Hardy, Piquet

and Puaut approach. Assuming less than or equal worst case execution time contribution from other

architectural units besides shared instruction cache, WCET of a process (sub-graph) using IP

algorithm<=WCET of the corresponding sub-graph in Hardy, Piquet and Puaut approach. The process (sub-

graph) in the case of IP algorithm is actually the same as the corresponding sub-graph in Hardy, Piquet and

Puaut approach. As a consequence, sum of the WCET estimates of sub-graphs corresponding to processes in

a thread T using IP algorithm is less than or equal to the sum of WCET estimates of corresponding sub-

graphs in Hardy, Piquet and Puaut approach. The above implies that the same inequality holds for the entire

thread. Hence the lemma is proven. This is observed experimentally also through simulator runs on

benchmark programs.

4. RESULTS AND DISCUSSION

Multicore chronos WCET analyzer [22] is used to show empirically that WCET of a thread

computed using IP algorithm is always less than or equal to WCET of thread computed using Hardy, Piquet

and Puaut approach. Interference partitioning (IP) algorithm is incorporated into multicore chronos tool to

simulate shared instruction cache behavior. A number of benchmark programs from Malardalen WCET

benchmark suite [16] are executed using the simulator. Our algorithm yields more precise WCET estimates

and the approach is validated empirically on benchmark programs. A unique core is assigned to each thread

of the benchmark programs. IP algorithm mainly focuses on the impact of shared instruction cache on

estimation of WCET and for every shared cache miss caused due to interferences, a fixed miss penalty is

assumed [23]. The simulator accounts for instruction execution cycle that includes pipelining and branch

prediction as well. Hardy, Piquet and Puaut approach [3] which considers the effect of interferences on all

shared cache hits is used to compare the WCET obtained using IP algorithm. The benchmark program

reported shows SPMD style parallelism.

Micro-architectural modelling computes WCET of each basic blocki (Ci) by considering the

interferences from the corresponding competing processes. Based on Lemma 1, for any instruction in a basic

block, the set of interferences using IP algorithm is a subset of the interferences using Hardy, Piquet and

Puaut approach. Therefore, worst case latency in accessing an instruction from a shared instruction cache

using IP algorithm is always less than or equal to using Hardy, Piquet and Puaut approach theoretically. The

observation is made empirically as discussed below. The worst case latencies of all instructions in basic

blocks are composed to form WCET of each basic block in both the approaches as shown in Figure 5. Figure

5(a) shows WCET of basic blocks for both the approaches using IP algorithm and Hardy, Piquet and Puaut

method by considering latency while accessing shared instruction cache. It is clear that the estimated worst

case execution time of basic blocks are not equal in both the approaches. In fact, it is often found that WCET

of a basic block using IP approach is less than that using Hardy, Piquet and Puaut approach. The difference in

execution time is mainly due to reduction in latency in accessing instructions using IP algorithm incorporated

into the micro-architectural model. Figure 5(b) shows the distribution of the execution time of basic blocks in

cycles with both IP algorithm and Hardy, Piquet and Puaut approach [3]. It is evident from Figure 5(b) that

the distribution of WCET of basic blocks using IP algorithm and Hardy, Piquet and Puaut approaches [3] are

not the same. The reason for the difference is mainly due to reduction in size of interference regions in

competing threads, when micro-architectural model employs IP algorithm.

Following Intra-core L2 cache analysis [2], instructions in basic blocks are classified as always hit,

always miss and not classified. Always hit instruction of L2 shared instruction cache are affected by the

interferences from interacting threads that are running on other cores may lead to shared instruction cache

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Analysis of benchmark program results of worst case execution time … (Padma Priya Dharishini Paraman)

999

misses that give rise to higher execution time as shown in Figure 6. With IP algorithm, the interferences for

an Always Hit instruction in shared L2 cache are from the corresponding competing processes running on

other cores but for Hardy, Piquet and Puaut approach interferences are from the entire address space of

threads running on other cores.

Figure 6(a) shows the basic blocks with different execution times using interference partition

algorithm based and Hardy, Piquet and Puaut approaches. Figure 6(b) shows the number of shared L2

instruction cache hits for basic blocks in Figure 6(a), without considering interferences from the Interacting

threads running on other cores. It is clear from Figure 6(a) that the execution time of basic blocks computed

using IP algorithm is always less than or equal to the execution time of basic block computed using Hardy,

Piquet and Puaut approach and difference in the execution time is mainly due to shared Instruction cache

interferences. The basic block 43 encounters cumulative execution time of 440 clock cycles (CC) using

Hardy, Piquet and Puaut approach mainly due to shared cache misses following inter-thread shared cache

analysis. This is mainly due to larger interference region. When IP algorithm is used, the execution time is

140 CC because of less number of shared cache misses following inter-thread shared cache analysis due to

reduced interference region.

(a)

(b)

Figure 5. Execution time of each basic block; (a) using IP algorithm and Hardy, Piquet and Puaut approach

and (b) distribution of execution time in cycles using IP algorithm and Hardy, Piquet and Puaut approach

(a) (b)

Figure 6. Basic blocks; (a) with different execution times and (b) number of L2 cache hits

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 29, No. 2, February 2023: 990-1005

1000

Assume an instruction (I) that is mapped to the cache line (linex), the interferences for (I) are from

the Instructions (I1, I2, I3, .. , In) in competing processes that are mapped to the same cache line (linex) .

Assume that there are n interfering instructions from interacting threads that are mapped to the cache line

(linex). Therefore, the age of instruction (I) in shared L2 instruction cache memory has to be increased by n.

If the age of the Instruction (I) after shared instruction cache analysis is less than cache associativity of

shared instruction cache, then the instruction is considered as cache hit in shared L2 cache memory. For

example, as shown in Table 2, the age of the instruction 400558:lw $4,16($30) in L2 shared instruction cache

is 0 and there are 3 interfering instructions from competing processes that are mapped to the same cache line

(Line10). Then the age of instruction 400558:lw $4,16($30) following shared L2 instruction cache analysis is

3 and access to the instruction remains cache hit in shared L2 cache memory. On the contrary, in Hardy,

Piquet and Puaut approach, there are 5 interfering instructions from competing threads that map to the same

cache line (Iine10). The age of instruction 400558:lw $4,16($30) following shared L2 instruction cache

analysis is 5 and the access to the instruction encounters always miss in shared L2 cache.

Table 2. Instructions from competing processes causing interferences for L2 cache hits
Cache configuration Age Interferences from competing processes

L1:256bytes with 2-way

L2: 2Kb with 4-way

L2 Cache Line Number

 IP Algorithm Hardy, Piquet and Puaut approach

400558:lw $4,16($30)

Line Number :10

0 400340:sw $5,28($30)

400558: lw $4,16($30)

400740: addu $6,$0,$3

400340:sw $5,28($30)

400558: lw $4,16($30)

400740: addu $6,$0,$3

400940: addiu $2,$3,1

400b40: addiu $3,$3,1

400560:lw $3,20($30)

Line Number :11

0 400360: lw $4,28($30)

400560: lw $3,20($30)

400760: addu $6,$6,$2

400360: lw $4,28($30)

400560: lw $3,20($30)

400760: addu $6,$6,$2

400960: addu $29,$0,$30

400b60: addu $29,$0,$30

400580: sll $5,$6,0x2

Line Number :12

0 400380: lw $6,32($30)

400580: sll $5,$6,0x2

400780: addu $5,$5,$6

400380: lw $6,32($30)

400580: sll $5,$6,0x2

400780: addu $5,$5,$6

400980: addiu $29,$29,-16

400b80: addiu $29,$29,-16

4005a0: addu $4,$4,$5

Line Number :13

1 4003a0:lw $30,16($29)

4005a0: addu $4,$4,$5

4007a0: sll $7,$8,0x2

4003a0: lw $30,16($29)

4005a0: addu $4,$4,$5

4007a0: sll $7,$8,0x2

4009a0: sw $5,20($30)

400ba0: addu $29,$0,$30

4005c0: addiu $2,$3,1

Line Number :14

1 4005c0: addiu $2,$3,1

4003c0: sw $30,0($29)

4007c0: addu $7,$8,$9

4005c0: addiu $2,$3,1

4003c0: sw $30,0($29)

4007c0: addu $7,$8,$9

4009c0: bne $4,$0,4009d0

Figure 7 shows the interferences for each basic block in the benchmark program. Figure 7(a) shows

the average number of interferences for each shared L2 cache hit in the basic block of the multithreaded

program. The Average number of interferences Hardy, Piquet and Puaut approach is calculated as Total Number of

InterferencesHardy, Piquet and Puaut approach / Total Number of instructions in the basic block. The Average number of

interferencesIP Algorithm for a basic block is calculated as Total Number of InterferencesIP Algorithm/ Total Number

of instructions in the basic block. It is evident from Figure 7(b) that the average number of interferences for a

basic block is more in the case of Hardy, Piquet and Puaut approach because of larger interference region.

Interferences for any instruction in reference thread is mainly from the corresponding competing

processes of interacting threads in the case of IP algorithm, the reason for reduction in number of

interferences is that instead of the entire address space of each competing thread, only a smaller portion of

the address space for each competing process in an interacting thread generates interferences to shared

instruction cache. Interferences for any instruction in reference thread is mainly from the entire address space

of each competing thread in the case of Hardy, Piquet and Puaut approach, generating larager number of

interferences. Figure 7(a) shows the number of Interferences for both the approaches and 7.b shows the

average number of interferences in the case of both the approaches.

For any Always Hit instruction in shared L2 instruction cache, if the sum of number of interferences

from the interacting core instructions and age of the instruction is greater or equal to associativity of shared

L2 instruction cache, then the instruction become Always Miss after inter core shared instruction cache

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Analysis of benchmark program results of worst case execution time … (Padma Priya Dharishini Paraman)

1001

analysis and the same for the benchmark program is shown in Figure 8. It is evident from Figure 8(a),

number of shared L2 cache misses of Hardy, Piquet and Puaut approach is always greater than or equal to the

number of shared L2 cache misses of IP algorithm. The miss Penalty associated with each cache miss for

accessing next level cache increases the execution time of each basic block of the multithreaded program.

Figure 8(b) shows the number of shared L2 instruction cache hits after intercore shared cache analysis.

Figure 9 shows the worst case execution time of the multithreaded program for IP algorithm and

Hardy, Piquet and Puaut approaches. The WCET of a multi-threaded program using IP algorithm is always

less than or equal to that using Hardy, Piquet and Puaut approach as shown in Figure 9(a). The difference in

WCET is mainly due to the relative number of interferences and evictions of instructions from shared

instruction cache and the resulting miss penalties. Figure 9(b) shows the simulated WCET computed using

simple scalar cycle accurate simulator [24]. It is clear from Figure 9(b) that estimated WCET using IP

algorithm is always safe and tight [25]. The precision improvement in WCET is calculated as WCET Hardy,

Piquet and Puaut approach – WCETIP Algorithm/ WCET Hardy, Piquet and Puaut approach. The precision improvement in WCET

ranges from 20% -30% for benchmarks having nested loop structure. The main difference in the worst-case

execution time of both the approaches is mainly due to shared cache hits for instructions accessed multiple

times. The main computation in this SPMD benchmark consists of matrix operations through a nested loop

structure. For example, siumaltion of execution of Basic block 19 encounters five shared cache hits (without

considering interferences from other cores) and following shared cache analysis in Hardy, Piquet and Puaut

approach, all the shared cache hits become misses. Therefore, miss penalty for shared cache misses is added

to latency and cumulative worst case latency of instructions in basic block 19 becomes 198 Clock Cycles. In

case of IP algorithm, only two shared cache hits become misses, therefore execution cumulative worst case

latency of instructions in basic block 19 becomes 108 CC. Since the execution count of basic block 19 is 400

(inside nested loop structure), the reduction of worst case latency by 90 clock cycles causes a huge impact on

WCET.

(a) (b)

Figure 7. Total interferences; (a) both approaches and (b) average number of interferences

(a) (b)

Figure 8. Cache parameters; (a) number of shared L2 cache misses and (b) number of L2 cache hits

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 29, No. 2, February 2023: 990-1005

1002

It is also clear that temporal locality [26] plays a major role in reducing WCET of IP algorithm. The

effect of other cache parameters such as block size, number of cache lines and associativity on both IP

algorithm and Hardy, Piquet and Puaut approach is the same. Based on the above analysis, it is evident that

the reduction in WCET of a thread is mainly due to reduction in latency in accessing instructions due to

interference partition algorithm. As a consequence, there is considerable reduction in WCET of basic blocks,

reduction in WCET of process (sub-graph), and reduction in WCET of thread. The impact of architectural

parameters such as number of interferences, number of shared L2 instruction cache misses and number of

shared L2 cache hits on parallel processes is shown in Table 3 for both IP algorithm and Hardy, Piquet and

Puaut approach. Total number of interferences for any sub-graph in Hardy, Piquet and Puaut approach is

always greater than or equal to total number of interferences for any corresponding parallel process in IP

algorithm. This is mainly due to reduction in interference region. Similarly, the total number of shared

instruction cache misses for any sub-graphi in Hardy, Piquet and Puaut approach is greater than or equal to

the total number of misses for any corresponding parallel processi in IP algorithm.

(a)

(b)

Figure 9. WCET of benchmarks; (a) estimated WCET for both approaches and (b) simulated and estimated

WCET

Table 3. Comparison of IP algorithm and Hardy, Piquet and Puaut approach
Total L2 Hits – 155 IP algorithm Hardy, Piquet and Puaut approach

 Thread

0

Parallel

process 1

Parallel

Process 2

Thread

0

Parallel

process 1

Parallel

Process 2

Total Number of Interferences 428 368 60 758 619 139

Number of Shared L2 Instruction

Cache Misses

45 44 1 155 128 27

Number of Shared L2 Instruction

Cache Hits

110 82 28 0 0 0

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Analysis of benchmark program results of worst case execution time … (Padma Priya Dharishini Paraman)

1003

As L1 cache size increases, capacity and conflict misses of L1 cache decrease leading to reduction

in the number of L2 cache accesses which results in improvement of precision in WCET estimate. Table 4

shows the same for various L1 cache sizes. The impact of IP algorithm is tested on various L1 cache sizes

and various cache parameters and all the experimental results show that precision improvement in WCET

ranges from 20%-30% for benchmarks. When L1 cache size increases, more memory blocks are placed in L1

cache therefore interferences has no role for those blocks. The number of shared instruction cache

interferences encountered by a parallel process from competing processes is proportional to the size of each

competing process. If the size of competing processes for a parallel process P is large then there will be more

interferences from the corresponding competing process results in less WCET precision improvement,

similarly, if the size of competing processes for a parallel process P is small then there will be very less

interferences from the corresponding competing process results in higher precision improvement as shown in

Table 5.

Table 4. L2 cache access count for different cache organizations
 L1 Cache Size

Cache Parameters 256 bytes 512 bytes 1 Kb

L2 Hit Count 155 38 1

L2 Miss Count 81 81 81

L2 Not Classified Count 61 65 49

L2 Access Count 297 184 131

Table 5. WCET precision improvement for benchmark programs
Benchmark Parallel process size Competing process size WCET (precision improvement %)

SPMD 76312 76568 12.58%

69632 34800 30.20%

21420 2108 42.88%

MPMD 15662 25234 16.8718%

3578 381 24.66%

8929 2904 40.0511%

5. CONCLUSION

Worst case execution time analysis (WCET) of multithreaded programs is an important problem

with the advent of multi-core architectures. Our work has addressed the need to investigate at a microscopic

level of simulation measurements that have an impact on precise modelling of shared architectural units such

as shared instruction cache with competing concurrent computations. Micro-architectural modelling

component of WCET analyzer is made more precise for modelling shared instruction cache by reducing the

set of shared instruction cache interferences based on an analysis of the multithreaded program. The analysis

based on interference partitioning (IP) algorithm computes a more precise set of interferences from the

competing threads. However, a study of impact of competing threads on shared instruction cache in WCET

analysis of multi-threaded programs at different levels of granularity has not been addressed before. The

different levels of granularity considered in this paper are at a basic block level and CSP process in a thread.

The contributions and main observations of the work in the paper are Interpretation of the results of applying

WCET analysis of a multithreaded program from WCET estimate of a thread to WCET estimate of each CSP

process in the thread to WCET estimate of each basic block in the process. For the above purpose, rules of

transforming a multithreaded program, to an equivalent Hoare’s CSP program based on happens before

relation between inter-thread synchronization calls to send() and receive(), are specified and implemented.

For the SPMD style multithreaded programs chosen as benchmark programs, let T be a thread for which

WCET is being estimated. Consider a process P in T. The WCET estimate of P can be made significantly

more precise by statically determining a reduced and more accurate subset of potential shared instruction

cache interferences from competing threads, that is a better approximation to the actual run-time

interferences. It is always the case that the set of shared instruction cache interferences from competing

processes (P) using IP algorithm is only a small subset of the set of shared instruction cache interferences

from competing threads (P) using existing approaches. In such a case, the precision improvement in the

WCET estimate of a process P in a thread T is significant. A thread is a composition of CSP processes,

hence, WCET estimate of each thread is improved in terms of precision and being closer to the actual WCET.

If the set of shared instruction cache interferences from competing processes (P) is a large subset of the set of

shared instruction cache interferences from competing threads (P), then the reduction in the WCET estimate

of process P in a thread may not be significant. Such a case arises when inter-thread synchronization in a

multi-threaded program is only sparingly based on calls equivalent to wait() and notify(). In such a class of

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 29, No. 2, February 2023: 990-1005

1004

multi-threaded programs, it is more likely that entire code regions in threads are parallel to each other

generating large sets of interferences. Significant improvements in precision of WCET estimates are

observed empirically on a class of programs, whether multiple program multiple data stream (MPMD), or

single program multiple data stream (SPMD) or other types of parallel programs such as fork/join, that

contain several inter-thread communication calls equivalent to wait() and notify(), thereby causing a number

of concurrent partitions which leads to small sets of interferences. WCET estimate of a basic block using the

approach based on interference partitioning algorithm reduces significantly from 20%-30%. As a part of

future work, WCET analysis of shared data cache will be considered.

REFERENCES
[1] R. Wilhelm et al., “The worst-case execution-time problem-overview of methods and survey of tools,” Transactions on

Embedded Computing Systems, vol. 7, no. 3, pp. 1–53, Apr. 2008, doi: 10.1145/1347375.1347389.

[2] D. Hardy and I. Puaut, “WCET analysis of multi-level non-inclusive set-associative instruction caches,” in Proceedings - Real-

Time Systems Symposium, Nov. 2008, pp. 456–466, doi: 10.1109/RTSS.2008.10.

[3] D. Hardy, T. Piquet, and I. Puaut, “Using bypass to tighten WCET estimates for multi-core processors with shared instruction

caches,” in Proceedings - Real-Time Systems Symposium, Dec. 2009, pp. 68–77, doi: 10.1109/RTSS.2009.34.

[4] C. A. R. Hoare, “Communicating sequential processes,” in Theories of Programming, New York, NY, USA: ACM, 2021, pp.

157–186, doi: 10.1145/3477355.3477364.

[5] Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury, “Timing analysis of concurrent programs running on shared cache

multi-cores,” in Proceedings - Real-Time Systems Symposium, Dec. 2009, pp. 57–67, doi: 10.1109/RTSS.2009.32.

[6] P. P. P. Dharishini and P. V. R. Murthy, “Precise shared instruction cache analysis to estimate WCET of multi-threaded

programs,” in Proceedings of the 2021 IEEE 18th India Council International Conference, INDICON 2021, Dec. 2021, pp. 1–7,

doi: 10.1109/INDICON52576.2021.9691620.

[7] D. Potop-Butucaru and I. Puaut, “Integrated worst-case execution time estimation of multicore applications,” OpenAccess Series

in Informatics, vol. 30, pp. 21–31, 2013, doi: 10.4230/OASIcs.WCET.2013.21.

[8] P. P. Priya Dharishini and P. Ramana Murthy, “static analyzer for computing WCET of multithreaded programs using Hoare’s

CSP,” in 15th Innovations in Software Engineering Conference, Feb. 2022, pp. 1–12, doi: 10.1145/3511430.3511438.

[9] V. Touzeau, C. Maïza, and D. Monniaux, “Model checking of cache for WCET analysis refinement,” arXiv preprint 1701.08030,

Jan. 2017, [Online]. Available: http://arxiv.org/abs/1701.08030.

[10] H. Ozaktas, C. Rochange, and P. Sainrat, “Automatic WCET analysis of real-time parallel applications,” OpenAccess Series in

Informatics, vol. 30, pp. 11–20, 2013, doi: 10.4230/OASIcs.WCET.2013.11.

[11] T. Kelter and P. Marwedel, “Parallelism analysis: Precise WCET values for complex multi-core systems,” Science of Computer

Programming, vol. 133, pp. 175–193, Jan. 2017, doi: 10.1016/j.scico.2016.01.007.

[12] T. Carle and H. Cassé, “Reducing timing interferences in real-time applications running on multicore architectures,” OpenAccess

Series in Informatics, vol. 63, pp. 31–312, 2018, doi: 10.4230/OASIcs.WCET.2018.3.

[13] K. Nagar and Y. N. Srikant, “Precise shared cache analysis using optimal interference placement,” in Real-Time Technology and

Applications - Proceedings, Apr. 2014, vol. 2014-October, no. October, pp. 125–134, doi: 10.1109/RTAS.2014.6925996.

[14] I. Puaut, M. Dardaillon, C. Cullmann, G. Gebhard, and S. Derrien, “Fine-grain iterative compilation for WCET estimation,”

OpenAccess Series in Informatics, vol. 63, pp. 91–912, 2018, doi: 10.4230/OASIcs.WCET.2018.9.

[15] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, “Indirect Communication,” in Distributed systems: Concepts and Design,

5th ed., Addison-Wesley, 2011.

[16] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The mälardalen WCET benchmarks: Past, present and future,” OpenAccess

Series in Informatics, vol. 15, pp. 136–146, 2010, doi: 10.4230/OASIcs.WCET.2010.136.

[17] K. Namjoshi, “Are concurrent programs that are easier to write also easier to check?,” Workshop on Exploiting Concurrency

Efficiently and Correctly, 2008.

[18] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pellizzoni, “A survey on cache management mechanisms for real-

time embedded systems,” ACM Computing Surveys, vol. 48, no. 2, pp. 1–36, Nov. 2015, doi: 10.1145/2830555.

[19] F. Brandner and A. Naji, “Worst-case execution time analysis of predicated architectures,” OpenAccess Series in Informatics, vol.

57, pp. 61–613, 2017, doi: 10.4230/OASIcs.WCET.2017.6.

[20] F. Guet, L. Santinelli, J. Morio, G. Phavorin, and E. Jenn, “Toward contention analysis for parallel executing real-time tasks,”

OpenAccess Series in Informatics, vol. 63, pp. 41–413, 2018, doi: 10.4230/OASIcs.WCET.2018.4.

[21] A. Roychoudhury, “Performance validation,” in Embedded systems and software validation, 2009.

[22] S. Chattopadhyay, L. K. Chong, A. Roychoudhury, T. Kelter, P. Marwedel, and H. Falk, “A unified WCET analysis framework

for multicore platforms,” Transactions on Embedded Computing Systems, vol. 13, no. 4 SPEC. ISSUE, pp. 1–29, Jul. 2014, doi:

10.1145/2584654.

[23] C. Maiza, H. Rihani, J. M. Rivas, J. Goossens, S. Altmeyer, and R. I. Davis, “A survey of timing verification techniques for multi-

core real-time systems,” ACM Computing Surveys, vol. 52, no. 3, pp. 1–38, May 2019, doi: 10.1145/3323212.

[24] T. Austin, E. Larson, and D. Ernest, “SimpleScalar: An infrastructure for computer system modeling,” Computer, vol. 35, no. 2,

pp. 59–67, 2002, doi: 10.1109/2.982917.

[25] M. Lv, N. Guan, J. Reineke, R. Wilhelm, and W. Yi, “A survey on static cache analysis for real-time systems,” Leibniz

Transactions on Embedded Systems, vol. 3, no. 1, pp. 05:1-05:48, 2016, doi: 10.4230/LITES-v003-i001-a005.

[26] J. L. Hennessy and D. A. Patterson, “Fundamentals of quantitative design and analysis,” Computer Architecture : A Quantitative

Approach, pp. 2–71, 2011.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Analysis of benchmark program results of worst case execution time … (Padma Priya Dharishini Paraman)

1005

BIOGRAPHIES OF AUTHORS

Padma Priya Dharishini is a Ph.D. Research scholar and Assistant Professor at

the Department of Computer Science and Engineering at M.S. Ramaiah University of Applied

Sciences, Bangalore. She has received her Master’s in Embedded System from SASTRA

University, Tanjore. Her current interest is in the domain of Worst-Case Execution Time

Analysis, Multicore Architecture, and Static Program Analysis. She can be contacted at email:

padmapriya.cs.et@msruas.ac.in.

Prakriya V. Ramana Murthy obtained Ph.D. degree in 1991 from Indian

Institute of Science. He is currently a Professor in the department of Artificial Intelligence and

Data Science at Nitte Meenakshi Institute of Technology, Bangalore. His interests are in the

areas of Program analysis and verification. He conducted research in software engineering

working as Senior Member Technical Staff and as a Principal Research Scientist at Siemens

Corporate Technology. He can be contacted at email: prakriyamurthy@gmail.com.

https://orcid.org/0000-0003-1059-428X
https://scholar.google.com/citations?hl=en&user=suEeCqEAAAAJ
https://orcid.org/0000-0001-6398-4762
https://scholar.google.com/citations?hl=en&user=UxRbcx0AAAAJ

