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 Biometric authentication is a process of identity verification once an identity is 

claimed by an individual. It uses unique features on the human body. Footprints 

are a new biometric feature that has sparked interest among researchers, as this 

feature is universal, easy to extract and has not changed throughout time. The 

focus of researchers in this field is to improve the recognition rate. Various 

techniques have been developed for this purpose, but the accuracy percentage is 

at 98% with an equal error rate (EER) of 6.1%. This paper proposes the use of a 

new technique called SqueezeNet in classifying footprint images. SqueezeNet 

belongs to the convolutional neural network (CNN) family. In this study, 300 

footprint images were used from 15 individuals. The 70% of these images were 

used to train the proposed SqueezeNet network, while the rest were used for 

testing. At the end of this simulation, SqueezeNet has achieved an accuracy of 

98.67% with an EER of 2.1%. 
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1. INTRODUCTION  

Biometric systems can work either in authentication or identification mode. Traditionally, for a 

biometric system to operate in authentication mode, an individual must first claim an identity stored in a 

database. Username and smart card are two examples of how identity can be claimed from a system. Next, the 

system will find the feature vector stored based on the information of the claimed identity. The claimer is then 

required to submit their biometrics as a test sample before its feature vector is extracted. The system will 

eventually make a comparison between the newly extracted and stored features to determine whether the claim 

is valid or a fraud [1]. Compared to the identification mode, for which the system is required to determine 

whether the claimer is part of the individuals registered in the system. 

The past decade has seen an increase in using footprints for biometric authentication. Footprints are 

universal, easy to retrieve and have not changed much throughout time [2]. Using footprints for biometrics is 

not as extensive as other biometric traits, yet it still has its own applications. In the 19th century, the use of 

footprints had been used as a biometric identity for newborns [3]. The footprints of this newborn will be 

stamped on a piece of paper and kept in the hospital. In the 21st century, the use of these footprints has been 

replaced by tags or radio frequency identification (RFID). However, it can only be used while the baby is still 

in the hospital. After the baby was discharged, no self-identification system followed them [4]. This is where 

the use of footprints can be fully used again. To combat crime, footprints are also often used as evidence in 

court. Criminals often leave traces of shoes or footprints on the scene [5]. Footprints-based biometric 

authentication systems are useful in such situations. In terms of security systems, footprints are ideal for use as 

personal authentication systems, especially applications that have small databases. In most Asian countries 

such as Japan and Malaysia, it is customary to take off shoes before entering the house [6]. A footprint-based 
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biometric authentication system can be used here by placing a scanner to open the door. When the footprint on 

the scanner is genuine, as listed in the database, then the door will open. 

Images used for footprint-based recognition can be categorized into static [7] and dynamic [8]. To get 

a static image, an individual must stand in a fixed position before the image of his or her foot is captured. 

Dynamic images are taken while an individual is walking. Various techniques have been used to extract the 

characteristics of the footprints for matching purposes. Nakajima et al. [7] used the normalized static footprints 

images for recognition and got 85% accuracy. Eigenfeet, ballprint and foot geometry techniques have been 

used in [9] for person identification and achieved 97% recognition rate for 16 subjects. Krishan et al. [10] used 

foot outline geometry on 1040 male Gujar subjects to estimate stature from footprint. Similar technique is used 

in [11] on 400 adult Malaysian Malay. In both studies, manual geometry features are extracted from the 

footprint. dynamic time warping (DTW), along with the distance between the contour point and its center, was 

used as a footprint feature in [12]. In 600 samples, 455 are successfully classified correctly. 

Non-geometric features have also been implemented for footprint recognition, either using footprint 

images or taken from the sensor. The hidden Markov model (HMM), combined with the Levenberg-Marquart 

learning method, was applied on a pressure mat to classify footprints [8]. This study used 11 samples and 80% 

of them were correctly recognized. Fuzzy logic-based solutions have also been applied to load distribution 

sensors for footprint recognition [13]. The study was conducted on 30 subjects and achieved 6.1% equal error 

rate (EER). A wavelet -based feature known as modified sequential haar energy (MSHE) was applied in [14] 

to classify footprint images from 400 individuals. They achieved a 92% recognition rate in their study. In other 

works, Kumar et al. [15] proposed the used of principal component analysis (PCA) features and achieved 93% 

recognition rate. Recently, deep learning techniques have been used as footprint biometric identification for 

children [4]. In that study, a crease patterns of the footprint images are used as the input to the convolutional 

neural network (CNN). The 48 subjects were used in the study, and they achieved 98% recognition rate. 

In this paper, we propose the use of SqueezeNet to classify individuals using footprint images. 

SqueezeNet is one of CNN’s architectures created by Iandola et al. [16]. Several changes were made to this 

architecture for our system, and these are described in section 2. Section 2 also describes how training and test 

databases are constructed in our simulations. Section 3 presents the performance of the proposed system. 

Section 4 concludes the paper. 

 

 

2. METHOD 

2.1.  Convolutional neural network 

The convolutional neural networks (CNN) is a powerful deep learning architecture that includes an 

input layer, stacked pairs of convolutional and pooling layers, a fully connected layer, and an output layer, as 

depicted in Figure 1 [17]. The neurons in each layer are arranged as height, width, and depth (channel). Using 

CNN in image processing allows features to be extracted automatically and avoids the use of manually designed 

input features [18]. 

 

 

 
 

Figure 1. Convolutional neural networks (CNN) 

 

 

The input data for the CNN is typically structured in the form of a grid with multiple channels, 

allowing for the preservation of strong spatial dependencies within local grid are [19]. The convolution layer 

plays a crucial role in extracting discriminative features from the input data by applying learned weights to 

connectors. CNN employs multiple channels, each capturing different aspects of the previous layer. 

Convolution offers several advantages, including weight sharing and translation invariance [20]. Filters, 

usually of odd sizes like 3×3 or 5×5, are used in the convolution layer to generate new data feature maps. These 

filters move across the input data or feature map, scanning from top to bottom and left to right with a specific 
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'Stride' value, while taking into account any padding that may have been applied. Padding adds blank or empty 

pixels to the edges of the data frame to aid in preserving the spatial dimensions during convolution. 

Assume that the dimensions of the filter in the 𝑞𝑡ℎ layer is in the size of 𝐹𝑞 × 𝐹𝑞. Let the 𝑝𝑡ℎ filter in 

layer 𝑞 be denoted by a 2-dimensional matrix 𝑊[𝑝,𝑞] = [𝜔𝑖𝑗
[𝑝,𝑞]

]. The indices 𝑖 and 𝑗 are the height and width of 

the filter. The feature map in layer 𝑞 is represented by a 2-dimensional matrix 𝐻[𝑞] = [ℎ𝑖𝑗
[𝑞]
]. Mathematically, the 

convolution operation in the convolution layer from layer q to layer (q+1) can be described as shown in (1).  

 

ℎ𝑖𝑗𝑝
(𝑞+1)

= ∑ ∑ 𝜔𝑟𝑠
(𝑝,𝑞)

ℎ𝑖+𝑟−1,𝑗+𝑠−1
(𝑞)𝐹𝑞

𝑠=1

𝐹𝑞
𝑟=1  (1) 

 

To ensure that the system is in a state of nonlinearity, the rectified linear unit (ReLU) is used immediately after 

the convolution layer described in (1). The ReLU converts all negative activations to 0 using the function 

𝑓(𝑦) = 𝑚𝑎𝑥(0, 𝑦) [21]. The adjacent data generated after the convolution layer is then combined into one 

representative value using the pooling layer. These neighborhood data are selected in the same rectangular size. 

The pooling process is done sequentially from left to right and top to bottom according to the number of 

‘Strides’ throughout the images. Typically, representative values for a selected set of data are set using either 

the average or maximum mode. After passing through the convolution and pooling layers as shown in  

Figure 1, the data is then fed into the fully connected layer for classification of the state of each input frame. 

The fully connected layer follows a standard deep neural network architecture, leading to the output layer.  

A softmax classifier is commonly used to make predictions based on the output of the network. 

 

2.2.  SqueezeNet 

SqueezeNet was built based on the CNN concept, with a few modifications. For SqueezeNet, the 

elements in the convolution and pooling layers shown in Figure 1 are mostly replaced with fire module blocks [22]. 

A fire module comprises squeeze and expand layers, as shown in Figure 2.  
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Figure 2. Fire module 

 

 

The ReLU activation function is also used between these layers to increase the network depth [23]. 

The squeeze layer contains only a 1×1 convolution filters, while the expand layer has a concatenation of 1×1 

and 3×3 convolution filters. SqueezeNet also does not use fully connected layers, as shown in Figure 1. Several 

modifications have been made to the original structure of SqueezeNet, proposed by Iandola et al. [16] in terms 

of SqueezeNet layer’s location, as shown in Figure 3. In Figure 3, the terms ‘conv’, ‘pool’ and ‘fire’ 

respectively represent the convolution, pooling, and fire module layers. As seen in Figure 3, it can be concluded 

that the SqueezeNet was built using 2 convolution layers, 3 maximum pooling layers, and 8 fire module layers. 

In most networks, the last layer with learnable weights is a fully connected layer. For SqueezeNet, the last 

learnable layer is the final convolutional layer combined with the global average pool and Softmax activation 

function. This configuration allows SqueezeNet to be highly accurate with a small size model [24]. It makes 

SqueezeNet an option in biometric systems, because of the short use of time for feature extraction and 

recognition processes. 

 

2.3.  Simulation setup 

In this study, the object of interest is footprint images. All participants' footprint images were recorded 

using an Apple iPhone 11 Pro, which was positioned at a distance of 50 cm from the participant, as depicted 

in Figure 4. A white plain wood was used as the background during the image recording session to ensure that 

the captured images had invariant characteristics throughout the experiment. Fifteen candidates, aged between 

20 and 25 years old, volunteered to participate in this research. Each participant contributed 10 images of both 

their left and right footprints in 10 separate sessions, resulting in a total of 300 footprint images used in this 
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study. The size of the images captured by the Apple iPhone 11 was 670×372×3, which was then resized to 

227×227×3 to comply with the SqueezeNet architecture requirements. The footprint image database was 

divided into 70% for training data and 30% for validation data. 

 

 

 
 

Figure 3. SqueezeNet 

 

 

 
 

Figure 4. Footprint image capturing process 

 

 

The SqueezeNet models are trained using the stochastic gradient descent with momentum (SGDM) 

optimizer algorithm [25]. Batch learning is employed, updating the model every 10 sets of data, and the training 

process is limited to a maximum of 20 epochs. The initial learning rate is set to 0.0003. 

 

 

3. RESULTS AND DISCUSSION  

This section discusses the results of using SqueezeNet for footprint biometric authentication. 

SqueezeNet will be analyzed visually to see the computational cost using this network. We will also discuss 

recognition results and variables that affect network accuracy. 

 

3.1.  Network analysis 

Table 1 shows a detailed description of each proposed SqueezeNet. In layers with reference to  

Figure 3 that has been used in this paper. As seen from Table 1, there are 1,200,000 learnable weights and 

biases need to be updated for each epoch of the training process. 

 

3.2.  Network training and validation  

The proposed SqueezeNet network has used the initial values of weights and biases, based on a pre-

training version of the SqueezeNet that has been performed on more than a million images from the ImageNet 

database [26]. This pre -training network has been used to classify images into 1,000 categories of objects and 

further used in this project. Figure 5 shows the training accuracy of the proposed network using the footprint 

training data. As seen from the figure, the final validation accuracy obtained after 20 epochs is 98.67% when 

the test (validation) data is used. It took approximately 5 minutes to train and test all images. The network 

achieves validation accuracy greater than 90% starting from the 10th epoch (200th iteration). Figure 6 shows 

the training loss of the proposed network. As seen from the figure, the final training loss for the network is 

0.09%. The training loss is less than 1% from the 8th epoch (160th iteration). 
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Table 1. Network analysis of SqueezeNet 
Layer Type Filter Output size Learnable properties 

No Size Stride  Weight Bias 

Input Image input    227x227x3   

Conv1 Convolution 64 3x3x3 2 113x113x64 3x3x3x64 1x1x64 

Pool1 Max pooling  3x3 2 56x56x64   
Fire1 Fire: Squeeze 16 1x1x64 1 56x56x16 1x1x64x16 1x1x16 

Fire: Expand [1x1] 64 1x1x16 1 56x56x64 1x1x16x64 1x1x64 

Fire: Expand [3x3] 64 3x3x16 1 56x56x64 3x3x16x64 1x1x64 
Fire: Concatenation    56x56x128   

Fire2 Fire: Squeeze 16 1x1x128 1 56x56x16 1x1x128x16 1x1x16 

Fire: Expand [1x1] 64 1x1x16 1 56x56x64 1x1x16x64 1x1x64 
Fire: Expand [3x3] 64 3x3x16 1 56x56x64 3x3x16x64 1x1x64 

Fire: Concatenation    56x56x128   

Pool2 Max Pooling  3x3 2 28x28x128   
Fire3 Fire: Squeeze 32 1x1x128 1 28x28x32 1x1x128x32 1x1x32 

Fire: Expand [1x1] 128 1x1x32 1 28x28x128 1x1x32x128 1x1x128 

Fire: Expand [3x3] 128 3x3x32 1 28x2x128 3x3x32x128 1x1x128 

Fire: Concatenation    28x28x256   

Fire4 Fire: Squeeze 32 1x1x256 1 28x28x32 1x1x256x32 1x1x32 

Fire: Expand [1x1] 128 1x1x32 1 28x28x128 1x1x32x128 1x1x128 
Fire: Expand [3x3] 128 3x3x32 1 28x28x128 3x3x32x128 1x1x128 

Fire: Concatenation    28x28x256   
Pool3 Max Pooling  3x3 2 14x14x256   

Fire5 Fire: Squeeze 48 1x1x256 1 14x14x48 1x1x256x48 1x1x48 

Fire: Expand [1x1] 192 1x1x48 1 14x14x192 1x1x48x192 1x1x192 
Fire: Expand [3x3] 192 3x3x48 1 14x14x192 3x3x48x192 1x1x192 

Fire: Concatenation    14x14x384   

Fire6 Fire: Squeeze 48 1x1x384 1 14x14x48 1x1x384x48 1x1x48 
Fire: Expand [1x1] 192 1x1x48 1 14x14x192 1x1x48x192 1x1x192 

Fire: Expand [3x3] 192 3x3x48 1 14x14x192 3x3x48x192 1x1x192 

Fire: Concatenation    14x14x384   
Fire7 Fire: Squeeze 64 1x1x384 1 14x14x64 1x1x384x64 1x1x64 

Fire: Expand [1x1] 256 1x1x64 1 14x14x256 1x1x64x256 1x1x256 

Fire: Expand [3x3] 256 3x3x64 1 14x14x256 3x3x64x256 1x1x256 
Fire: Concatenation    14x14x512   

Fire8 Fire: Squeeze 64 1x1x512 1 14x14x64 1x1x512x64 1x1x64 

Fire: Expand [1x1] 256 1x1x64 1 14x14x256 1x1x64x256 1x1x256 
Fire: Expand [3x3] 256 3x3x64 1 14x14x256 3x3x64x256 1x1x256 

Fire: Concatenation    14x14x512   

Conv2 Convolution 30 1x1x512 2 14x14x30 1x1x512x30 1x1x30 

 

 

 
 

Figure 5. Training accuracy 
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Figure 6. Training loss 

 

 

3.3.  Confusion matrix 

We tested the accuracy of the proposed SqueezeNet architecture using the test database that had been 

developed. This time, the test data was divided into left and right footprint categories. We used the confusion 

matrix as shown in Figure 7 and Figure 8 to represent the accuracy of our network. Figure 7 illustrates the 

accuracy of classifying individuals using left footprint images. As shown in Figure 7, only 1 image out of 3 of 

the left footprint of the subject ‘FTP07L’ was mis-classified to ‘FTP06L’. For the rest, the proposed 

SqueezeNet network classified them all correctly. When the right foot was used to identify an individual, these 

footprint images were successfully classified all images correctly. This is shown in Figure 8. 

 

3.4.  Equal error rate  

Among the important measures to evaluate the performance of biometric systems are the true positive 

rate (TPR) and the false positive rate (FPR). TPR measures the probability that a genuine classification 

classified by the system is coming from a genuine individual. FPR measures the probability that the genuine 

classification shown by the system is from the impostor. To simulate these results, we trained the left and right 

footprint images separately using the proposed network. The proposed network that had been trained using the 

left footprint images was used to classify individuals using the right footprint images, and vice versa.  

The results of TPR versus FPR are presented as the receiver operating characteristic (ROC) curve, shown in 

Figure 9. From Figure 9, it is observed that the proposed system generates 0.23 equal error rate (EER), i.e., the 

point at which FPR is equivalent to 1-TPR. The ROC curve also allows the performance of the proposed system 

to be compared with other systems under different parameter settings [27]. It is measured using the area under 

the ROC curve (AUC) value. The system we proposed gives a value of 0.86 for AUC. 

 

 

 
 

Figure 7. Confusion matrix for left footprints authentication 
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Figure 8. Confusion matrix for right footprints authentication 

 

 

 
 

Figure 9. Receiver operating characteristic (ROC) curve 

 

 

4. CONCLUSION 

Footprint-based biometric authentication has garnered attention in the field of biometrics, and various 

methods have been proposed to improve accuracy. In this study, we investigated the use of the SqueezeNet 

technique for enhanced recognition accuracy. Unlike previous methods, our approach eliminates the need for 

hand-crafted feature extraction prior to classification. Performance evaluation was based on the confusion matrix 

and ROC curve, using a dataset of 300 images for training and testing. Our simulation showed that the proposed 

network achieved an accuracy of 98.67% and an EER of 2.1%, representing an improvement of approximately 

1% compared to the state-of-the-art technique reported in the literature. Furthermore, our results revealed that 

right footprints outperformed left footprints in terms of correct classification within the scope of our developed 

databases, a finding that has received limited discussion in previous research. The small size of the deep learning 

architecture, with only 1,200,000 learning parameters to update during training, makes it suitable for practical 

biometric hardware adaptation. 
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