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 This research presents a new pre-processed class decomposition technique 

called density core graph-cut (DCGC). The method uses supervised clustering 

instead of a traditional unsupervised one to decompose the class. Supervised 

clustering requires additional label information to function and with that it 

gains a better understanding of the distribution. DCGC employs nearest 

neighbors to form a density core graph for each class. Then, the edges of each 

graph to be removed or cut is identified utilizing class information. Lastly, it 

yields final clusters by grouping all connected cores and assigning the 

remaining samples to a cluster where the nearest core belongs. Training neural 

network classifiers on complex label data will yield a better accuracy with the 

modified class representation. Intuitively, the decision boundaries separating 

classes based on the modified labels are less complex, and classifiers’ chance 

to reach these hyperplanes is higher. The results present that training neural 

networks using label representations from DCGC significantly helps improve 

the classification accuracy of neural networks on syntactic datasets as high as 

30%. For real-world problems, the experiment presents a mixed result in 

which some datasets moderately benefit from DCGC. 
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1. INTRODUCTION  

Classification is a problem in which the class knowledge is learned from the input data called training 

data, whose class is known. This learned information is then used to predict the new data with an unknown 

class. From this scenario, it can be seen that the classification performance depends on the class knowledge or 

label from the training data. One example of poor classification accuracy is insufficient representative 

information of the data which causes the classifier to learn incorrect classification. It can be solved using pre-

process technique called data augmentation [1]. This process adds more samples to the training data by simply 

modifying the original sample in a way (rotation for images, synonym addition for text, or outpost vector for 

tabular data [2]) that the meaning of the sample does not change. Thus, it helps the classifier become more 

generalized and better perform with unforeseen data. Another problem that reduces classification performance 

is the complexity of class labels where data points belonging to different classes are aggregated in the same 

region. As a result, the classifiers can have difficulty modeling these classes correctly. In this case, a simple 

solution is to increase the complexity of the classifier. However, this comes with the cost of training time and 

may introduce overfitting [3] due to the classifier trying to fit the training data and losing the generalization. 

Another approach is to use fine-grain subclass labels, given that fine-grain subclass labels need to have 

meaningful hierarchical relationships with original coarse-grain class labels [4]. Otherwise, it will likely 
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degrade the classification performance [5]. Apart from subclass labels needing meaningful relationships, 

obtaining them is also a non-trivial task. One method to get subclass labels requires manual input from human 

experts which is time-consuming and expensive. A cheaper alternative is to generate subclass labels via class 

decomposition automatically. 

Class decomposition or Subclassing is a preprocessing technique that can be used to help improve a 

classifier [6]. It is achieved by splitting the target class into multiple subclasses using some criteria then training 

with target subclasses instead of original classes. Using subclass instead of the original class has the benefit of 

making the classifier generate a more manageable decision boundary. Usually, correctly splitting class will 

yield simpler shaped data distributions [7]. A common method used to achieve class decomposition is through 

performing clustering. Clustering is an unsupervised learning technique that does not require the target class 

to operate. It starts by assuming that each data does not belong to any class, then completes when all of them 

are assigned to a class or when the criteria is reached. The idea of using unsupervised clustering to help improve 

supervised classification had been widespread in the earlier days of the area, such as local expert (or 

hierarchical classifier) [8], [9]. This mechanism uses a clustering technique to partition training data and train 

classifiers separately on each partition. Later, using subclasses for classification tasks was also discovered to 

improve performance. It was discovered much later because, from the initial understanding of the idea, it is 

counter-intuitive [10].  

Increasing the number of classes had been thought to increase the complexity and result in more 

unsatisfactory performance, especially with the real-world data set in which the data distribution was not well 

understood and was hard to visualize. Although a higher number of classes indeed increases the difficulty, 

there are certain settings which increasing the number of classes yields better classification accuracy [11], [12]. 

One such setting is the use of class decomposition on data that has classes distributed in complex ways-by 

dividing the original class into subclasses in a meaningful way [10], [13], then using subclasses to train may 

result in improved accuracy than using the original class. The common clustering algorithms used in class 

decomposition are K-Means [13]-[17], EM clustering [6], [18], and hierarchical clustering [19], [20]. These 

clustering algorithms help create homogenous subclasses for the same label to some extent, but in each cluster, 

other classes’ presence is completely ignored. This can cause the resulted clusters to be overlapped with other 

clusters as depicted in Figure 1. Although class decomposition has knowledge about label information 

beforehand, using the traditional unsupervised clustering technique was not optimal since that information was 

not being utilized. This additional information can be exploited to help guide the way classes are divided. 

 

 

   
(a) (b) (c)  

 

Figure 1. Overlap complication example for each class (rounded color border) of (a) 2-class dataset (orange 

and blue), (b) class decomposition by K-Means with k=2, and (c) ideal class decomposition 

 

 

Recognizing the shortcoming of a traditional clustering method, [21] coined the term Supervised 

Clustering in their pioneer work that utilized the opposite class’s information to help improve clustering 

performance. Unlike others that clustered each class separately, [21] proposed three modified supervised 

clustering based on K-medoid (SPAM), greedy approach (SRIDHCR), and genetic algorithm (SCEC) to group 

class data using a custom impurity fitness function. The function was created to encourage obtaining the cluster 

representative as being pure by having fewer samples from other classes within the neighbor and as few clusters 

as possible. Using the impurity idea, [22] proposed supervised growing neural gas (SGNG) to take class 

information into account and [23] updated SCEC to include additional objective fitness functions. To the best 

of our investigation, although the proposed impurity idea performed well on the supervised clustering task, it 

is not an ideal solution to class decomposition for training a classifier. For example, applying supervised 

clustering to the rectangle shape data will likely divide it into multiple square shape clusters since that usually 

yields a better impurity value. However, these additional separations complicate the classifier because it needs 

to learn more hyperplanes that divide those square clusters instead of only a circumference surrounding the 

rectangle. Thus, obtaining a better fitness function evaluation does not necessarily make it easier to train a 
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classifier. Supervised clustering also suffers from local optima when the data contains many isolated class 

distributions and the same class samples are scattered through those regions since any update in this scenario 

will rarely have an improvement. 

Given the above limitation in both traditional unsupervised and supervised clustering methods, the 

main contribution of this work is to develop an algorithm to decompose data that has a complex class 

distribution into a simpler subclass distribution with the aim of obtaining a better accuracy when training the 

classifier using the generated subclasses compared to the original classes given the comparable classifier 

complexity. Furthermore, the proposed algorithm should eliminate the need to specify the hard-constraint 

number of cluster. Although some works address this issue [24], [25], it is not optimal for class decomposition 

because each class will have a different amount of ideal clusters and it is hard to determine the best combination 

of them. Lastly, the algorithm must balance split/ignore to avoid making clusters out of the already simple class 

distribution. 

 

 

2. RESEARCH METHOD 

2.1.  Clustering step via density core graph-cut (DCGC) class decomposition 

The proposed algorithm is based on an approach that uses a density of data samples in order to identify 

isolated regions. It is inspired by the concept of using density peaks [26] to represent dense regions and form 

a skeleton for each cluster. The algorithm uses core samples as a representative point to construct a graph of 

each cluster. Then, the data regions belonging to different representative points can be determined as either 

connected or disconnected. This connection concept is the key to overcoming both the limitation of traditional 

unsupervised clustering and supervised clustering. A simple counting is used to judge the connectedness. The 

connection of representative points implies that those points are in the same cluster, while the disconnection 

signifies the opposite. Finally, the algorithm outputs a new label for each sample and a dictionary mapping 

those labels back to the original class. The main function of DCGC consists of four steps; 2.1.1. identifies the 

representative samples, 2.1.2. creates density representative graph, 2.1.3. disconnects density representative 

graphs, and 2.1.4. cluster formation. 

 

2.1.1. Identify representative sample 

Let 𝑋 be a set of data pairs denoted as {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)}, where 𝑥𝑖 is a sample that 

belongs to a class 𝑦𝑖, and 𝑛 is the total number of samples. Each 𝑥𝑖 is a vector in which each entry is an attribute 

that defines the characteristic of a sample 𝑥𝑖. This vector can be denoted as (𝑎1, 𝑎2, … , 𝑎𝑑), where 𝑎𝑗 is an 

attribute value and 𝑑 is the number of attributes of a sample. The space of all possible attribute vectors is called 

the input space 𝑋, and the space of all possible classes is called output space 𝑌. 

The first step of the algorithm starts by finding a k-nearest neighborhood of each sample 𝑥𝑖 to calculate 

density [27], as this is much more robust technique than setting cutoff distance [28]. The first input parameter, 

which is denoted as 𝜅 and mathematically described in (1), is used to obtain the amount of density for each 

sample as expressed in (2). 

 

𝜅 = {𝑖 ∈ 𝑁: 0 < 𝑖 ≤ 𝑛} (1) 

 

where 𝑁 is a set of natural numbers. 

 

𝜌(𝑥𝑖) =
𝜅

∑ 𝑑𝑖𝑠𝑡(𝑥𝑖,𝑥𝑗)𝑥𝑗∈𝑘𝑁𝑁𝐶(𝑥𝑖)

 (2) 

 

where 𝑘𝑁𝑁𝐶(𝑥𝑖) is a set of k-nearest-neighbor samples that belong to same class of sample 𝑥𝑖 and 𝑑𝑖𝑠𝑡(⋅,⋅) is 

a euclidean distance. 

The reason behind adding a class constraint k-nearest-neighbor is to avoid having different class 

samples influencing the density calculation. In addition, it helps prevent the isolated samples that are close to 

other class samples from using those as their neighborhood and gaining higher density. In (2) also explains 

how the sample is distributed in their neighborhood by taking the distance from itself to all 𝜅 neighbors.  

The lower the average distance (higher 𝜌) to their neighbors indicates the tighter the neighborhood is, and the 

sample in question is located well in a dense region. These samples are considered prime candidates to become 

representative samples and identifying them is as simple as comparing the 𝜌 value among their 𝜅 peers.  

The one which produces the highest 𝜌 among their neighbors then becomes a representative sample as  

defined below. 
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𝑅𝑃𝑐 = {𝑥𝑖 ∣ 𝑥𝑖 ∈ 𝑋, 𝜌(𝑥𝑖) > 𝜌(𝑥𝑙), 𝑥𝑙 ∈ 𝑘𝑁𝑁𝐶(𝑥𝑖), 𝑦𝑖 = 𝑐} (3) 

 

where 𝑅𝑃𝑐 is a set of all the representative samples belonging to class 𝑐. Figure 2 displays the original class 

dataset and Figure 3 illustrates the resulted representative samples (red X mark) which have the highest 𝜌 

among their neighbors (black lines) when 𝜅 = 6. 

 

  
 

Figure 2. Original class dataset 

 

Figure 3. Representative points (red X mark) using 𝜅 

= 6 and their class six-nearest neighbors 

 

 

2.1.2. Create density representative graph 

The second step of the algorithm is to form a skeleton graph for each class called representative graph 

via minimum spanning tree (MST). It is denoted as 𝐺𝑅𝑃𝑐
= 𝑀𝑆𝑇(𝑉, 𝐸), where 𝑉 is a set of representative 

samples from class 𝑐 (𝑅𝑃𝑐), and 𝐸 is a set of pairwise distances between all representative samples in 𝑅𝑃𝑐. The 

resulted 𝐺𝑅𝑃𝑐
 will have only |𝑉| − 1 edges remain. The benefit of using MST is to guarantee that the average 

distance between representative points is one of the lowest. This property is the best representation of the 

skeleton aspect for a cluster [29] because it enforces that for the point on one end to reach the point on the other 

end needs to go through intermediate points along adjacent paths, which helps preserve the cluster’s shape. 

Figure 4 illustrates the above scenario, for A to reach B, it needs to pass through all the representative samples 

from the blue cluster. 

 

 

 
 

Figure 4. Representative points (x mark) using 𝜅 = 6 and enclosed region (dashed circle) along adjacent 

 

 

Next, the algorithm uses the constructed 𝐺𝑅𝑃𝑐
 to find the enclosing region between two representative 

points by first calculating the middle point between a pair of adjacent vertices 𝑣 and 𝑤 as (4). 

 

𝑀(𝑣, 𝑤) =
𝑣+𝑤

2
 (4) 
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Then, the number of samples with the same class (𝑁𝑆𝑐) and different classes (𝑁𝑂𝑐) enclosed in a pair of 

adjacent points can be obtained using (5) and (6), respectively. 

 

𝑁𝑆𝑐(𝑣, 𝑤) = |{𝑥𝑖 ∣ 𝑥𝑖 ∈ 𝑋, 𝑑(𝑥𝑖 , 𝑀(𝑣, 𝑤)) <
𝑑(𝑣,𝑤)

2
, 𝑦𝑖 = 𝑐}| (5) 

 

𝑁𝑂𝑐(𝑣, 𝑤) = |{𝑥𝑖 ∣ 𝑥𝑖 ∈ 𝑋, 𝑑(𝑥𝑖 , 𝑀(𝑣, 𝑤)) <
𝑑(𝑣,𝑤)

2
, 𝑦𝑖 ≠ 𝑐}| (6) 

 

where 𝑦𝑖 is a class of sample 𝑥𝑖. 

Finally, the density information along the adjacent points is combined into a tuple and defined as (7). 

 

𝐷𝑐 = (𝑁𝑆𝑐 , 𝑁𝑂𝑐) (7) 

 

Fundamentally, these equations are constructed to find samples enclosed in a hyper-sphere between adjacent 

points. This is inspired by the way overlapping is detected using enclosing circles with maxdist in [30], but 

modified to detect overlap along representative graph’s edges. Figure 4 displays the hyper-sphere according to 

(5) and (6). For instance, 𝐷𝑐 for the enclosed circle number “1” in Figure 4 will have the value (11, 0), circle 

“2” (18, 16), circle number “2” (19, 43). 

 

2.1.3. Cut density representative graph 

The density information 𝐷𝑐 indicates whether the two adjacent representative points are in the same 

cluster. Consider the case where 𝑁𝑆𝑐 > 𝑁𝑂𝑐, the region contains more samples with the same class between 

the two points, and this can be interpreted as the region probably is positioned at the cluster’s heart. On the 

contrary, 𝑁𝑆𝑐 < 𝑁𝑂𝑐, means that there are many other class samples between the two points, which can be 

thought of as an overlapping region. This interpretation allows the cut to be made to divide a representative 

graph into multiple representative subgraphs for those in adjacency with high 𝑁𝑂𝑐 since it is unlikely for the 

two points to belong to the same cluster. The cut-off ratio, denoted as 𝛾 and defined in (8), is a second parameter 

to DCGC algorithm. It controls how much tolerance the number of other class samples can be inside the 

enclosing region for the algorithm to consider removing the edge connecting two points as defined in (9). The 

𝛾 should be less than 0.5 to not consider the opposite case. 

 

𝛾 = {𝑟 ∈ 𝑅: 0 < 𝑟 ≤ 0.5} (8) 

 

𝑐𝑢𝑡𝑐
𝑖 =

𝑁𝑂𝑐
𝑖

𝑁𝑆𝑐
𝑖+𝑁𝑂𝑐

𝑖 >  𝛾 (9) 

 

where 𝑖 indicates the 𝑖𝑡ℎ edge of 𝐺𝑅𝑃𝑐
 and 𝑐𝑢𝑡 is a flag that indicates whether to remove this edge in class 𝑐. 

Figure 5 demonstrated the cut in action using 𝛾 = 0.2, Circle number “2” and “3” have been removed because 

the number of other class samples exceeds the ratio according to (9). 

 

 

 
 

Figure 5. The density graph Figure 4 applying cut off with γ = 0.2 
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2.1.4. Cluster formation 

In the last step, the representative graph cut result is then used to create clusters. Each subgraph, 

produced in the previous step in each class, is assigned a unique label. All representative samples in a subgraph 

are also assigned to the same label as the subgraph they belong to. Lastly, the remaining samples are assigned 

to the same label as their nearest representative samples from the same class, as shown in Figure 6. All the 

samples get their new labels, a dictionary mapping new subclasses to their original classes is created, and 

DCGC algorithm is completed. 

 

 

 
 

Figure 6. The result of DCGC algorithm with κ = 6 and γ = 0.2 in which the color of each sample 

represents a new subclass they belong to 

 

 

2.2.  Classification step 

In this step, the classifier uses the result from DCGC to train and evaluate the performance. During 

the training phase, the new labels created by DCGC are used in place of the original labels from the dataset. 

The evaluation is done using the new labels to compute validation loss. Lastly, the accuracy is measured by 

comparing the original input class with an original label obtained by converting back new labels predicted from 

a classifier using the output dictionary from clustering step. 

 

2.3.  Complexity analysis 

The computational complexity of DCGC is determined by four main parts: the search for density core 

samples, the construction of MST, the calculation for the cut, and the formation of clusters. In the first part, it 

can be further divided into two processes: nearest neighbors search 𝑂(𝑛2) and locate density peak 𝑂(𝜅𝑛). 𝑛 is 

number of samples and 𝜅 is input nearest neighbors. The nearest neighbor search can be further improved using 

k-d tree [31] and reduce to 𝑂(𝑛𝑙𝑜𝑔𝑛). The second part requires 𝑂(𝑚𝑙𝑜𝑔𝑚), where 𝑚 is number of 

representative samples. Both the third and last part loop through all Representative Samples and count/assign 

samples, both computation complexities are 𝑂(𝑚𝑛). Therefore, the overall computational complexity of 

DCGC can be expressed as 𝑂(𝑛𝑙𝑜𝑔𝑛 +  𝜅𝑛 +  𝑚𝑙𝑜𝑔𝑚 +  𝑚𝑛 +  𝑚𝑛). Usually, 𝜅 and 𝑚 are significantly 

smaller than 𝑛, hence the complexity of DCGC is 𝑂(𝑛𝑙𝑜𝑔𝑛). 

 

 

3. RESULTS AND DISCUSSION 

To assess the effectiveness of the DCGC class decomposition in improving neural network 

performance, we compared subclasses generated from DCGC with the original class and other class 

decomposition techniques: K-Mean [15] and supervised clustering using evolutionary computing (SCEC) [21]. 

DCGC is applied using five different neighborhoods (𝜅 = 10, 30, 50, 100, 200) and two different cut-off ratios 

(𝛾 = 0.2, 0.35). The number of clusters for each class (𝐾𝑐) of K-mean is selected from the output of DCGC. 

For SCEC, we set number of generation to 200 and the remaining algorithm parameters are set according to 

[21] with the modification to ignore populations that do not contain samples from all original class. Four 

possible neural network architectures with 10, 50, 100, and 200 hidden neurons were employed during the 

classification phase. However, only the technique which creates the most clusters is set to those number of 
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neurons for a hidden layer. The hidden layer of neural networks for other techniques is adjusted to ensure the number 

of trainable parameters is identical. This additional step is required to guarantee that neural network complexity 

remains roughly equal between different class decomposition techniques. It will ensure that the improvement/loss in 

performance is from how the way subclass is distributed and not the more capable network. 

We conduct experiments on eleven datasets: six syntactic datasets and five real-world datasets. Each 

dataset is split into training and testing sets with a ratio of 0.8 and 0.2, respectively. Both the class 

decomposition step and training neural networks are operated on only the training set. The testing set is used 

during the final evaluation for classification accuracy. Training neural networks are run five times with 100 

epochs to obtain an average classification accuracy on the testing set. 

 

3.1.  Experiment 1-syntactic dataset 

The first experiment used 2-d six syntactic datasets with various distribution shapes to assess DCGC. 

Figure 7 visualizes all the datasets and Table 1 displays the number of subclasses obtained from class 

decomposition for each techniques. From Table 1, it can be inferred that DCGC is very robust with various 

values of 𝜅 and 𝛾 on clean datasets (D11-D13). The amount of subclasses generated is somewhat the same 

from multiple configurations. This is expected since the nature of DCGC will merge clusters between 

representative points when there are a small amount of other class samples. Clean datasets have no such noise 

to prevent the merger, so whether DCGC starts with 𝜅=10 or 𝜅=200, both merge most representative samples. 

In contrast, 𝜅 is more affected by noise in the dataset when the value is relatively low. The result of D14-D16 

when 𝜅=10 creates more than a hundred subclasses which are incorrect from a human perspective. This is 

because small 𝜅 produces a higher number of representatives and causes the enclosing regions between them 

to be smaller. Some enclosing regions are small enough to make it disconnected no matter what value 𝛾 is 

specified, resulting in more subclasses. For example, considering an enclosing region between two 

representative samples, which contains two samples from another class and one from the same class, unless 

𝛾=0.5, other cases will consider separating these representative samples. 
 

 

 

   
D11-Yinyang D12-Checkerboard D13-Spiral 

   
D14–Yinyang Noise D15–Checkerboard Noise D16–Spiral Noise 

 

Figure 7. Experiment syntactic datasets 

 

 

Table 1. Syntactic - Number of subclasses created with different algorithm 

 Original SCEC 

DCGC and K-Means 

10 30 50 100 200 

0.2 0.35 0.2 0.35 0.2 0.35 0.2 0.35 0.2 0.35 

D11 3 27 28 15 13 9 9 9 9 8 8 8 

D12 2 37 80 58 66 62 64 63 64 64 64 64 

D13 2 47 17 12 12 9 15 8 12 9 20 12 

D14 3 25 219 108 37 26 20 16 14 10 11 8 

D15 2 26 207 104 86 64 74 64 64 64 64 64 

D16 2 51 171 55 31 10 15 8 17 8 25 18 
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Table 2 illustrates the best classification results using both original and subclass from different class 

decompositions. In Table 2 Params represent the number of trainable parameters and in case of DCGC it 

presents the value of 𝜅 and 𝛾 that is used in order to obtain the accuracy (Acc). We select the DCGC parameters 

that produce the best accuracy on each neuron network configuration and compare them with original class 

and other class decomposition techniques that have about the same trainable parameters. 

It can be seen that using DCGC as class decomposition improves classification accuracy on all 

datasets compared to original class and outperform both K-Means and SCEC. The accuracy gained from 

applying class decomposition is as high as 30% compared with using original class on D12 and D15 dataset, 

where the class distributions are scattered in multiple regions. This type of dataset causes neural networks to 

struggle to separate those class. Increasing complexity (more neurons) does not help much since the accuracy 

starts to drop for the original class with the highest complexity neural network K-Means as class decomposition 

seems to perform well on this particular type of dataset given that the optimal K can be obtained. In this case, 

it performs comparatively with DCGC in D12 and is more robust to noise in D15. On the other hand, the 

improvement on D11 and D14 dataset is not significant since the class distributions are already well separated. 

Applying class decomposition in this case seems to reduce accuracy on both SCEC and K-Means while DCGC 

improves by less than 1% which can result from training fluctuation. However, when the dataset contains noise 

as in D14, using subclasses from DCGC appears more stable than the original class and improves accuracy by 

around 2% on low complexity neural network. For structure non-linear shape datasets D13 and D16, increasing 

complexity of neural network helps find those structures as accuracy does improve greatly for original class. 

Nevertheless, class decomposition also significantly improves this type of dataset accuracy, especially on small 

neural networks. All three methods remarkably boost classification accuracies and DCGC is the best of all. 

 

 

Table 2. Summary of classification result 

  

Number of neurons in hidden layer for base case 

10 50 100 200 

Params Acc Params Acc Params Acc Params Acc 

D11 Original 327 97.22 1527 97.92 3027 98.15 6027 98.21 

 SCEC 327 94.25 1527 96.95 3027 97.41 6027 97.56 

 K-Means 327 95.62 1521 97.42 3021 97.82 6021 98.09 

 DCGC 327 (100-0.35) 97.63 1521 (50-0.35) 98.48 3021 (50-0.2) 98.52 6021 (50-0.2) 98.67 

D12 Original 732 65.62 3412 72.67 6762 76.72 13462 71.55 

 SCEC 717 73.63 3397 80.24 6764 81.95 13437 83.09 

 K-Means 734 92.85 3414 95.47 6764 94.76 13464 95.94 

 DCGC 734 (200-0.35) 94.05 3414 (200-0.2) 95.39 6764 (200-0.35) 95.42 13464 (200-0.2) 95.22 

D13 Original 547 78.47 2547 87.43 5047 89.25 10047 90.10 

 SCEC 547 89.44 2547 93.55 5047 94.46 10047 95.40 

 K-Means 537 84.15 2547 91.91 5037 92.38 10047 93.16 

 DCGC 537 (50-0.2) 94.56 2547 (30.02) 96.58 5037 (50-0.2) 97.03 10047 (30-0.2) 96.90 

D14 Original 303 92.24 1473 94.36 2925 95.78 5823 95.96 

 SCEC 305 90.98 1453 94.31 2909 94.57 5821 94.71 

 K-Means 296 89.96 1476 93.90 2926 94.37 5826 94.49 

 DCGC 296 (100-0.35) 94.55 1476 (30-0.35) 96.11 2926 (30-0.35) 96.48 5826 (30-0.35) 96.38 

D15 Original 732 61.48 3412 68.10 6762 66.50 13462 58.71 

 SCEC 722 70.31 3390 78.32 6754 78.84 13453 79.22 

 K-Means 734 93.37 3414 93.84 6764 93.38 13464 93.50 

 DCGC 734 (200-0.35) 93.08 3414 (200-0.35) 93.16 6764 (200-0.35) 92.81 13464 (200-0.35) 92.31 

D16 Original 587 79.07 2747 86.26 5447 86.53 10847 84.10 

 SCEC 591 88.11 2751 92.23 5451 92.55 10851 92.86 

 K-Means 577 86.18 2737 90.36 5437 91.12 10843 91.59 

 DCGC 577 (100-0.2) 91.80 2737 (100-0.2) 94.03 5437 (30-0.2) 94.17 10843 (30-0.2) 94.04 

 

 

To understand where such an enhancement comes from, Figure 8 illustrates the decision boundary 

during five epochs Figures 8(a)-(e) and Figure 9 shows loss Figure 9(a) and accuracy Figure 9(b) at various 

epochs during the neural network training on D12 dataset. For this dataset, the network learned much slower 

on original label and mostly struggled to obtain improvement, which can be observed in Figure 9(b). The 

accuracy of the original label has a larger fluctuation at around 5% between epochs, which is considerably 

higher than using a subclass. Figure 9(a) also displays that through all epochs, it decreases only a tiny amount 

of loss. Although at the start, the loss for DCGC is higher than Original, it is because DCGC begins with 64 

classes and only 1/64 chance to predict correct classes as compared to 1/2 from original. Splitting to more 

classes in this way also makes the network easier to track the progress, that it continues to shift the decision 

boundary in the right direction since each hyperplane can focus on correcting the direction to one region of the 

class label. On the contrary, the network has to obtain all the complex correct adjustments at once when the 
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same class samples are scattered in multiple clusters on a different part of the data space in which it fails, as 

confirmed by the tiny improvement of loss and the fluctuation of accuracy in Figure 9. For instance, in  

Figure 8(b) from original, the decision boundary A and B are responsible for samples in areas C and D, 

respectively. If areas C and D are the same class, then training a neural network with samples in C will shift A 

and B slightly toward the top-left corner. At the other end, feeding samples in D will adjust A and B toward 

the bottom-right. This causes both A and B to be back at the start and make no progress. In contrast, if C and 

D are different classes, samples in C will only affect A and samples in D will only affect B. These are evidence 

that the original label likely causes the network to be struck at a local optimum and with DCGC, the neural 

network gains a massive increase in performance. 

Another improvement comes from the better label representation in which DCGC outperforms other 

subclassing algorithms. Figure 10 visualizes the clustering subclass and prediction boundary from neural 

networks. Due to the limited space, only D13 is selected since it is the most clear. Figure 10(a) displays the 

original class data, and Figures 10(b)-(d) show subclass results from SCEC, K-Means and DCGC, respectively. 

In Figure 10(e), the hyperplane from a neural network train with original class does not has any hint of forming 

a spiral shape. In contrast, the ones train with subclasses Figures 10(f)-(h) all have a resemblance with moderate 

faulty prediction in A2, B2, and D3. These occur because SCEC has wrong representative points and K-Means 

has centroid on other class regions. It creates a situation where many clusters of the same class are separated 

by clusters of other classes A1, B1, and C1, making it harder for the neural network to place decision 

boundaries. Although DCGC does not completely eliminate all cases, it has low enough of those type of clusters 

that make neural networks almost achieve perfect boundary, as shown in Figure 10(h). 
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Figure 8. Compare decision boundary for D12 dataset with 10-neural network at (a) 4, (b) 10, (c) 30, (d) 50, 

and (e) 100 epochs between original and DCGC with 𝜅 = 50, 𝛾 = 0.2 

 

 

  
(a) (b) 

 

Figure 9. Comparing classification performance at each epoch (x-axis) for D12 dataset with 10-neural 

network trained using original label and label from DCGC with 𝜅 = 50, 𝛾 = 0.2 for (a) loss and (b) accuracy 
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(a) (b) (c) (d) 

    

    
(e) (f) (g) (h) 

 

Figure 10. Subclass results where DCGC uses 𝜅 = 50, 𝛾 = 0.2 and prediction of 10-neural network for D13 

dataset, (a) original, (b) SCEC, (c) K-Means, (d) DCGC, (e) original – predict, (f) SCEC – predict,  

(g) K-Means – predict, and (h) DCGC – predict 

 

 

3.2.  Experiment 2 - UCI dataset 

To explore the practicality of DCGC algorithm, we employed five real-world public benchmark 

datasets from UCI machine learning repository. They were Avila (D21), Avila Reduced (D22), Letter (D23), 

Pendigits (D24), and Sensorless Drive (D25). The Avila Reduced is the same as Avila dataset, except only 

Feature 1, 4, 5 are selected. Furthermore, only the integer/float features from the five datasets were used. All 

the category features were ignored since they were irrelevant to Euclidean distance and required a particular 

distance function to handle them. Table 3 summarizes all the characteristics of the five datasets that were 

experimented with in this section. 

Table 4 displays subclass results, it gives one insight indicating that D24 and D25 datasets have 

apparent clusters because the number of subclasses generated in each combination of 𝜅 and 𝛾 are pretty the 

same. While the number of clusters for D25 is a potentially suitable subclass, D24 indicates a well-distributed 

original class because the number of clusters from DCGC is close to the number of original classes. This 

represents that the subclass obtained from D24 will have the identical classification performance to the original 

class another finding is the considerable number of clusters on D21 and D22 when on small 𝜅, showing that 

both datasets may have significant noise samples. 

 

 

Table 3. The characteristic of real-world datasets 
 Name Train Test Features Classes Source 

D21 Avila 16,693 4,174 10 12 [32] 

D22 Avila Reduced 16,693 4,174 3 12 [32] 

D23 Letter 16,000 4,000 16 26 [33] 

D24 Pendigits 7,494 3,498 16 10 [33] 

D25 Sensorless Drive 46,807 11,702 18 11 [33] 

 

 

Table 4. Real - Number of subclasses created with different algorithm 

 Original SCEC 

DCGC and K-Means 

10 30 50 100 200 

0.2 0.35 0.2 0.35 0.2 0.35 0.2 0.35 0.2 0.35 

D21 12 39 300 244 91 81 51 48 24 23 18 18 

D22 12 32 303 288 156 136 100 87 61 56 32 30 

D23 26 168 91 70 79 69 54 47 43 38 29 27 

D24 10 52 13 13 14 14 14 14 12 12 11 11 

D25 11 115 66 62 71 67 73 67 69 62 64 61 
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The best classification result for real-world datasets is depicted in Table 5. The table shows that 

performing class decomposition helps boost accuracy in only two datasets, D22 and D25. For D23 and D24, 

The classification accuracies of K-Means and DCGC are about the same as the original class. Furthermore, the 

amount of subclasses used to obtain those accuracies is almost identical to the number of original classes. These 

indicate that class decomposition does not help on these datasets. Moreover, SCEC performs even worst than 

K-Means and DCGC as it significantly degrades classification performance on most datasets (D21-D24). It 

demonstrates that class decomposition is no panacea and that flawed label representation can lead to a 

substantial performance loss. On the positive side, class decomposition slightly improves accuracy on D25, 

although only on a small neural network. The gain is likely because D25 dataset only has a moderately complex 

class distribution and increasing neural network complexity helps guide those hyperplanes. As evidenced from 

Table 5, the boost subclasses gain over original classes is reduced when the number of neurons increases. A 

more notable improvement is when applying class decomposition to D22. It results in a more than 10% boost 

in accuracy for the 200-neural network compared to the original class. The improvement here is also a 

surprising discovery because the accuracy from DCGC and K-Means of D22 is even higher than the best 

accuracy of D21 even though it is the same dataset and D22 uses less features. These results support a well-

known principle that using more features does not necessarily lead to improvement in classification accuracy 

and why sometimes feature selection is needed. In some circumstances, an improved label representation can 

be very effective in helping improve classification accuracy. As for D21 and D22 cases, since the original 

source [32] used different feature subsets for each class, it is logical that using all features makes it more 

complicated. 

 

 

Table 5. Real - summary of classification result 

  

Number of neurons in hidden layer for base case 

10 50 100 200 

Params Acc Params Acc Params Acc Params Acc 

D21 Original 518 62.31 2519 66.14 5026 67.75 51233 70.92 

 SCEC 539 47.24 2539 60.60 5039 63.97 51239 68.43 

 K-Means 533 58.62 2512 66.07 5035 67.79 51244 67.66 

 DCGC 533 (100-0.35) 60.36 2512 (200-0.2) 65.85 5035 (200-0.2) 67.85 51244 (10-0.35) 70.00 

D22 Original 3372 60.24 15644 61.52 30988 63.29 61692 63.71 

 SCEC 3344 49.31 15620 50.01 30992 50.27 61700 50.15 

 K-Means 3373 60.74 15653 67.09 31003 69.13 61703 72.64 

 DCGC 3373 (10-0.2) 57.69 15653 (10-0.2) 67.17 31003 (10-0.2) 70.10 61703 (10-0.2) 74.43 

D23 Original 2004 89.01 9400 94.89 18645 95.59 37135 95.82 

 SCEC 2018 79.24 9418 88.23 18668 90.60 37168 92.03 

 K-Means 2007 88.76 9399 94.66 18639 95.53 37163 95.84 

 DCGC 2007 (200-0.35) 88.83 9399 (200-0.35) 94.87 18639 (200-0.35) 95.53 37163 (200-0.35) 95.76 

D24 Original 739 96.63 3493 97.34 6949 97.32 13834 97.38 

 SCEC 742 95.15 3502 96.24 6952 96.30 13852 96.47 

 K-Means 739 96.63 3486 97.43 6927 97.38 13840 97.44 

 DCGC 739 (200-0.2) 97.07 3486 (30-0.35) 97.44 6927 (30-0.35) 97.55 13840 (30-0.2) 97.47 

D25 Original 1751 95.81 8291 98.17 16511 98.54 32891 98.93 

 SCEC 1755 97.02 8315 98.18 16515 98.65 32915 98.61 

 K-Means 1751 98.46 8247 99.36 16490 99.52 32895 99.42 

 DCGC 1751 (30-0.2) 99.16 8247 (50-0.2) 99.50 16490 (100-0.35) 99.58 32895 (50-0.35) 99.50 

 

 

4. CONCLUSION 

In this paper, a method to improve classification accuracy via class decomposition is proposed. The 

DCGC algorithm creates representative core samples and forms skeleton graphs using density, which shows 

that it is more effective than the current supervised clustering in producing a less complex subclass. The cut 

graph part is also confirmed to be a better separation criterion since it ensures that the regions between 

representative samples contain only samples belonging to the same class, unlike performing class 

decomposition using traditional clustering algorithms. The technique has outperformed both traditional 

clustering and supervised clustering algorithms in improving classification accuracy on six syntactic datasets. 

Especially when the dataset has many clusters from the same class distributed throughout data space, the 

improvement can be as significant as 30%. However, when datasets have a simple shape, DCGC may not lead 

to an improved classification accuracy. For the real-world datasets, utilizing DCGC was found to boost 

classification accuracy for some datasets. However, many real-world datasets may not benefit from DCGC 

because their features are already exhaustive, or the inherent simple correlations among features may not form 

scattered clusters. An exhaustive set of features usually help simplify the shape of the data, making the classifier 

face an easier training task. Although that is not always the case, as apparent in the reduced features on one of 
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the real-world datasets, when applied DCGC, it is able to obtains a massive 10% increase in accuracy. Aside 

from the characteristics of the datasets, the required 𝜅 and 𝛾 parameters for DCGC algorithm are also not easy 

to select as initially thought they would be. Although they are much more robust than selecting the number of 

clusters, finding such optimum parameter values depend upon the dataset and need to be determined on a case 

by case basis As an introductory version, the current DCGC algorithm assumes that 𝜅 and 𝛾 are identical for 

every original class which in practice is not always the case. 

A possible direction for future work is to look into creating a method to determine 𝜅 and 𝛾. This 

particular task will not only solve the problem of having the same 𝜅 and 𝛾 for all classes, but it will also 

eliminate the need to specify parameters. Another interesting investigation is to develop a procedure to 

determine the dataset’s characteristics for class decomposition. With such a procedure, the dataset can quickly 

be determined whether to proceed to class decomposition instead of blind guessing. 
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