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Abstract 
To detect the sensor faults of the plant with min-disturbance, a weighted least squares interval 

regression model is proposed. The output of the proposed model is an interval band which can resist the 
disturbance influence and give correct sensor fault alarm. Additionally, the time complexity of this model 
is low because only a set of linear equations can determine the parameters. The experiments of fault 
instance demonstrate the feasibility and effectiveness of the interval regression model. 
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1. Introduction  

To detect the sensor faults, one can obtain the regression model of the plant without 
faults. The sensor faults can be detected by comparing the estimated outputs of the regression 
model and the observed outputs of the plant. Support vector regression (SVR), which owns 
high generalization performance, is an effective method to construct this regression model [1]. 
But, when the system is a plant with min-disturbance, outputs will locate in an interval band. 
The regression model based on traditional SVR only presents crisp outputs and can not 
describe the effect of min-disturbance in plant whose output is an interval band. For this 
reason, traditional SVR is not fit to detect the sensor faults of the plant with min-disturbance. It 
is likely to regard the disturbance as sensor faults and give a wrong alarm. In order to resolve 
this problem, interval regression model whose regression outputs is an interval band model 
must be proposed to detect the sensor faults of the plant with min-disturbance. 

For these years, many interval regression models are proposed. Support vector 
interval regression networks (SVIRNs) is presented. This model utilizes two radial basis 
function networks to identify the upper and lower sides of the data interval [2]. Support vector 
interval regression machine (SVIRM) is designed for crisp input and output data [3]. SVIRM is 
robust in the sense that outliers do not affect the resulting interval regression.  -support 
vector interval regression networks are proposed to evaluate interval linear and nonlinear 
regression models for crisp input and output data [4]. Experimental results manifest that  -
support vector interval regression networks is useful in practice, especially when noise is 
heteroscedastic. However, like SVM with inequality constraints, the weight vectors and the bias 
term are worked out by a complicated quadratic programming problem. Though by modifying 
the solution, the time complexity of SVMR based on sequential minimal optimization (SMO) 
algorithm is high[5]. Due to this, in this study, a novel weighted least squares interval 
regression (WLS_IR) is proposed by applying the fuzzy set principle to weight vectors for the 
purpose of estimating the interval of imprecise observations. Compared with the existing 
support vector fuzzy regression models, only a set of linear equations are needed to determine 
the weight vector and bias term of WLS_IR. Consequently, WLS_IR owns the advantage of 
low time complexity. Additionally, the bounds of the interval regression model are influenced by 
outliers in training data. In this paper, the reweighting scheme [6] is introduced to resist the 
influence of outliers.   

The rest of this paper is organized as the following. least squares support vector 
machines is introduced in section 2. WLS_IR is studied in Section 3. Section 4 introduces the 
reweighting scheme to resist outliers influence. Fault instance Experiment is presented in 
Section 6. Section 7 puts forward the concluding remarks. 
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2. Least Squares Support Vector Machines 
In this section, least squares support vector machines（LS_SVM） is briefly 

introduced [7]. Given training data set  ii YX , , ni ,,1 LS-SVM supposes the Hyperplanes 

as the following:  
 

by i
T

i  )(x                                                (1) 

 

Where ix , iy are input variable and output variable, )( ix is a nonlinear function 

which maps the feature space of input into a higher dimension feature space and can be 
reached by the kernel strategy.   is a coefficient determining the margin of support vectors 
and b is a bias term. The coefficients ),( b  are determined by minimizing the following 

regularized risk function and using the equality constraints. 
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Where ie is the error variable and used to construct a soft margin hyper plane. In 

Equation (2), the first term, measures the inverse of the margin distance. In order to obtain the 
minimum structural risk, the first term should be minimized. c  is the regularization parameter 
determining the fitting error minimization and smoothness.  

Finally, the decision function of the classifier of LS_SVM can be expressed as 
following: 
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The functional form of )( ix  need not to be known since it is defined by the kernel 

function ),()(),( j
t

ijiK xxxx   ,1 ni  nj 1 . Different kernel functions present different 

mappings from the input space to the high dimension feature space. The commonly used 
kernels for regression problem are given as follows: 

Linear kernel: yxyx tK ),(  

Polynomial kernel: dtK )1(),(  yxyx   

RBF kernel: ),( yxK )
2

exp(
2

2
yx 

  

Due to the equality constraints in the formulation, LS_SVM is solved by a set of linear 
equalities instead of a complicated quadratic programming problem. For this reason, LS_SVM 
is a low computational complexity method. But the regression output of LS_SVM in only a crisp 
data. When Available information is uncertain and imprecise, LS_SVM can not solve this 
problem. For this reason, Weighted Least Squares interval Regression is proposed based the 
theory of LS_SVM and the interval regression of Tanaka. This interval regression model is 
presented as follows: 

 
 

3. The Design of WLS_IR 
In this section, a novel WLS_IR model is proposed based on LS_SVM and the interval 

regression theory. This model can be resolved by a set of linear equations as against the 
complicated quadratic programming. the interval regression problem is to find the parameters 

),,( bcω which is the solution of the objection function as follows: 
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Where i1 and i2 are slack variables. This optimization problem, including the 

constraints, can be solved by the Lagrange function as follows: 
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Where ii 21 , are Lagrange multipliers. Computing the partial derivatives of (5), one 

can derive: 
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As mentioned by Vapnic [1], the map function does not need to be known since it is 

defined by the choice of kernel function. For this reason, two kernel functions, 

)()(),( j
T

iji xxxxk  and )()(),( j
T

iji xxxxk  , are used to replace . Lagrange 

multipliers ii 21 , and bias termb can be obtained. Then, the upper bound and lower bound of 

LS_SVFR are derived as follows:  
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From the conditions for optimality, this regression problem can be solved by the matrix 

Equation (5): The choice of the weights iv1  and iv2 is determined based upon the error 

variables  /11 ii  ,  /22 ii   . 

 
 

4. Reweighting Scheme to Resist Outliers Influence 
Robust estimates are obtained by using the same iteratively reweighting approach in 

reference [6]. The iterative approach is summarized as follows: 

1) Set 11 iv , 12 iv , 1i  The proposed interval regression is used to obtain the 

estimated outputs. Then, the regression errors  /,/ 2211 iiii    are calculated. 
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5) Solve the weighted interval regression model with weight kv1 and kv2 . 

6) Set 1 ii  

7) Until Lagrange multipliers )1(
2

)1(
1 ,  i

k
i
k   and )(

2
)(

1 , i
k

i
k  , mk ,1,0  are sufficiently 

close to each other. 
 
 

5. Experiments 
In the first example, We apply the unified WLS_IR to the data set of crisp inputs and 

interval outputs shown in Table 1. 
To illustrate the proposed method, the second example [22] are presented. Because 

this function is not affected by outliers, the weight parameters iv1 iv2 is assumed From Figure 1, 

LS_SVFR performs fairly well for this function. 
Now, LS_SVFR is applied in sensor faults detection for the plant with min-disturbance. 

Sensor is important for the plant to achieve its optimal performance. All sensor faults must be 
detected accurately and rapidly to prevent serious accidents. Consider the plant: 
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Table 1. Crisp Inputs and Interval Outputs 
No(i) 

Crisp input ix  Fuzzy output ),( ii ey  

1 0.1 (2.25,0.785) 
2 0.2 (2.875,0.875) 
3 0.3 (2.5,1) 
4 0.4 (4.25,1.75) 
5 0.5 (4,1.5) 
6 0.6 (5.25,1.25) 
7 0.7 (7.5,2) 
8 0.8 (8.5,1.5) 
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Figure 1. Simulation Result for the Second Example 
 
 

Where nRx is the state of the plant, mRu is the control input, pRy  is the 

measurable output of the plant, lRd   is the unknown min-disturbance, lRf   is sensor 

fault. f and d are the uncoupled forms.  

The unknown min-disturbance is assumed as following: 
 

) rand(*1*0.2-0.1)( td                         (23) 
 
It denotes noises generated in the interval [-0.1, 0.1] at random. The sensor fault is 

given as: 
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In this experiment, st 2.0 , m=4, n=4. Simulation time is chosen as 10 second. 

TWhen sensor faults occur, output of the plant will beyond the interval. Figure 2-3 show 
estimates of the interval regression and output of plant with sensor faults. As shown in Figure 
2-3, because there are sensor faults in the plant between 4s and 8s, the outputs of plant also is 
beyond the interval between 4s and 8s. LS_SVFR is successful in detecting the sensor faults 
as early as possible. 
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Figure 2. Estimates of Interval Bounds and the 
First Output Parameter of the Plant with 

Sensor Faults and Disturbance 

Figure 3. Estimates of Interval Bounds and 
the Second Output Parameter of the Plant 

with Sensor Faults and Disturbance 
 

 
6. Conclusion 

In order to preserve the advantages of LS_SVM and fuzzy regression, WLS_IR is 
presented by incorporating the concept of fuzzy set theory. By choosing different kernel 
functions, WLS_IR can denote different type nonlinear regression model to adapt different data 
sets. The experiments of fault instance demonstrate the feasibility and effectiveness of the 
interval regression model. 
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