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 Whale optimization algorithm (WOA) is an emerging nature-inspired, swarm-

intelligence based algorithm to solve optimization problems more efficiently. 

This algorithm is based on the bubble-net hunting strategy of the humpback 

whales. It has gained immense popularity among researchers, typically, due 

to its simple nature, fast convergence, and having minimum parameters. In the 

recent past, it has been widely adopted in various fields including data mining, 

machine learning, wireless sensor networks, cloud computing, civil 

engineering, and power systems due to its optimal performance. The WOA 

has given competitive results in comparison to the state-of-the-art 

optimization algorithms. In this study, we aim to present a comprehensive 

survey of WOA consisting of more than eighty existing variants of WOA. 

More specifically, we intend to put forward key aspects of WOA variants with 

reference to modifications and applications. Further, we classify the most 

dominant variants of WOA in distinct categories based on modification area 

such as equation modification, parameter tuning or the problem space for 

which an algorithm has been specifically altered. We believe that this study 

will be beneficial for the community working on optimization problems and 

it can serve as a basis for understanding the modification and improvement 

process of an optimization algorithm. 
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1. INTRODUCTION 

Nature-inspired optimization algorithms (NIOAs) have received a lot of attention from the researchers 

since the first proposal of genetic algorithm [1]. These algorithms are inspired from optimization processes that 

occur in nature and have been applied to solve various real world problems, for example, clustering in wireless 

sensor networks [2] , feature selection in machine learning [3], optimal power flow [4], resource allocation in 

cloud computing [5], data clustering in data mining [6], multilevel image segmentation [7]. Figure 1 provides 

a classification of the NIOAs based on the taxonomy provided in [8]–[10].  

Different researchers have proposed various categories of nature-inspired optimization algorithm, for 

example, physics based, chemistry based, and biology based. Biology based NIOAs can be divided into two 

categories; evolutionary algorithms (EAs) and swarm-intelligence (SI) based algorithms. EAs are based on the 

Darwin’s theory of natural evolution, and SI based algorithms are inspired by the natural grouping behaviour 

of animals or insects. Several such algorithms have received much attention from the researchers and are 

considered state-of-the-art including genetic algorithm [1], differential evolution [11], [12], simulated 

https://creativecommons.org/licenses/by-sa/4.0/
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annealing [13], particle swarm optimization [14], ant and bee colony [15], [16], firefly algorithm [17], cuckoo 

search [18], and bat algorithm [19].  

 

 

 
 

Figure 1. Classification of nature-inspired optimization algorithms [8]–[10] 

 

 

These algorithms have shown dramatic results on the benchmark functions and have been widely 

evaluated on the real-world problems in engineering and computer science field where optimization is a 

requirement. This leads to more research in this area and a number of new techniques have been proposed by 

researchers which have received much attention including self-regulating particle swarm optimization [20], 

arithmetic optimization algorithm [21], whale optimization algorithm [22], chimp optimization algorithm [23], 

Quantum-based avian navigation optimizer algorithm [24], and starling murmuration optimizer [25]. This 

research is centered around whale optimization algorithm (WOA) and its variants because a recent study [26] 

evaluated the performance of seventeen well-known recent nature-inspired optimization algorithms where 

WOA showed remarkable performance on the majority of the benchmark functions.  

Whale optimization algorithm [22] is an emerging swarm-intelligence (SI) based optimization 

algorithm that mimics the bubble-net feeding mechanism of hump-back whales. This research aims at 

providing a comprehensive survey of the available variants of WOA; more than eighty variants of WOA are 

available in the literature. Figure 2 shows a graph on the number of variants of WOA proposed each year. This 

is worth nothing that this count includes variations of WOA only, not all the papers related to WOA.  

 

 

 
 

Figure 2. WOA variants proposed from 2016 to 2022 

 

 

A small number of review articles are available in literature for the applications and modifications of 

WOA [27]–[29]. However, they [27]–[29] have covered literature up to 2020 and have focused on very few 

variants of WOA. In this study, we have tried to add all the variants that are available in the quality journals 

for WOA and have classified them according to the modification area. This study will provide a basis on how 

a variant of a NIOA can be designed and will also help early researchers to understand the modification process 

of a NIOA. Major contributions of this research can be summarized as:  

- Holistic survey of WOA comprising around eighty variants is presented.  

- A classification of WOA variants has been proposed and research in each category is separately discussed.  

- Details of different approaches used in the modification process of WOA is presented. 

The rest of the paper is organized as follows. Section 2 gives a brief overview of whale optimization 

algorithm along with mathematical model and limitations, section 3 gives a classification of WOA variants and 
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modifications in various WOA variants are discussed category-wise. Section 4 discusses the outcomes of this 

study along with the conclusion and future work. 

 

 

2. WHALE OPTIMIZATION ALGORITHM (WOA) 

WOA is a recent SI based NIOA that is based on the bubble net feeding mechanism of humpback 

whales. Like all other NIOAs, it is divided into two phases: Exploration and exploitation, where exploration 

search globally for better solutions in a wider area and exploitation dives in-depth of a particular good solution. 

Whenever the prey is found, whales start sending bubbles towards the surface of the sea, called bubble net 

attacking method, and start moving in a shrinking spiral curve around the prey and slowly gets closer to the 

prey. In the algorithm it is referred to as shrinking encircling mechanism and spiral update position. The idea 

is to move around the prey in a nine shaped spiral and slowly getting close to it. The main advantage of the 

algorithm is the simplicity as it has only two internal adjustable parameters. In upcoming sub-sections, 

mathematical model and limitations of the algorithm are briefly discussed.  

 

2.1.  Mathematical model  

Whales search for the prey in the whole sea however algorithm starts with the assumption that the 

current best solution is either the prey or nearby whale to the prey. All the whales update their position 

according to the best one as given:  

 

𝐷 ⃗⃗  ⃗ =  | 𝐶  . 𝑋∗⃗⃗⃗⃗ (𝑡) – 𝑋  (𝑡) |  (1) 

 

𝑋 ⃗⃗  ⃗(t + 1) =  𝑋∗⃗⃗⃗⃗ (𝑡) − 𝐴 ⃗⃗  ⃗. 𝐷 ⃗⃗  ⃗ (2) 

 

here X* is the best whale, X is the current whale and D is the distance. Vector A and C are represented by:  

 

𝐴 ⃗⃗  ⃗ =  2𝑎  . 𝑟  − 𝑎   (3) 

 

𝐶 ⃗⃗  ⃗ =  2. 𝑟   (4) 

 

where a linearly decreases from 2 to 0 and r is a random vector whose values lie in the range [0, 1]. During 

exploitation, whales either follow shrinking mechanism or position updating in a spiral shape, which is called 

helix-shaped movement represented in (5). 

 

𝑋 ⃗⃗  ⃗(t + 1) =  𝐷′⃗⃗⃗⃗ . ebl. cos(2𝜋𝑙) + 𝑋∗⃗⃗⃗⃗  (𝑡),  

𝐷′ ⃗⃗⃗⃗  ⃗ =  | 𝑋∗⃗⃗⃗⃗ (𝑡)  − 𝑋  (𝑡) | (5) 

 

Where D’ is the distance between prey and whale, b is a constant for spiral and l is a random number in the 

range [-1, 1]. To promote search in a wider area (6) is used in the exploration phase. 

 

𝑋 ⃗⃗  ⃗(t + 1) =  𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  −  𝐴 ⃗⃗  ⃗. 𝐷,⃗⃗  ⃗  

𝐷 ⃗⃗  ⃗ =  | 𝐶  . 𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  −  𝑋  |  (6) 

 

There is a 50% chance to choose either shrinking mechanism or spiral equation for which a probability 

p is used to switch between both given in (7). 

 

𝑋 ⃗⃗  ⃗(t + 1) =  {
𝑋∗⃗⃗⃗⃗ (𝑡) − 𝐴 ⃗⃗  ⃗. 𝐷 ⃗⃗  ⃗, if p < 0.5

𝐷′⃗⃗⃗⃗  . ebl. cos(2𝜋𝑙) + 𝑋∗⃗⃗⃗⃗ (𝑡) , if p ≥ 0.5
  (7) 

 

Figure 3 shows the flow chart of the original WOA. For a detailed discussion of the mathematical model and 

algorithm, original WOA [22] can be consulted. 

 

2.2.  Scope and limitations of WOA 

As already reported in WOA [22] that it is designed to work with single objective, continuous 

problems. Also, the formulation of WOA is kept simple to have only two internal adjustable parameters. 

Therefore, there is a room for creating a new variant of WOA with discrete or binary problem space or to solve 

multimodal problems. Other limitations have also been studied by various researchers where slow convergence 

speed and local optima stagnation have also been identified as the weakness of this algorithm [30].  
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Figure 3. Flow chart of whale optimization algorithm 

 

 

3. VARIANTS OF WOA 

WOA mathematical representation includes equations for calculating distance of the whales with the 

prey and optimal position of the whale with some internal parameters, also it is designed to solve continuous 

optimization problems. Keeping this in consideration, various WOA variants have modified distance or 

position equations, tuned the internal parameters, introduced new mechanisms to generate initial parameters or 

changed problem space from continuous to discrete values or hybridizing WOA with other techniques to 

generate a better version of the basic algorithm. Various multi-objective variants have also been introduced to 

overcome the limitation of solving single objective problems.  

After a careful study of the literature, a classification of WOA variants have been proposed in this 

study described below. Figure 4 depicts the number of variants of WOA studied for this research.  

- Improved Learning strategy: Involves improvements in distance or position equations or improved steps 

of the original algorithm.  

- Parameter Tuning: involves tuning existing internal parameters, adding new parameters or changing the 

way initial population is generated.  

- Discrete Variants: Adding new equations to convert search space into discrete or binary values. 

- Multi-objective Variants: Solving multiple objective problems.  

- Hybrid Variants: Hybridizing with other techniques 

 

 

 
 

Figure 4. Number of papers studied under each category for WOA 
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3.1.  Improved learning strategy  

It has already been discussed in the previous section that an improved version of WOA may involve 

the modification of distance or position equations or some modifications in the steps of the WOA algorithm 

are achieved. In this section all such variants are discussed. Interestingly only one variant was published in 

2016 [31] into which adaptive technique was used for finding optimal solution, considering only one internal 

parameter whose value was selected at random. Another simple approach was introduced in [32] where distance 

(D)’s calculation is modified for proper balance between diversification and intensification. In exploration, one 

component of each whale is changed with a random value with a probability p. Ruiye et al. [33] attempted to 

change both exploration and exploitation phases Initial Population is generated with Latin Hypercube sampling 

method, then fitness value is calculated and sorted, and best individual is selected as the best solution. New 

parameter k and W are also used to further update whales’ position. Chen et al. [34] introduced two strategies: 

one is random spare and the other method is double adaptive weight, which is introduced to improve the 

exploration and exploitation. 

WOA uses a simple approach as it has only two internal parameters therefore many modifications of 

WOA had kept this simplicity as an advantage and had made few modifications to the equations. Quantum 

rotation gate (QRG) operation is introduced and the position updating mechanism is modified, aiming to 

enhance population diversity and convergence accuracy [30]. Qiao et al. [35] try to improve the performance 

of whale optimization algorithm, adaptive search-surround mechanism is introduced for which probability is 

modified. Just one equation is added for the whale to jump out of the local optima. Hassouneh et al. [36] 

combined WOA with single point crossover method, five different selection methods are employed 

Tournament, Roulette wheel, Linear rank, Stochastic universal sampling, and random-based. 

WOA works best with unimodal and low-dimensional problems however it converges towards the 

local optimum when tested with multimodal functions and slow convergence rate with high-dimensional 

problems. Therefore to overcome these weaknesses levy flight distribution is introduced in WOA in [37]–[42]. 

Levy flight is a random walk in which the step-lengths have a probability distribution that is heavy-tailed.  

Ling et al. [37] and Zhou et al. [38] Levy flight trajectory is used to update whale’s position and a new equation 

is added after whale position is updated by original WOA.  

Sun et al. [39] used quadratic crossover operator to create new solutions based on the best solution 

and two more solutions acting as partners. Levy flight is used to enhance exploration capability and cosine 

function is used to update the value of parameter a making it nonlinear. Levy flight is used to generate new 

agents corresponding to the current swarm in [40] then Chaotic local search is used to select the best agent or 

fittest agent. Three modified versions are proposed in [41]; for initialization purposes opposition-based learning 

technique is added. Secondly, the concept of exponentially decreasing exploratory operator a has been added. 

Then to improve exploration, the concept of re-initialization of worst particles is followed based on Lévy-

distributed step size. Yen et al. [42] introduced levy flight strategy and a ranking based mutation operator for 

global optimization.  

Few variations have been achieved by introducing natural laws or concepts in the original WOA 

algorithm such as in [43] to adjust the mutation space, wavelet mutation strategy is introduced, which enhances 

the ability of the algorithm to escape from local optimum. Long et al. [44] proposed a new refraction-learning 

strategy based on the principle of refraction of light. Original WOA uses a log spiral curve which has been 

replaced with equal pitch Archimedes spiral curve in [45] and Perceptual perturbation mechanism is used to 

improve global search. Another variant introduced in [46] is based on Lamarck’s evolutionary theory that 

individuals with more development potential are selected to perform local enhanced search, in this Population 

is initialized based on good point set theory.  

Chaotic maps are widely used in the optimization algorithms because of their randomness, ergodicity, 

and regularity. Yin et al. [47] used logistic chaotic map to select optimal features for brain tumour diagnosis. 

Jianhao et al. [48] generated initial population with tent chaotic map, then opposition-based learning strategy 

is used to consider opposite solutions and retaining well-diversified solutions. 

 

3.2.  Parameter tuning 

This category includes all the available variants of WOA that have been achieved with tuning existing 

parameters, adding new parameters to the original algorithm, or changing the way how initial population is 

generated. There are only two internal parameters in WOA, A, and C, depending on a linearly decreasing 

parameter a and a random value r. A careful study of the variants showed that parameter a has been tuned by 

many researchers due to its linear nature and has been evaluated with a non-linear convergence nature. Few 

studies have added new parameters to the existing WOA algorithm, and many has tuned the initial population 

generation mechanism. In this section all such improved versions of WOA have been discussed. Table 1 

summarizes the variants discussed in this section. 
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Table 1. Summary of parameters and operators in WOA variants 
Reference Parameter/operator Name Description 

[49] linear convergence factor a sine, cosine, tangent, log, and square functions used to update 

value of a in a non-linear fashion. 

[50], [51] adaptive inertia weights 

Parameter a 

adaptive inertia weight is added to update whale position. 

Parameter a is changed into a nonlinear convergence factor. 

[52] Random walk W equation is selected in exploitation phase 

[53] New parameter B if B>=0 then a random search agent is selected and if B<0 then 

best search agent is selected. 

[54] DE’s mutation operator 

search mode parameter 

search mode is added to switch between exploration and 

exploitation phases. 

[55] Laplace’s crossover operator Two agents are selected, best one and a random then Laplace’s 

crossover operator is applied to produce two new offspring. 

[56] Golden sine operator 

non-linear adaptive weight 

Golden sine operator is incorporated along with 

non-linear adaptive weights. 

[57] probability (p) in original WOA ten 1-D non-invertible chaotic maps are utilized to adjust 

probability p. 

[58] a, c, p, and l in original WOA. Ten chaotic maps are used to update a, c, p, and l parameters. 

[59] probability (p) and C C is updated with Levy distribution and logistic chaos map is 

used to update probability p. 

 

 

When humpback whales identify prey then they can encircle them in a shrinking circle. It is achieved 

in the algorithm through internal parameter a which linearly decreases from 2 to 0 to mimic the encircling step. 

Several studies found out that instead of linear decrement in the value of a, a non-linear value adjustment of 

this parameter can improve the convergence speed and avoid the local optima stagnation problem. Zhong and 

Long [49] have proposed five non-linear strategies namely sine, cosine, tangent, log and square, to update the 

value of control parameter a and cosine method outperformed other four techniques and original WOA. 

Similarly [39], [50], [51] proposed nonlinear value adjustment of the same control parameter a. adaptive inertia 

weight is also added in [50] to update whales position.  

Few variations of WOA involves adding new parameters or operators in the original WOA, as in [52] 

a random walk variable W is introduced and based on its value an equation is selected in exploitation phase. A 

new parameter B is added to switch between exploration and exploitation phases by Lu and Ma [53]. Bozorgi 

and Yazdani [54] has used DE’s mutation operator to improve WOA exploration and exploitation, then a new 

parameter called search mode is added to switch between exploration and exploitation phases. After following 

original WOA procedure in [55], two agents are selected, best one and a random one then Laplace’s crossover 

operator is applied to produce two new offspring. their fitness value is calculated against the worst solution of 

the current population. If offspring has better fitness, then it is replaced with the worst particle of the current 

population. golden sine operator has been incorporated in [56] with a nonlinear adaptive weight to give a proper 

balance between exploration and exploitation phases.  

Chaos theory has been applied to various optimization algorithms due to its random nature and 

ergodicity. Kaur and Arora [57] adjusted probability (p) with chaotic number and ten chaotic maps are utilized 

to produce chaotic sets. Sayed et al. [58] have used ten chaotic maps to update a, c, p and l parameters in 

original WOA. Abdel-Basset [59] updated C parameter with Levy distribution and logistic chaos map is used 

to update probability p.  

Initial population plays a very important role in finding out the optimal solution in any NIOA. The 

better the diversity of the initial population, the stronger the algorithm’s global search ability. In almost all the 

NIOAs initial population is randomly generated. Many researchers have studied the effects of applying 

different mechanisms for generating initial population. Opposition based learning (OBL) was introduced by 

Tizhoosh [60] that for every point x there is an opposite x’ that improves the convergence and helps in finding 

the better solution. Alamri et al. [61] has used OBL to find opposite solutions for an improvement of WOA 

and gave better results as compared to original WOA.  

Abd Elaziz and Mirjalili [62] have used three methods to generate initial population, differential 

evolution (DE), chaotic map and opposition based learning. Logistic chaotic map is used in [47], [63], Bernoulli 

shift map in [64], and tent chaotic map in [65] is used to generate initial population value to maintain diversity 

of the population. Good point set method is used to generate initial population in [46], [66]. Randomization 

operation of the random Gaussian distribution is used to increase the diversity of the population in [67]. Jianhao 

et al. [48] combined chaotic map with opposition-based learning to generate initial population. All these 

methods to generate initial population are summarized in Table 2. 
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Table 2. Methods to generate initial population 
Author and Reference Methods to Generate Initial Population 

Ruiye et al. [33] Latin hyper cube sampling 

Zhang and Liu [46]  Good point set method 

Yin et al. [47] Logistic chaotic map 

Jianhao et al. [48] Chaotic map/Opposition based learning 

Alamri et al. [61] Opposition based learning 

Abd Elaziz and Mirjalili [62] Differential evolution Chaotic map/Opposition based learning 

Chen et al. [63]  Logistic chaotic map 

Chen [64] Bernoulli shift map 

Fan et al. [65]  Tent chaotic map 

Ning and Cao [66] Good point set method 

Jin et al. [67]  Random gaussian distribution 

 

 

3.3.  Discrete or binary variants 

Since WOA was designed to solve continuous problems therefore it cannot be directly used to solve 

discrete or binary problems. Applications involving integer or binary values cannot directly use WOA, leading 

to the change in values used by the algorithm. Li et al. [68] have proposed a discrete version of WOA using a 

V-shaped function, which transfers a real vector to an integer vector. A similar approach is followed in [69] 

where knapsack problem is solved with a discrete version of WOA.  

Feature selection is the process of finding the optimal subset of features to improve prediction 

accuracy or decrease the number of selected attributes without significantly decreasing prediction accuracy of 

the classifier [70]. Considering feature selection as an optimization problem, several swarm-intelligence based 

optimization algorithms have been employed to solve this problem. Xu et al. created binary variants of WOA 

and have applied that binary WOA to feature selection problems in different application areas [51], [71]–[77]. 

Table 3 summarizes all binary variants of WOA discussed in this section along with the application areas.  

 

 

Table 3. WOA binary variants with applications 
Author and Reference Application Area 

Xu et al. [51] Feature selection for network intrusion detection 

Abdel-Basset et al. [69] single and multidimensional 0–1 knapsack problem 

Eid et al. [71] feature selection for ten UCI datasets 

Hussein et al. [72] Feature selection for twenty-four UCI datasets 

Agrawal et al. [73] Feature selection for fourteen UCI datasets 

Hussein et al. [74], [76] Feature selection for eleven UCI datasets 

Eid [75] Feature selection for nine UCI datasets 

Nadimi-Shahraki et al. [77] Feature selection for medical datasets and COVID-19 

Hussein et al. [78] Travelling salesman problem, engineering problems 

(Tension/compression string, welded beam, pressure vessel) 

 

 

3.4.  Multi-objective variants 

Multi-objective optimization problems involve optimizing two or more objective functions to be 

minimized or maximized simultaneously, therefore algorithm must deal with a set of optimal solutions, called 

non-dominated solutions and there must be a proper balance in the optimal values of those solutions. In almost 

all the multi-objective versions of WOA discussed here, optimal solutions are stored in an external repository 

or archive, and it gets updated with better solutions as the algorithm progresses. WOA was tailored to solve bi-

objective problems in [79], [80] and both two and three objective functions are solved in [81]–[83]. All these 

variants are discussed in detail in the following paragraph.  

An archive repository and archive controller are added in [79] where archive controller is responsible 

to identify non-dominated solutions and archive repository is used to store best solutions. Ahmed et al. [80] 

considered two objectives, one is reducing energy consumption and other one is increasing lifetime of large 

scale wireless sensor networks (LSWSN). A fitness function is designed to achieve these objectives. The 

experimental results showed better performance with 26% reduction in the total power consumption. External 

archive updating and leader selection strategies are incorporated in [81]; optimal solutions are stored in an 

external archive in a descending sorting order and a leader of population is selected from good solutions along 

with crowding distance calculation which is used to increase the diversity of the solutions. Pareto archived 

evolutionary strategy (PAES), opposition based learning (OBL), and Nelder-Mead simplex methods are used 

in [82] to create a multi-objective version of WOA and once again distance control parameter a is converted 

to a nonlinear convergence factor with sine, cosine, and log functions. A pairwise competition mechanism is 

used in [83] instead of a global best solution and winner guides the population updating with best solution and 
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differential evolution (DE) is integrated to diversify the population hence more feasible solutions are 

discovered. In this variant, instead of external archive, current population is used.  

 

3.5.  Hybrid variants 

Hybridizing two or more optimization algorithms and combine salient features of the original 

algorithms to better improve the convergence speed and to overcome the local optima stagnation problem has 

attracted a lot of researchers. Hence several research publications have contributed towards hybridization and 

successfully improve the aforementioned areas. An in-depth discussion of hybrid variants is out of scope of 

this study therefore these are provided in tabular format in this section. In Table 4, hybrid modifications of 

WOA have been provided by outlining the name of the hybrid version, the other algorithm(s) with which a 

hybrid version is developed and publication year with reference.  

 

 

Table 4. Hybrid versions of WOA 
Hybridized with Name Year Reference 

Pattern Search WOA-PS 2016 [84] 

Simulated Annealing WOA-SA 2017 [85] 

Local Search Strategy HWA 2018 [86] 

Pearson’s correlation coefficient and distance MPMDIWOA 2018 [87] 

Differential Evolution DE/WOA 2018 [88] 

Pattern Search hWOA-PS 2018 [89] 

Modified Differential Evolution MDE-WOA 2019 [90] 

Differential Evolution WOA-DE 2019 [91] 

Simulated Annealing HWS 2019 [92] 

Ant-Bee Colony, Firefly Algorithm WOA-AEFS 2019 [93] 

Tabu Search MOWOATS 2019 [94] 

Neighbourhood rough set BWOA-NRS 2020 [95] 

Differential Evolution Genetic Algorithm GWOA, WODEGA 2019, 2020 [96], [97] 

Opposition learning, Grey Wolf Optimizer HWGO, HWOAG 2019, 2021 [98], [99] 

Flower pollination Algorithm HWOAFPA 2021 [100] 

seagull algorithm WSOA 2021 [101] 

Artificial Bee Colony ACWOA 2022 [102] 

Moth flame optimization WMFO 2022 [103] 

 

 

4. CONCLUSION 

This study presents a review of more than eighty modifications of Whale Optimization Algorithm 

from 2016 till 2021, few modifications from the year 2022 are also included. An existing algorithm can be 

modified in several ways, this is the first attempt to give a classification on how to improve an existing 

optimization algorithm and according to these categories, variants of WOA have been discussed. We 

categorized the variants with respect to the equation modifications, parameter tuning, nature of values, number 

of objectives and hybridizations. To the best of our knowledge this is the first attempt to combine all the 

available modifications of Whale Optimization Algorithm in one place. Therefore, this study provides a strong 

ground for researchers and practitioners addressing complex optimization problems in various domain; 

specifically, to large community of academicians and practitioners willing to improve nature-inspired 

optimization algorithms. WOA was initially designed to address the complex engineering problems, however 

it was quickly adopted by the researchers in other fields due to its simple nature. More recently it is applied in 

the most popular field of AI, that is, deep learning. We believe that this algorithm will play an important role 

in the development of applications, where optimization is required such as intelligent transportation system, 

blockchain based systems and smart security. We intend to further extend this research by including the 

performance analysis of selected variants to provide a better comparison and analytical results.  
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