
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 30, No. 1, April 2023, pp. 350~355

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v30.i1.pp350-355  350

Journal homepage: http://ijeecs.iaescore.com

Requirement engineering problems impacting the quality of

software in Sub-Saharan Africa

Andrew Quansah, Asiamah Emmanuel, Bright Kyeremanteng, Esther Ntow Kesse
Department of Electrical and Computer Engineering, School of Engineering, University of Energy and Natural Resources,

Sunyani, Ghana

Article Info ABSTRACT

Article history:

Received Jul 12, 2022

Revised Nov 8, 2022

Accepted Nov 23, 2022

 Poor software quality has led to tremendous financial losses, necessitating the

goal of this study. This study aimed to find out the major cause of poor quality

of software and propose solutions to mitigate the problem. Histogram analysis

was conducted using data from software development firms’ online

applications used to track all defects and issues for each project, which are

logged under a unique project ID. The requirement engineering stage was

found to produce the most problems that directly or indirectly impact software

quality. The capability maturity model integration, prototyping, ISO 9001,

Walkthroughs, and Formal Inspections were proposed as solutions that could

be used to mitigate the software quality problems that arise from the

requirement engineering stage in the software development life cycle.

Keywords:

Formal inspections

Requirement engineering

Software development life cycle

Software engineering

Software quality This is an open access article under the CC BY-SA license.

Corresponding Author:

Asiamah Emmanuel

Department of Electrical and Computer Engineering, School of Engineering

University of Energy and Natural Resources

BS-0061-2164, Sunyani, Ghana, West Africa

Email: info@uenr.edu.gh

1. INTRODUCTION

The world is governed by the use of software. Software affects nearly every aspect of our lives. From

our normal day-to-day tasks to really complex tasks, almost everyone uses the software. Software is now

omnipresent in almost every society [1], [2]. A lot goes into the engineering and development of software

products that are now in use almost everywhere. A simple check against the ISO/IEC 5055:2021 which is an

international organization for standards (ISO) standard for assessing software product quality based on four

business-critical elements: Security, reliability, performance efficiency, and maintainability reveals this fact

[3]. Poor software quality in the United States alone in 2020 was determined to have costed around $2.08

Trillion. This was primarily because of cybersecurity failures, operational failures, unsuccessful IT Projects,

and Legacy Systems. The largest contributor to this cost was determined to be failures in operational failures,

followed by unsuccessful development projects [4].

Due to the astronomical cost that can be incurred by the development of poor-quality software, this

study aims to identify which stage in the software development life cycle contributes most to poor software

quality and also propose solutions to mitigate it. Recent literature on software quality has focused on other

metrics other than investigating the major stage in the software development life cycle (SDLC) that contributes

to most of the problems that result in poor quality. Dlamini et al. [5] in order to monitor software quality

throughout the later stages of the development process, they analyzed the current software quality models.

They proposed a system architecture to evaluate the quality with embedded external systems, which rather adds

to the complexity of an already complex process. A quality prediction model was created by Mohapatra et al.

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Requirement engineering problems impacting the quality of software in Sub-Saharan … (Andrew Quansah)

351

[6] to determine whether or not software is prone to errors. They sought to identify the problematic components

so that they might be fixed during further testing. Although this method might predict some faults, it may miss

other faults due to the level of accuracy, which may have great consequences. This also throws a very complex

solution to the problem and may handicap software development firms that do not have the technical expertise

to create predictive models. O’Regan discussed the importance of process quality in the software engineering

process. He stated adhering to best practices was crucial for the production of high-quality software products.

This highlights the importance of paying attention to each stage of the process, especially the stages likely too

problematic [7]. In their study, Martinez-Fernandez et al. [8] sought to determine if the inclusion of quality

models in software analytics tools produced information regarding product or development process quality that

was clear, accurate, valuable, and pertinent. For software firms without these analytical tools due to economic

constraints, there is a need to find other straightforward solutions to curb the challenge of poor software quality.

From the standpoint of software quality assurance, Chen et al. [9] investigated the mechanism that leads to

software failure, assessed the degree to which the failure mechanism has an impact on software quality,

suggested a management strategy to raise software quality, and created a quality management model. They

didn’t highlight which stage contributes most to software failure.

2. METHOD

2.1. The profile of the organization

The organization that was studied for this research is a Ghanaian-based firm that deals in the

design and development of software for use in various sectors of the Ghanaian economy. The classic

waterfall model is utilized in the software development life cycle. Among other programming languages,

MySQL and Java are the languages that are mostly used. Requirements are gathered by the software

developers themselves at the outset of any software project. The team leader gives a briefing to the

developers, who then hold meetings with them to collect requirements. They're also in charge of preparing

the software project's software requirements specifications (SRS) document. Frequently, the software

product built is mostly subs standard, and this is realized towards the conclusion of the development life

cycle, posing numerous challenges before going live.

2.2. Principal cause of software quality problems

To fix the underlying source of software quality problems it had to be first identified. The Histogram

is among the seven quality control techniques that may be employed to swiftly pinpoint the underlying source

of the poor-quality software products produced by the company. As a result, the Histogram was utilized to

identify the primary reason for the low software quality in the organization in question. The procedure followed

in the histogram analysis is as follows: Table 1 shows a series of challenges that have been experienced in

projects based on information from company members. The organization employs the use of an online

application to track all defects and problems for each project, which are logged under a unique project ID. All

modification inquiries, rework inquiries, error repair inquiries, and support demands from customers are

included in the problems. A sample of two human resource management projects was selected, and the series

of problems documented for the projects were examined. Following the analysis, related issues were put

together under a single problem. As shown in Table 2, each problem has been awarded a score depending on

the frequency with which it occurred. The goal of this study is to improve the software's quality, which will

lead to increased customer satisfaction. As a result, the technique for grading each problem is dependent on

the number of times the issue or complaint has been logged on the web tool. Reduced complaints and issues

will aid in improving software quality. The results of each cause were then tabulated and the histogram is then

presented in Figure 1.

Figure 1. Histogram demonstrating the principal cause of software quality problem (Step 4)

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 1, April 2023: 350-355

352

Table 1. Breakdown of the bugs entered (the first step)
S/N Issues Frequency

1 Customers received the requested service very late due to a lack of developers. 6
2 Bug fixing was delegated to inexperienced personnel making the process consume time. 4

3 A few requirements were not found in the SRS document 7

4 Requirements that are lacking in detailed information. 4
5 Developers’ inability to comprehend some requirements 6

6 Client-developer misunderstandings. 3

7 Changes in requirements after coding had already begun. 8
8 Reusing modules without doing a thorough analysis. 1

9 Reuse of the same components (module) several times 3

10 Incomplete testing because of schedule pressure. 4
11 Incomplete correction of bugs. 10

12 Absence of personnel responsible for testing. 3

13 Timelines Estimates were off because developers weren't consulted. 2
14 Clients were unsatisfied with requirements in the late stages of SDLC 2

15 Developers were unfamiliar with the customer's specific business. 3

Table 2. Score per cause
Category Requirements gathering problems Poor schedules Inadequate testing Inadequate staffing

Total 34 6 16 10

3. RESULTS AND DISCUSSION

For an ultra-quality data presentation, the data obtained from the bugs entered was subjected to

regression analysis using the data analysis tool in Microsoft excel. The analysis was based on the responses

given by the senior developers and junior developers as shown in Table 3. In the Software development firm.

The results from the regression analysis shown in Table 4. shows an r-value of 0.5698 and 0.6564 for both

senior developers and junior developers respectively. This, therefore, confirms that the principal cause of

software quality problems is not discriminant towards just a particular group of employees. Both the senior

developers and junior developers in the software firm share similar grievances.

As seen by the histogram chart in Figure 1, the primary reason for low-quality software is

requirements difficulties. The figure shows that 51.5% of difficulties are caused by requirements. Software

quality may be considerably enhanced by paying close attention to the requirement engineering process.

Furthermore, as previously said, requirements are acquired by engineers who are unfamiliar with the different

types of requirements-gathering techniques. There is also no standard structure for gathering requirements.

Requirements represent the foundation of every project and, as such, must be given the highest care, as fixing

faults at those latter phases in the life cycle entails a higher cost to the organization. If the list of requirements

is almost flawless from the start of the software development life cycle, it will surely increase quality while

saving money, resources, and time. This increases the likelihood of the software project's success.

Table 3. Entry of bugs by developers
 Senior developers Junior developers Total

Issue 1 4 2 6
Issue 2 3 1 4

Issue 3 4 3 7

Issue 4 2 2 4

Issue 5 1 5 6

Issue 6 1 2 3

Issue 7 4 4 8

Issue 8 0 1 1
Issue 9 1 2 3

Issue 10 3 1 4

Issue 11 3 7 10

Issue 12 1 2 3

Issue 13 0 2 2

Issue 14 1 1 2

Issue 15 0 3 3

Table 4. Regression analysis presentation
 Multiple R R Square Adjusted

square

Standard error Observa-

tions

Intercept Coefficients

P-value

Senior

developpers

0.754871749 0.569831357 0.536741462 1.702549518 15 1.254201681 0.00114168

Junior

developers

0.810211388 0.656442493 0.630014993 1.521528523 15 1.352348993 0.00024996

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Requirement engineering problems impacting the quality of software in Sub-Saharan … (Andrew Quansah)

353

3.1. SOME SOLUTIONS PUT FORWARD

This segment discusses remedies and approaches that the firm and others may utilize to address the

quality issue created by the present shortfalls in the requirement engineering process. These approaches each

have their various advantages and disadvantages. It is important to compare them to see which one has least

disadvantages and also the best advantages.

3.1.2. Capability maturity model integration

According to the software engineering institute (SEI), capability maturity model integration (CMMI)

assists in the incorporation of multiple organizational roles, and also in creating process improvement goals,

directing quality procedures, and giving a reference point for assessing current processes. CMMI recognizes

25 process areas during the development process. Every process area has its own set of "specific goals" and

"specific practices" that aid in achieving those goals [10].

3.1.3. ISO 9001 standard

ISO 9001 is a set of rules that cover essential steps in the software development process. It ensures

the effectiveness of processes, checks for errors in outputs, conducts regular reviews of specific processes, and

promotes continuous development. The ISO 9001 standard involves managing the processes of a company, so

that it may fulfill client expectations, offer consistent service, and continuously improve quality. The ISO 9001

standard uses document control as a control and verification tool [11].

3.1.4. Formal inspection

A Formal inspection is a technique that can aid in considerable software quality improvements. An

inspection is a thorough technical examination that identifies problems as close to their source as possible. This

procedure has the potential to significantly improve software quality [12]. Inspections conducted on Motorola's

Iridium project, for example, found 80% of the faults present, whereas less formal examinations found just

60% [13]. Formal inspections help to ensure that defects are removed as quickly as possible. Formal inspection

is typically followed by firms deemed to be "best in class" globally, according to research [14].

3.1.5. Walkthroughs

A walkthrough is a meeting that is unstructured in which requirements documents are examined and

only after that they are passed on to the development team.

3.1.6. Prototyping

Building a prototype which is an early kind of the intended software that can be used for testing and

gathering responses from the software system's customers and stakeholders is what is termed as prototyping.

Prototyping is a method that allows for revisions till the program is complete and the client's expectations are

met. We use prototyping for eliciting requirements since stakeholders may play with the software straight away

and outline its strengths and faults [15].

3.2. RECOMMENDED SOLUTION: REQUIREMENT INSPECTION

When using the CMMI model, a company should consider each level as a target [16]. Furthermore,

when it comes to the requirement engineering phase of software development, CMMI does not specify a

specific path to the next level [17]. Rather than enhancing software quality, it tends to focus on management

difficulties. In terms of its cost, it is quite expensive to contact CMMI experts to get CMMI level certified, this

also being another significant disadvantage [18].

Obtaining ISO 9001 certification is an expensive procedure, particularly for small businesses [19].

Furthermore, the certification is strongly reliant on documentation and procedures, necessitating further hiring

and training. Furthermore, research has revealed that the ISO standard registration process takes a long time

[20]. In contrast to inspections, walkthroughs are different from inspections in that the author takes lead and

chairs meetings in cases where no other specialized review responsibilities are usually specified. Walkthroughs

are casual since they often do not follow a well-defined method, and also do not establish entry and exit criteria,

involve no organizational reporting, and provide no system of measurement. Therefore, walkthroughs cannot

be the operative approach for the firm studied in the paper [21].

Prototypes must be developed quickly so that they can be used early in the elicitation process. Due to

a shortage of human resources, especially in the team of developers, they will be unable to produce prototypes

quickly for the company discussed in this paper. The cost of developing a prototype for every project embarked

on may proscribe the company under consideration [22].

The one inspection that should never be skipped is the requirement inspection [23]. Inspection avoids

by saving a middling of nine labor hours in downstream rework for each significant problem discovered [24].

Requirements are gathered and recorded as precise software requirements during the requirements-gathering

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 1, April 2023: 350-355

354

process. In this proposed solution, the SRS is the document to be examined. R1 inspection is what it's called.

A requirements inspection verifies that specifications are written well, that is, every requirement in the SRS is

consistent, precise, clear-cut, appreciable, and testable [25]. The knowledge gained from the inspection allows

the remainder of the work to be completed more efficiently.

Furthermore, the company will not need to allocate additional resources to the inspection; in its place,

an excellent plan will be established that can be followed to do the inspection. As a result, the inspection may

be an effective tool for improving quality. As a result, the advised remedy is to establish a requirement

inspection at the firm under consideration.

4. CONCLUSION

Several challenges arise in any software development project that has a direct or indirect impact on

software quality. Software quality should not be bargained for because it shows how the software's needs

and characteristics have been met, as well as whether or not customer satisfaction has been attained.

Software is governed mostly by requirements. Users, developers, customers, and any other stakeholders

participate in gathering requirements as part of a collaborative decision-making process. The proposed

recommendation "requirements inspection" has been demonstrated for the software firm in Ghana, where a

lot of flaws in the requirement engineering phase, including requirements gathering and management, the

proposed recommendation "requirements inspection" can help. Many firms have used inspection as a

technique to find faults and improve software quality all over the world, thus it could be a successful option.

The organization will now have the ability to come up with concise full, and testable needs by conducting a

formal inspection of requirements. This will not only save the organization money on maintenance and

rework, but it will also enhance quality a lot and develop a quality-based way of life. Additionally, the

benefits of proper requirement engineering will be seen throughout the SDLC.

REFERENCES
[1] C. R. Dexeus, “The deepening effects of the digital revolution,” in The Future of Tourism, Cham: Springer International Publishing,

2019, pp. 43–69.

[2] F. J. Furrer, “Software everywhere,” in Future-Proof Software-Systems, Wiesbaden: Springer Fachmedien Wiesbaden, 2019, pp.
3–10.

[3] ISO/IEC 5055 “Information technology-software measurement-software quality measurement-automated source code quality

measures.” ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission), 2021,
[Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso-iec:5055:ed-1:v1:en

[4] H. Krasner, “The cost of poor softwarequality in the USA,” 2020. [Online]. Available: https://www.disputesoft.com/wp-

content/uploads/2021/01/CPSQ-2020-Software-Report.pdf.
[5] G. Dlamini et al., “Metrics for software process quality assessment in the late phases of SDLC,” in Intelligent Computing. SAI 2022.

Lecture Notes in Networks and Systems, Cham: Springer, 2022, pp. 639–655.

[6] A. Mohapatra, S. Pattnaik, B. K. Pattanayak, S. Patnaik, and S. R. Laha, “Software quality prediction using machine learning,” in
Advances in Data Science and Management . Lecture Notes on Data Engineering and Communications Technologies, Singapore:

Springer, 2022, pp. 137–146.

[7] G. O’Regan, “Software quality assurance,” in Concise Guide to Software Engineering. Undergraduate Topics in Computer Science,
Cham: Springer, 2022, pp. 239–246.

[8] S. Martinez-Fernandez et al., “Continuously assessing and improving software quality with software analytics tools: a case study,”
IEEE Access, vol. 7, pp. 68219–68239, 2019, doi: 10.1109/ACCESS.2019.2917403.

[9] Y. Chen, J. Chen, Y. Gao, D. Chen, and Y. Tang, “Research on software failure analysis and quality management model,” in 2018

IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), Jul. 2018, pp. 94–99, doi:
10.1109/QRS-C.2018.00030.

[10] M. Hoggerl and B. Sehorz, “An introudction to CMMI and its assessment procedure,” 2006, [Online]. Available:

https://www.softwareresearch.net/fileadmin/src/docs/teaching/WS05/SaI/Paper_Hoeggerl_Sehorz.pdf.
[11] J. J. Tarí, J. F. Molina-Azorín, and I. Heras, “Benefits of the ISO 9001 and ISO 14001 standards: A literature review,” Journal of

Industrial Engineering and Management, vol. 5, no. 2, Dec. 2012, doi: 10.3926/jiem.488.

[12] A. Ahad, “Software inspections and their role in software quality assurance,” American Journal of Software Engineering and
Applications, vol. 6, no. 4, p. 105, 2017, doi: 10.11648/j.ajsea.20170604.11.

[13] N. Brown, “High-leverage best practices: what hot companies are doing to stay ahead,” Cutter IT Journal, vol. 12, no. 9, pp. 4–9,

1999.
[14] N. Brown, “Industrial-strength management strategies,” IEEE Software, vol. 13, no. 4, pp. 94–103, Jul. 1996, doi:

10.1109/52.526836.

[15] R. M. Kimmond, “Survey into the acceptance of prototyping in software development,” in Proceedings Sixth IEEE International
Workshop on Rapid System Prototyping. Shortening the Path from Specification to Prototype, pp. 147–152, doi:

10.1109/IWRSP.1995.518584.

[16] Y. Sun and X. (Frank) Liu, “Business-oriented software process improvement based on CMMI using QFD,” Information and
Software Technology, vol. 52, no. 1, pp. 79–91, Jan. 2010, doi: 10.1016/j.infsof.2009.08.003.

[17] I. Keshta, M. Niazi, and M. Alshayeb, “Towards implementation of requirements management specific practices (SP1. 3 and SP1.

4) for Saudi Arabian small and medium sized software development organizations,” IEEE Access, vol. 5, pp. 24162–24183, 2017,
doi: 10.1109/ACCESS.2017.2764490.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Requirement engineering problems impacting the quality of software in Sub-Saharan … (Andrew Quansah)

355

[18] J. Iqbal, R. B. Ahmad, M. H. N. M. Nasir, M. Niazi, S. Shamshirband, and M. A. Noor, “Software SMEs’ unofficial readiness for
CMMI®-based software process improvement,” Software Quality Journal, vol. 24, no. 4, pp. 997–1023, Dec. 2016, doi:

10.1007/s11219-015-9277-3.

[19] T. Lazibat, M. Damić, and I. Markotić, “Determinants, barriers and outcomes OF ISO 9001 implementation in SMEs,” Poslovna
izvrsnost - Business excellence, vol. 16, no. 1, pp. 93–104, Jun. 2022, doi: 10.22598/pi-be/2022.16.1.93.

[20] A. E. Wilcock and K. A. Boys, “Improving quality management: ISO 9001 benefits for agrifood firms,” Journal of Agribusiness in

Developing and Emerging Economies, vol. 7, no. 1, pp. 2–20, May 2017, doi: 10.1108/JADEE-12-2014-0046.
[21] M. Ciolkowski, O. Laitenberger, D. Rombach, F. Shull, and D. Perry, “Software inspections, reviews & walkthroughs,” in

Proceedings of the 24th international conference on Software engineering - ICSE ’02, 2002, p. 641, doi: 10.1145/581339.581422.

[22] B. Camburn et al., “Design prototyping methods: state of the art in strategies, techniques, and guidelines,” Design Science, vol. 3,
p. e13, Aug. 2017, doi: 10.1017/dsj.2017.10.

[23] T. G. Kirner and J. C. Abib, “Inspection of software requirements specification documents,” in Proceedings of the 15th annual

international conference on Computer documentation - SIGDOC ’97, 1997, pp. 161–171, doi: 10.1145/263367.263389.
[24] T. Gilb and D. Graham, Software inspection. Addison-Wesley, Reading, 1993.

[25] J. A. McCall, P. K. Richards, and G. F. Walters, “Factors in software quality: concepts and definitions of software quality,” 1977.

[Online]. Available: https://apps.dtic.mil/sti/pdfs/ADA049014.pdf.

BIOGRAPHIES OF AUTHORS

Andrew Quansah is a lecturer at the University of Energy and Natural

Resources. He holds an MSc. Microelectronics and Wireless Intelligent System from

Coventry University in the UK. He received his BSc. In Electrical and Electronics

Engineering from the Kwame Nkrumah University of Science and Technology. His

research interest includes wireless communication systems, artificial intelligence, software

engineering, computer architecture, and microprocessors. He can be contacted at email:

Andrew.quansah@uenr.edu.gh.

Asiamah Emmanuel received a B.Sc. degree in computer engineering from

the University of Energy and Natural Resources, Ghana, and currently works as a teaching

assistant in the Department of Electrical and Computer Engineering. His research interests

include software engineering, artificial intelligence, and biomedical engineering. He can be

contacted at email: easiamah81@gmail.com.

Bright Kwasi Kyeremateng received a B.Sc. degree in Electrical Engineering

from the University of Energy and Natural Resources, Ghana, and currently works as a

teaching assistant in the Department of Electrical and Computer Engineering. His research

interests include software engineering, artificial intelligence, biomedical engineering. He

can be contacted at email: brightkyerematengkwasi@gmail.com.

Esther Ntow Kesse received her BS.c in Electrical and Electronic Engineering

from the University of Energy and Natural Resources (2021). Her current research interests

include software management, microgrids, renewable energy, modeling and control of

power converters, and distributed generation. She can be contacted at email:

estherntowkesse@gmail.com.

https://orcid.org/0000-0002-3693-0379
https://scholar.google.com/citations?hl=en&user=ROCUWRgAAAAJ
https://orcid.org/0000-0002-3179-4734
https://scholar.google.com/citations?hl=en&user=-WWISfwAAAAJ
https://orcid.org/0000-0001-7799-817X
https://orcid.org/0000-0003-0236-9453
https://scholar.google.com/citations?hl=en&user=3uQnAWoAAAAJ

