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 Diabetic retinopathy (DR) the prime cause of blindness, develops when 

glucose levels rise, causing retinal damage. DR can be prevented if the illness 

is detected early. As a result, early grading, categorization, and diagnosis of 

DR can help diabetic patients avoid visual loss. Several system methods assist 

in the classification of DR using high-performance criteria. This work 

proposes an efficient system-based DR classification. The purpose of efficient 

machine learning dabetic retinopatyy grading classification (EML-DRGC) 

design is to recognize DR impulsively with highest accuracy. The proposed 

technique employs preprocessing methods such as employing the Gaussian 

filtering approach for removing noise present in retinal fundus images. The 

segmentation process is followed using K-means segmentation algorithm 

which is used for segmenting the region of interest (ROI) from background. 

Moreover, Feature extraction process is done by using gray level co-

occurrence matrix (GLCM) in which features are extracted bycapturing the 

image's visual content and features from acceerated segment test (FAST) 

design is used as extractor of features. Finally, multi support vector machine 

is utilized as classifier for detecting severity levels of DR. Performance 

metrics such as accuracy of 98.38% and specificity of 98.34% are obtained 

which are superior to existing designs. 
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1. INTRODUCTION  

Diabetic retinopathy (DR) affects both diabetic patients with type 1 and type 2 diabetes. The 

retinopathy is a pathology of retina. DR caused by persistent diabetes is a group of abnormalities in retina. In 

many countries, DR is principal source of sightlessness. 80% of patients are unaware of the eye disease when 

they are first visiting the doctor due to which condition becomes dangerous. So, most cases are due to delays 

in treatment. On a severity basis, it is divided into 5 levels such as mild, moderate, severe, proliferative DR, 

and non-proliferative diabetic retinopathy (NPDR). The early stage of DR, NPDR in which retinal vessels 

weaken producing micro aneurysms which are a kind of microscopic lump to bulge out of the vessels side. 

Symptoms may be very mild in this stage. Blood arteries get clogged and can only transfer a little amount of 

blood. Because some areas of the body become deprived of oxygen and transmit data to the retina to form new 

blood vessels, it is critical for diabetes patients to have frequent checks in order to receive early diagnosis and 

https://creativecommons.org/licenses/by-sa/4.0/
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treatment. As DR progresses, new blood vessels begin to develop through into retina and into the vitreous, a 

gel-like fluid that fills the cavity of the eye. proliferative diabetic retinopathy (PDR) is a much more advanced 

form of DR. These blood vessels are thin, and they may leak blood into the macula, causing vision issues. As 

the retina is damaged, scar forms, and pressure builds up, inflicting damage to the optic nerve. Early treatment 

and diagnosis are very much useful for preventing DR in patients [1]-[4]. The physical approach of DR 

screening used by eye doctors is insufficient to screen the rapidly growing population of diabetic individuals 

at risk of vision loss. This manual approach takes a longer time for screening diabetic patients. As a result, 

automated process of classification of diabetic retinopathy severity prediction enhances the diagnosis of DR 

effectively [5]-[10]. The retinal Fundus images are the most important images for studying DR, which is now 

under examination. These are mostly used for the analysis of DR disease [11], [12]. Various datasets are 

Messidor, Drive, Diaretdb1, Kaggle have been used for these observations. Moreover, when compared to 

alternate methods the proposed technique based on maximum accuracy, specificity obtains improved 

classification compared to existing methods [13]-[15]. A comparison study of texture features based on the 

distribution of features were discussed in [16], [17]. Investigations of texture features associated with gray-

level co-occurrence matrix (GLCM) statistical parameters are dealt detailly in [18]. Some other methods of 

classification using different classifiers are dealt in [19]-[22] classification process by Inception V3 is done for 

identifying DR in [23]. Anomaly detection by 2 variants of hybrid ML Techniques is clearly explained in [24]. 

Alex support vector machine (SVM) fused HC design built for classifying type of disease was explained in 

detail in [25]. Classification algorithm based on spatial U-Net is proposed for quantification of AVR in retinal 

images in [26]. 

 

 

2. RESEARCH METHOD 

The complete flow of efficient machine learning dabetic retinopatyy grading classification (EML-

DRGC) design is shown in Figure 1. According to diagram, EML-DRC design includes a Gaussian filter based 

preprocessing approach, K-means clustering-form of segmentation of image, and features from acceerated 

segment test (FAST) design-based image GLCM Multi SVM-based classification and feature extraction. The 

following sections details the operation of each module subsections. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Block diagram of proposed methodology 
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2.1.  Dataset used 

The data for the proposed model is a dataset of images taken from Messidor funded by French Ministry 

of Research and defense. Messidor database consists of 1200 images which are classified into 4 categories. 

The proposed model uses 20% for testing and 80% for training Figure 2 shows the sample of retinal fundus 

images used. 

 

 

   

   
 

Figure 2. Retinal fundus images 

 

 

2.2.  Gaussian filter preprocessing approach 

Images are blurred and noise is removed using Gaussian filtering. In Gaussian filter preprocess 

approach every pixel is processed, processing distinct colour channels by averaging the pixel value of each 

pixel according to its convolutional location kernel. The original image will be blurred. 2D Gaussian filter is 

used for smoothing which is approached by functions of convoltuion.  

The Gaussian function in one dimension is: 

 

Gx) = 
1

√2𝜋𝜎2 𝑒− (
𝑥2

2𝜎2) (1) 

 

the Gaussian function in two dimensions is: 

 

G(x, y) =
1

2𝜋𝜎2 𝑒− (
𝑥2 +𝑦2

2𝜎2 ) (2) 

 

where in 𝑠𝑖𝑔𝑚𝑎 represents the 2-D distribution's standard deviation as a point spread function which is 

achieved by convolution. (x, y) demonstrates the dimensions of the window. With increasing distance from the 

kernel's centre, the kernel coefficients decrease. The weighting of central pixels is higher than that of peripheral 

pixels. A broader peak is produced by larger values of greater blurring. 

 

2.3.  K-means clustering based image segmentation 

Classification of image into different groups is image segmentation the digital image is partitioned 

into different segments containing super pixels with same attributes. K-means clustering, an unsupervised 

architecture is the popular method in segmentation of image. Clustering is a process of identifying clusters in 

the dataset. The goal is to find particular groups based on data similarity, with K being the total number of 

groups. K-Means clustering aims to lower the sum of squared distances between all points in the cluster and 

the cluster's centre. 

 

𝐽 = ∑ . 1𝐾
𝐽=1 ∑ 1𝑛

𝑖=1 (𝑥 − 𝑐)  

 

where c is no. of cluster centres. 

K-means clustering algorithm: i) initialize K; ii) K points has to be selected randomly; iii) each data 

point should be assigned to the centroid that is closest to it, resulting in K clusters; iv) place the new cluster 

centroid after calculation; v) rename the nearest centroid for each data point; and vi) if any reassignment, 

proceed to step 4, otherwise the design is complete. 
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2.4.  GLCM, FAST design based feature extraction 

The gray-level co-occurrence matrix is a statistical texture assessment method that considers the 

spatial interaction of pixels (GLCM). The output of GLCM element is the sum of the number of times the pixel 

with value i appeared in the specified spatial relationship to a pixel with value j in the input retinal fundus 

picture (i, j). The number of grey levels in the image determines the size of the GLCM. The GLCM routines 

calculate how often pairs of pixels with specified values appear in a picture, generate a GLCM, and then extract 

statistical measures from it. Statistics about texture features of an image calculated are: 

- Contrast: the GLCM local fluctuations. 

- Correlation: the possibility of the given pixel combinations matching together. 

- Energy: provides information of the summation of squared parts in GLCM. 

- Homogenity: the distance between the GLCM diagonal and the distribution of characteristics in the 

GLCM. 

- FAST design-based feature extraction: FAST design finds the corners and returns the object of corner 

points. The feature points recognized in a 2-Dimensional input picture are stored in this object. The feature 

points are found using the features from the FAST algorithm using the detect FAST features function.  

 

2.5.  Multi-SVM based classification 

Multi-label SVM assigns labels to objects using support vector machines, with labels generated out 

of a finite collection of tuples. Breaking down every single multi-label issue into several 2-class tasks seems 

to be the most prevalent way. The following are some examples of common ways for reaching such a reduction: 

In the one-versus-all example, new examples are categorized using a winner-takes-all strategy, wherein the 

classification with the maximum final output assigns the class. 

 

 

3. RESULTS AND DISCUSSION 

The DIARETDB1 dataset [27] is also used for the suggested design's experimental validation. The 

collection contains pictures with variying degrees of severity of DR, such as different stages. Stage 1 represents 

mild DR, stage 2 represents moderate DR, and stage 3 represents severe DR. Table 1 and Figures 3-7 depicts 

computation of EML-DRC design on sample images by observations of outcomes after experimentation on 

dataset. According to the EML-DRC design, DR is divided into five phases. With a specificity of 99.90% and 

99.93% accuracy, EML-DRC design identified pictures as 'normal.' Similarly, the samples were classed as 

'Stage 1' by the EML-DRC design, which had a specificity of 99.3% and 99.35% of accuracy. The samples 

were also classed as 'Stage 2' by the EML-DRC design, which had a specificity of 98.21% and 98.22% of 

accuracy. The EML-DRC approach, on the other hand, categorized the samples as 'Stage 3' with a specificity 

of 95.98% and 96.03% of accuracy. Finally, the suggested EML-DRC approach has average of specificity of 

98.34% and 98.38% of accuracy. 

 

 

Table 1. EML-DRC design performance results 
Severity level  Specificity Accuracy 

Normal  99.90 99.93 

Stage1  99.30 99.35 

Stage2  98.21 98.22 

Stage3  95.98 96.03 

Average  98.34 98.38 

 

 

The complete study of the EML-DRC design takes place in different measures with existing methods 

in Table 2 [28], [29]. From results the proposed EML-DRC design has secured highest accuracy and specificity 

than existing methods. Retinal fundus images are processed to safeguard the retina blood vessels. Early 

diagnose using systematic approach will add support to diabetic patients. Detecting the DR at acute stages is a 

serious concern. This approach provides an automated superior screening system to diagnose the DR in 

advance. The experimental results of percentage of severity level are authenticated with ophthalmologist. The 

experimental results for image ‘1’ are corelated with ophthalmologist validation. The experimental results for 

Image ‘2’ and image ‘3’ are deviated 4% and images ‘5’ and ‘6’ are proximity with ophthalmologist findings. 

All the results show meticulously estimated with efficient system approach-based classification. Table 3 

depicts comparison of percentage of severity level using image processing and experts for sample images. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

An efficient machine learning approach for classification of diabetic retinopathy stages (Srilaxmi Dasari) 

85 

 
 

Figure 3. Specificity, accuracy study of EML-DRGC design 

 

 

  
  

Figure 4. Normal stage output of EML-DRC design Figure 5. Stage 1 output of EML-DRC design 

 

 

 
 

Figure 6. Stage 2 output of EML-DRC design 

 

 

 
 

Figure 7. Stage 3 output of EML-DRC design 
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Table 2. Performance of existing methods in comparision to the proposed EML-DRC design 
Method Specificity Accuracy 

EML-DRC 98.34 98.38 
RBM 95.5 89.47 

K-NN and SVM 91 86.67 

SVM and KNN  81.16 82 
XG Boost Model  81.1 88.9 

 

 

Table 3. Comparision of percentage of severity level using image processing and experts 
S. no Retinal fundus image Percentage of severity level of 

diseased using image processing 

Expertsvalidation percentage of 

severity level of diseased 

1 

 

0% 0 % Vision loss 

No DR 

    

2 

 

22% Up to 25 % vision loss 
Mild DR 

    

3 

 

46 % Up to 50 % vision loss  
Moderate DR 

    

4 

 

73% 50 TO 75 % loss in vision  
Severe DR  

    

5 

 

90 % 75 to 100 % loss in vision  
Proliferative DR  

    

6 

 

65% 
 

 

 
 

 

 
  

50 TO 75 % Vision loss  
 

 

 

4. CONCLUSION 

The proposed EML-DRGC design has devised an effective diabetic retinopathy (DR) Diagnosis.The 

main objective of EML-DRGC design is to diagnose instinctively Diabetic Retinopathy with high specificity 

and high accuracy. Earlier research has implemented classification of DR stages using structural features, 

texture features, image features.In the proposed method novel efficient machine learning diabetic retinopathy 

grading classification (EML-DRGC) using multi SVM has been employed and additional action with this 
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accuracy and sensitivity have been improved.In addition to the structural features in the earlier research 

statistical GLCM and FAST corner detector features are included to strengthen the algorithm.Obtained results 

using the proposed EML-DRC Design highlights the outcomes in terms of various measures when compared 

to existing methods.In future EML-DRC Design will be realized into application of smart phone using IoT 

environment. 
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