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 Path planning algorithms are the most significant area in the robotics field. 

Path planning (PP) can be defined as the process of determining the most 

appropriate navigation path before a mobile robot moves. Path planning 

optimization refers to finding the optimal or near-optimal path. Multi-

objective optimization (MOO) is concerned with finding the best solution 

values that satisfy multiple objectives, such as shortness, smoothness, and 

safety. MOO present the challenge of making decisions while balancing these 

contradictory issues through compromise (tradeoff). As a result, there is no 

single solution appropriate for all purposes in MOO, but rather a range of 

solutions. Several objectives are considered as part of this study, including 

path security, length, and smoothness, when planning paths for autonomous 

mobile robots in a dynamic environment with a moving target. Particle swarm 

optimization (PSO) algorithms are combined with bat algorithms (BA) to 

make a balance between exploration and exploitation. PSO algorithms used to 

optimize two important parameters of the bat algorithm. The proposed 

solution is tested through several simulations based on varying scenarios. The 

results demonstrate that mobile robots can travel clearly and safely along short 

paths and smoothly, proving this method's efficiency. 
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1. INTRODUCTION  

Mobile robots are finding applications in many different industries these days, including those dealing 

with entertainment, medical, mining, rescue, education, the military, aerospace, and even agriculture, to 

mention just a few of them. In the field of robotics, path planning algorithms play the most significant role.  

A lot of research has been done on this problem in robotics. PP is defined as the process of determining the 

best feasible path that allows mobile robots to move from a starting point to a target point of the environment 

before they move, which is considered the main problem in robot navigation [1]. There are three types of 

environments in the field of autonomous path planning for mobile robots: static environments with fixed 

obstacles, dynamic environments with movable obstacles, and dynamic environments with movable obstacles 

and the target point at the same time. The dynamic environment is an unknown environment with multiple 

portable obstacles moving at the same time with the robot all over the space at random speeds, directions, and 

speeds. As well as static obstacles (e.g. walls, doors, and furniture), it might also include some moving 

obstacles [2]. Based on the robot's knowledge of its environment, path planning can be divided into two 

categories: global (or offline) and local (or online). Mobile robots are capable of planning their global path 

based on their full knowledge of their surroundings. A robot follows a complete path which is generated by an 
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algorithm before it begins to move. In order to determine the path of a mobile robot locally, the robot relies on 

a local sensor to collect information about the environment and construct a new path based on that information 

[3]. The cell decomposition and roadmap have been used to solve problems related to path planning. There are 

two main disadvantages to this method: its inefficiency caused by high processing fees and its unreliability 

caused by local minima risk. A number of heuristic techniques can be used to overcome these limitations, 

including neuronal pathways, genetics, and algorithms that are inspired by nature [4]. There have been several 

methods used to solve the path planning problem, including safety and single-objective optimization, such as 

particle swarm optimization (PSO) [5], cuckoo search (CS) [6], artificial immune systems (AIS) [7], whale 

optimization algorithm (WOA), bat algorithm (BA) [8], and bacterial foraging optimization (BFO) [9]. In 

addition, neural networks and fuzzy logic have been implemented. In either static or dynamic settings, these 

methods aim to optimize for many criteria at once, such as the shortest and smoothest path. We present an 

algorithm for solving the mobile robot path planning problem in this article. Our research aims to develop a 

short, safe, and smooth path collision avoidance algorithm for mobile robot path planning in dynamic 

environments. The remainder of this paper is organized as follows: In section 2, related work is discussed. PP 

is discussed in section 3; it includes all aspects associated with it, including path encoding and PP objectives. 

Sections 4 and 5 describe two optimization algorithms, PSO and BA. In section 6, the proposed method is 

discussed along with the experimental environment, PSO-BA parameter settings, and scenarios. The results 

and conclusions are explained in sections 7 and 8. 

 

 

2. RELATED WORK  

A number of studies have been conducted in the past few years to address the PP problem. This study 

reviewed previous research that aimed at solving multiobjective optimization problems. Multi-objective grey 

wolf optimizer (MOGWO) [10] is introduced as an optimization algorithm for solving problems with multiple 

objectives. A fixed-size external archive is integrated into the GWO to store and retrieve the pareto optimal 

solutions, and then the social hierarchy is defined, and the hunting behaviour of gray wolves is simulated. As 

well, [11] presents a new method based on region of sight that is intended to simplify and speed up the process 

of path planning. As a result of this method, robot movement is minimized while meeting a variety of 

requirements, including safety, smoothness, and the shortest path length possible. Based on the natural 

behaviour of frogs, the shuffled frog-leaping algorithm (MOSFLA) was developed in [12]. Several factors are 

taken into account when selecting a path, including its safety, length, and smoothness. The results of the non-

dominated sorting genetic algorithm II are compared with the results of the genetic algorithm. There was also 

a proposal in [13], for a multi-objective firefly algorithm (MO-FA). As a result of the method, three distinct 

goals are intended to be achieved: path safety, length, and smoothness. A test path based on eight realistic 

scenarios is also calculated for the MO-FA. Using a genetic algorithm to find the length of a path, the 

smoothness of the path, and the security of the path, an alternative algorithm can be employed [14].  

A novel multi-objective optimization method based on the WOA is also presented for planning mobile 

robot paths [15]. During robot path planning, a robot's path should be minimized in terms of distance and 

smoothness. WOA determines the fitness of a solution based on the position of the target and obstacles in an 

environment. Authors achieved three objectives regarding [16] collision risk degree path length and 

smoothness. To improve the search capabilities of a PSO, this mechanism selects the most appropriate search 

strategies dynamically at various stages of the optimization process. Using multi-objective memetic algorithms 

(MOMA) [17], described a path planning algorithm for wheeled robots that optimizes several objectives at 

once, including path length, smoothness, and safety. Using conventional multi-objective genetic algorithms in 

combination with non-dominant elitist sorting and decomposition strategies, two MOMA are used to optimize 

path length while simultaneously reducing smoothness. MOMA implements new path encoding schemes, path 

refinements, and specific evolutionary operators to improve the search capability of the algorithms. On the 

basis of a Mars Rover scenario, the author minimized path difficulty, danger, elevation, and length from a 

starting point to a destination in [18]. Using multi-objective fuzzy optimization strategies and Voronoi 

diagrams to coordinate weight conflicts of sub-objective functions [19], developed a new approach to improve 

the cost performance index. The Pareto front was calculated using the intelligent water drops (IWD) algorithm, 

a multi-objective elitist approach based on coefficients of variation that have been proposed in [20]. The 

method is called CV-based MO-IWD, and it is aimed at optimizing both the length of the path as well as the 

safety of the path. 

Hybridization is also used to make meta-heuristic algorithms for planning paths work better. 

Hybridization is the process of putting together two or more meta-heuristic algorithms to make a more powerful 

algorithm. A new hybrid approach based on enhanced genetic algorithms by modified search A* algorithm and 

fuzzy logic was proposed in [21]. Path optimization was carried out using PSO-modified frequency bat (PSO-

MFB) algorithms [22]. The hybrid grey wolf optimizer-PSO algorithm was used in [23], to optimize a path. 

Geetha et al. [24] proposed a path planning algorithm based on ant colony optimization and genetic algorithms. 
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Planned paths have to meet several objectives, including length, smoothness, and safety. A hybrid multi-

objective based on the bare-bones PSO with differential evolution was illustrated in [25]. In spite of this, most 

of these studies focus primarily on solving single or multiple objectives without accounting for changes in the 

location of the target. It is common for the location of the target to change over time. An example would be 

the flow target of unmanned aerial vehicles. 

Based on the previous literature review, our present study contributes the following; i) PSO-BA is a 

hybrid path planning algorithm that combines PSO and bat algorithms in order to solve multi-objective 

optimization path planning problems with moving targets in dynamic environments; ii) We are aware of no 

other work that has addressed the PP problem algorithm in multi-objective robot path planning with moving 

targets in dynamic environments; iii) In order to produce accurate and efficient paths, the proposed PSO-BA 

takes into account a number of distinct objectives. These objectives include path safety, path length, and 

smoothness of the path. 

 

 

3. PATH PLANNING 

Path planning problem involves determining a path allowing a robot to move in a given environment 

from one point to another. In the following subsections, for the purpose of solving the PP problem, here, we'll 

talk about path encoding and how to manage objectives. In this study, the robot and the environment are 

considered as two-dimensional entities. 

 

3.1.  Path encoding 

The paths in this work are handled as sorted lists of grid coordinates. Grid coordinates are pairs of (x, y). 

In a list, the first element corresponds to the path's starting point, and the last element corresponds to the path's 

target point. The list can contain as many intermediary coordinates as necessary, which is variable. In this 

representation of the paths, the segments constitute the paths; therefore, two consecutive coordinates in the list 

correspond to a segment. An encoding of a path is shown in Figure 1. 

 

 

 
 

Figure 1. Path encoding 

 

 

3.2.  Path planning objectives  

By addressing three different objectives, this study aims to ensure efficiency and accuracy. The 

objectives of these projects include the following: i) Path safety, ii) Path length, and iii) Path smoothness. In 

order to minimize all three objectives, the PSO-BA calculates the last two objectives in such a way that they 

are minimized together. These objectives are explained in the following subsections. 

 

3.2.1. Path length  

When transferring a robot from one location to another, the shortest path is usually the best option. 

The path length objective is designed to achieve the shortest path possible as much as possible. From a 

mathematical perspective, it represents the sum of the lengths of the segments of a path. The length of the 

segment is calculated by applying Euclidean distance between points. The Euclidean distance between two 

points, 𝑝1 = (𝑥1, 𝑦1) and 𝑝2 = (𝑥2, 𝑦2), can be calculated in (1). 

 

𝐷(𝑝1, 𝑝2) = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2    (1) 

 

The shortest path length (SPL) for a certain workout is found by adding up all of the accumulated 

distances between the exercise's origination point (p (1)) and its destination (p(N)). 
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𝑆𝑃𝐿 = ∑ 𝑑(𝑝𝑖(𝑡)𝑁−1
𝑖=1 , 𝑝𝑖(𝑡 + 1)) (2) 

 

According to the path planning algorithm, the index i represents the shortest solution. 

 

3.2.2. Path smoothness  

In most cases, the angle difference between the current position and the current goal is measured to 

determine how smooth the path is. If possible, the angle difference should be reduced as much as possible. At 

this angle, two lines intersect, allowing the robot's location to be determined at the end of the process. 

Energy consumption is directly related to this objective. Using (3), we can calculate the smoothness of a path. 

A graphical explanation of path smoothness is shown in Figure 2. 

 

𝑓2(𝑥, 𝑦) = ∑ |𝜃(𝑝𝑖(𝑡),𝑝𝑖(𝑡+1))−𝜃(𝑝𝑖(𝑡),𝑝(𝑁))|𝑁−1
𝑡=1  (3) 

 

Where 

 

𝜃
(𝑝𝑖(𝑡),𝑝𝑖(𝑡+1)=tan−1

𝑦𝑝𝑖(t+1)−𝑦𝑝𝑖(𝑡)

𝑥𝑝𝑖(t+1)−𝑥𝑝𝑖(𝑡)

𝜃
(𝑝𝑖(𝑡),𝑝𝑁)=tan−1

𝑦𝑝(𝑁)−𝑦𝑝𝑖(𝑡)

𝑥𝑝(𝑁)−𝑥𝑝𝑖(𝑡)

 

 

 

 
 

Figure 2. Path smoothness example 

 

 

The fitness value is determined by combining the two objectives, weight being one of them, 

 

𝑓 = (𝑥, 𝑦) = 𝑤1𝑓1(𝑥, 𝑦) + 𝑤2𝑓2(𝑥, 𝑦) (4) 

 

Both values 𝑤1 and 𝑤2 represent relative importance weights for each objective. It is essential that their 

respective values meet the following requirements:  

 

𝑤1 + 𝑤2  =  1 (5) 

 

here is a definition of the overall fitness function. 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑓(𝑥,𝑦)+𝑒
 (6) 

 

Typically, the e factor precludes division by zero (e = 0.001, for example). Each iteration can pick an 

optimal solution by balancing the two performance objectives indicated in (1), (2), and (3). Among the four 

contending locations depicted in Figure 3, p2 is optimal for the t iterations, and p3 is optimal for the (t + 1) 

iterations. However, for the second iteration (t + 2), the lengths for p1 and p4 are shorter, but the angles are 

bigger thus, p2 finds a compromise between the two requirements. Continue this approach until a GP is 

identified. 
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Figure 3. Path planning using point selection 

 

 

4. PSO ALGORITHM  

Eberhard and Kennedy [26] created a PSO algorithm in 1995 as a technique of simulating the behavior 

of social animals. When flying, birds follow the individual who is closest to the food, not their leaders. Through 

excellent communication among population members, the flock of birds obtains the required solution. In 

addition, PSO algorithms employ particles as possible solution representations, with each particle having its 

own position and velocity. Position refers to a particle's location, whereas velocity refers to its motion in 

relation to its location. The PSO builds the solution in two steps [27] based on random data (position and 

velocity). The velocity of each particle is updated according to (7). 

 

𝑣𝑖(𝑡 +  1) =  𝑣𝑖(𝑡) + 𝑐1𝑟1 (𝑐𝑝𝑏𝑒𝑠𝑡𝑖  −  𝑥𝑖) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 −  𝑥𝑖) (7) 

 

A particle velocity is represented by 𝑣𝑖(t), a particle position is represented by 𝑥𝑖(𝑡), an individual's 

best position is represented by pbest, a group's best position is represented by gbest, c1 and c2 represent the 

constant and r represents the random number [0,1]. Particle positions are updated by (8). 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(t) + 𝑣𝑖(𝑡 + 1) (8) 

 

 

5. BAT ALGORITHM 

In the year 2010, Yang devised an algorithm that was based on biological principles and was given 

the name BA [28]. Microbats are able to detect their prey through the use of echolocation. Bats rely heavily on 

echolocation in order to navigate their environment. By turning sound pulses into acoustic signals, a bat is able 

to identify impediments while it is in flight. Their ability to identify impediments relies on the difference in 

timing between their two ears. A bat is able to estimate the speed, size, and form of prey and obstacles based 

on the volume of the response as well as the delay time between responses. Bats have the ability to modulate 

their sonar by emitting sound pulses of a high frequency. The bat is able to gather more specific information 

about its environment in a more expedient manner as a result of this [29]. 

 

5.1.  Artificial bat movement 

The bat's position is updated as follows: 

 

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) ∗ 𝛽𝑖 (9) 

 

𝑣𝑖(𝑡 +  1) =  𝑣𝑖(𝑡) + (𝑥𝑖(𝑡 ) − 𝑥∗)𝑓𝑖 (10) 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(t) + 𝑣𝑖(𝑡 + 1) (11) 

 

where 𝑥∗is the current best location (solution) in the world as determined by comparing all of the solutions 

across all of the individual bats in existence and 𝛽𝑖is a uniformly distributed random vector [0, 1]. Once all the 

bats have made their choices, the random walk concept is applied to generate a new strategy. 

 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 +  ϵA (t) (12) 
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The variable ϵ here is a random number between -1 and 1, and it symbolizes the level of randomness 

as well as the path it takes. The average level of loudness for all of the bats at step t in an iteration is denoted 

by the value A(t). After each iteration, it is important to do an update on the level of loudness as well as the 

pulse rate. According to these equations, when a bat locates its prey, the loudness of its call often reduces, but 

its pulse rate increases. 

 

𝐴𝑖(𝑡 + 1) = 𝛼𝐴𝑖(𝑡) (13) 

 

𝑟𝑖(𝑡 + 1) = 𝑟𝑖(0)[1 − exp(−𝛾𝑡)] (14) 

 

Where 0 < 𝛼 < 1 and 𝛾 > 0. 

 

 

6. PROPOSED METHOD  

The proposed algorithm for mobile robot path planning is discussed in this subsection. A two-swarm 

optimization algorithm hybrid is used. The first is PSO and the second is BA. The following subsection provide 

details for each algorithm  

 

6.1.  Hybrid PSO-BA proposed 

The best features of two or more optimization algorithms are combined to create a hybridized 

optimization algorithm. Because BA has limited exploration capabilities, convergence to the global optimum 

point is quite unlikely [29]. All dimensions of solutions are affected by the bat-specific factors A and r in BA. 

To achieve a balance between exploration and exploitation, a hybridization of PSO and BA is proposed. Alpha 

(α)  and gamma ( γ ), are the variables that control these parameters, and their optimal value enhances 

loudness 𝐴𝑖 and pulse rate variation 𝑟𝑖. Thus, Exploration and exploitation can be balanced with BA. The PSO 

algorithm adapts the appropriate range (α,  γ ). A pseudo code for PSO-BA is shown in Algorithm 1, while the 

overall procedure is shown in Figure 4. PSO particle size repressed in two-dimensional vector x (α, γ). Readers 

can also find PSO-MFA in Ajeil et al. [22]. We implemented PSO-BA with different algorithm and different 

environment. 

 
Algorithm 1: PSO–BA algorithm pseudo-code 

1- Initialise PSO and BA parameters: 
       PSO_ parameters: population size of particles NP, r1, r2, c1, c2  

       BA _parameters: population size of bats NB, frequency (𝑓𝑖), pulse rate(𝑟𝑖) and loudness 

(𝐴𝑖)  
2- Generate random solutions of PSO s1= [α1, γ1], s1 = [α2, γ2 ]…., sn = [αn, γn ] 
3- For i =1 to NP 
4- Use BA algorithm from (9)-(14) 
5- Pick the bat with the best fitness according to (6) 
6- If the stopping criteria is not satisfied, then 
7- Update position and velocity using (7)-(8) and go to step 3 
8- Otherwise, Calculate the resulting output 
End if 

 

 

 
 

Figure 4. Proposed hybrid PSO-BA optimization algorithm 
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6.2.  Experimental environment 

An environment consists of several dynamic obstacles, which have different shapes, as well as six 

static obstacles, which have different dimensions and forms. A dynamic obstacle moves linearly in this 

environment. Obstacles that are dynamic are colored red, while obstacles that are static are colored black. Two 

robots are present in the environment. The first robot is represented by a blue point, while its target is 

represented by a purple point. The second robot is represented by a red point, and its target is the first robot. 

While the first robot is attempting to reach its goal, the second robot reaches the point at which the first robot 

will meet. The experimental environment is shown in Figure 5. 
 

 

 
 

Figure 5. Experimental environment 
 

 

6.3.  PSO-BA parameter setting 

Numerous experiments have been conducted in order to adjust the PSO-BA parameters. As a first 

step, several runs are run to determine which parameters are the most influential. The most influential parameter 

will be set up first, and so on. In each experiment, we conducted 31 independent runs, which was sufficient to 

ensure statistical significance. A set of tested values is selected for each parameter. This process is repeated for 

all parameters and algorithms. In Table 1, each parameter of each algorithm is listed. 
 

 

Table 1. Parameter setting for hybrid PSO-BA 
Parameter Tested values Selected Value 

Population size PSO {50,100,150,200,250 and 300} 200 

Population size BA {50,100,150,200,250 and 300} 250 

C1 2,3,4,5,6,7,8,20,12 2 

C2 2,3,4,5,6,7,8,20,12 2 

fmin 0,1,2,3,4,5,6,7 1 

fmax 10,11,12,13,14,15 14 

generation {100,120,150,200,300 and 600} 150 

 

 

6.4.  The scenarios 

The PSO-BA algorithm is put through its paces with the use of a scenario in order to gauge its efficacy. 

Scenarios are used to define the environment, and the starting and ending points of the path is calculated. We 

employ eight sets of points that are dispersed in the maps of the surroundings in a way that corresponds to the 

path's extremes. This is why we employ eight hypothetical situations in our analysis. We've made sure that the 

pathways' termini are all pointed in the general directions indicated by the maps' coordinate systems. In Table 2, 

you can see where exactly each piece of the setting was placed. 
 

 

Table 2. The scenarios 
Characteristics  Scenario A Scenario B Scenario C Scenario D 

Starting Point of Robot no.1 (60,120) (120,100) (100,20) (20, 20) 

Target of Robot no.1 (20,60) (40,60) (60,110) (20,110) 

Starting Point of Robot no.2 (120,80) (170,60) (170,110) (170,40) 

 Scenario E Scenario F Scenario G Scenario H 

Starting Point of Robot no.1 (120,20) (50,80) (130,80) (20,110) 

Target of Robot no.1 (120,120) (130,80) (70,120) (170,110) 

Starting Point of Robot no.2 (20,100) (100,30) (100,10) (10,10) 
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7. SIMULATION RESULTS 

As a result of applying PSO-BA to a dynamic environment with a moving target, we present and 

analyze the results obtained. Based on the scenarios in Table 2, two algorithms (PSO-BA and BA) were 

run. Simulations are carried out using MATLAB R2020a. On a computer with a 2.80 GHz Core i7 processor 

and 16 GB of RAM, the MATLAB code is run. Based on the reference points used in this study, Table 3 shows 

the simulation results using BA and PSO-BA algorithms. Graphical solution for the scenario A as shown in 

Figure 6. Figure 6(a) illustrate graphicl result of BA aparoach for scenario A and Figure 6(b) illustrate graphicl 

result of PSO-BA aparoach for scenario A. Graphical solution for the scenario F as shown in Figure 7. Figure 7(a) 

illustrates graphicl result of BA aparoach for scenario F and Figure 7(b) illustrate graphicl result of PSO-BA 

aparoach for scenario F. PSO-BA always produces better results than BA for all scenarios, as can be seen in 

Table 3. 

 

 

Table 3. Simulation result using BA and PSO-BA algorithm 
 BA PSO-BA 

Run no. Path length Path smoothness Path length Path smoothness 

Scenario A 87 885 87 821 

Scenario B 115 30 59 20 

Scenario C 104 43 104 4 

Scenario D 152 1871 151 1876 

Scenario E 119 37 119 37 

Scenario F 153 207 119 37 

Scenario G 67 21 65 3 

Scenario H 108 1835 107 1981 

 

 

  
(a) (b) 

 

Figure 6. Graphical solution for the scenario A, (a) BA and (b) PSO-BA 

 

 

  
(a) (b) 

 

Figure 7. Graphical solution for the scenario F, (a) BA and (b) PSO-BA 
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8. CONCLUSION 

A hybrid PSO-BA optimization algorithm was proposed for path planning for mobile robots in this 

study. PP is tackling one of the most challenging and significant problems in mobile robotics. BA generates 

points, while PSO optimizes two important parameters for bat to achieve balance between exploration and 

exploitation. This problem has three objectives: length of the path, safety of the path, and smoothness of the 

path. Various scenarios are used to test the algorithm's performance in dynamic environments with moving 

targets. The proposed algorithm has been demonstrated to be effective in avoiding both static and dynamic 

obstacles based on simulation results. PSO-BA always produces better results than BA. 
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