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 This research presents a methodology for predicting errors of parameters, as 

the algorithm tries to monitor the parameters in order to maintain or replace 

them when needed to avoid excessive expenses. The presented 

implementation mechanism is based on monitoring parameters according to 

a specific number of batches and each batch consists of a number of 

iterations, which in turn are a number of samples. The proposed algorithm 

involves designing a new nonlinear observer and writing a secondary 

algorithm for parameter estimation based on the online nonlinear recursive 

least squares algorithm associated with the observer states. In addition, the 

algorithm presents an attempt to find a relationship between the error states 

and the state of the parameters by creating a new function to determine the 

weight of the error according to four components; parameter changes, output 

residuals, output errors and the error diagnosed by the new observer. The 

algorithm also includes introducing the probability form of the weights using 

the kernel density function for the average and maximum weights for each 

batch. Finally, relying on the results, it is possible to take the appropriate 

decision to maintain or change the parameters as shown a non-linear direct 

current motor model case study. 
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1. INTRODUCTION  

One of the most important goals of researchers in the automated system is high performance, safety 

and cost. In order to achieve these problems, error diagnosis has captured the attention of researchers in the 

past decade. Fault diagnosis algorithms for electrical systems have been studied to monitor the deterioration 

of their working conditions [1]-[11] while [12] establishes a nonlinear dynamics framework for diagnosis and 

prognosis in structural dynamic systems by developing an analytically sound means for extracting features.  

Focusing on the sequential Monte Carlo method, some papers [11], [13] include a sampling and 

resampling method for the nonlinear state of a complex dynamical system. When the state of deterioration 

cannot be directly observed, introduced a model to find the mean residual (residual) and reliability function 

[14]. Posted fault strategies and rules for diagnosing a fault for a thermo acoustic generator to center and 

sustain the mover of the electric generator [15]. While Ribot et al. [16] presented the problem of maintenance 

for a system considered as complex and heterogeneous as an airplane. Ekanayake et al. [17], reviewed the 

techniques based on the graphical model to predict errors. Wang and Winters [18], implemented a 

methodology of prognosis using a neuro-fuzzy techniques for dynamic recurrent system. Liu et al. [19] 

processed a new test device to simulate the multi-component degradation of an aircraft fuel system. Bae et al. 

[20] presented algorithm for the e-prognosis and e-diagnosis purposes. Chuan et al. [21] introduced machine-

https://creativecommons.org/licenses/by-sa/4.0/
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learning algorithm known as support vector machine (SVM) where Gaussian radial basis function (kernel 

function) used to accomplish the optimized classifier.  

The observers for the fault detection and diagnosis constitute a main part of the fault tolerant control 

[22]-[32]. The researchers interested in state space-based in presence actuators fault and sensor noise [29], 

[33], [34]. In addition, some papers were presented to be a solution for fault detection and diagnosis based on 

aftificial neural networks. In [35]-[42] implemented new algorithms using two types of schemes: recurrent 

neural networks and fuzzy-neural systems used to predict faults. While a new intelligent nonlinear observer 

in [43] implied a new fault diagnosing rule based on fuzzy and sequential important sampling filter.  

In this paper, a new prognosis algorithm using an optimal nonlinear observer, new online parameter 

estimation based on estimated observer states and using kernel density function to check the status of the 

parameters. Therefore, the structure of paper has been organized as: section 2 introduces problem 

formulation. Section 3 includes the design of the new optimal nonlinear observer. While the implementation 

of proposed prognosis algorithm described in section 4. Section 5 demonstrates the proposed prognosis 

algorithm. Finally, section 6 includes the conclusion to discuss the obtained result. 

 

 

2. PROBLEM FORMULATION 

The new diagnostic prognosis algorithm (PA) has been implemented to monitor the execution within 

known number of batches. The execution is divided into batches and each batch includes iterations. For more 

simplicity, each iteration represents a single implementation with known samples as shown in Figure 1. 

Therefore, the structure of the new PA diagnostic algorithm is categorized as: 

- Designing a nonlinear observer nonfederal organization (NFO) to detect and diagnose the parameters’ fault 

and sensor noise. 

- A new online square algorithm was set in order to find the error in parameter estimation due to fault and 

noise. 

- The algorithm generates a new function to calculate the weight for parameter decay. The new function is a 

cumulative sum of four elements, which are; the expected output error in the parameter estimation 

algorithm, the fault diagnosis by the new observer, the residual is the difference between the output of the 

plant and the observer and the error between the plant's output and the desired output.  

- In order for the algorithm to be more flexible and linked to information from previous iterations, the 

unnormalize weight of the previous iteration will be added to the existing weight at the same time sample. 

- For each batch, the mean and maximum weights are stored. 

- For specified batch numbers, kernel density function is used as a tool for checking the status of monitored 

parameters based on average and maximum weights. 
 

 

 
 

Figure 1. Prognosis cycles 

 

 

3. DESIGN A NONLINEAR FAULT DETECTION AND DIAGNOSIS OBSERVER (NFO) 

The discrete nonlinear dynamic model for the plant has been considered as (1). 

 

{
𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘 , 휁𝑘)

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘
  (1) 
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Where 𝑓(𝑥𝑘 , 𝑢𝑘, 휁𝑘) is a function of 𝑥𝑘 ∈ 𝑅𝑛𝑎, 𝑢𝑘 ∈ 𝑅𝑛𝑖𝑛  that is the non-measurable states 𝑛𝑎 vector of the 

system and the inputs 𝑛𝑖𝑛vector respectively while 𝑦𝑘 ∈ 𝑅𝑝express the measurable outputs 𝑝 vector and its 

matrix 𝐶. The main part of the observer is the diagnosed additive fault (parameter fault) 휁𝑘 ∈ 𝑅𝑛𝑖𝑛 which 

occurs due to uncertainty of the parameters in the plant. In addition, the sensors noise 𝑣𝑘 ∈ 𝑅𝑝 also 

considered.  

The plant has been assumed in (1) a nonlinear Lipschitzian system [44] which will be expressed as: 

 

{
𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝛼(𝑥𝑘 , 𝑢𝑘) + 𝐿𝑓휁𝑘

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘
  (2) 

 

where 𝛼(𝑥𝑘 , 𝑢𝑘) ∈ 𝑅𝑛𝑎×𝑛𝑎 represents the nonlinearities of the system as well as 𝐴 ∈ 𝑅𝑛𝑎×𝑛𝑎 , 𝐵 ∈ 𝑅𝑛𝑎×𝑛𝑖𝑛 , 
𝐶 ∈ 𝑅𝑝×𝑛𝑎  and 𝐿𝑓 ∈ 𝑅𝑛𝑎×𝑛𝑎are constant matrices of appropriate dimensions. Furthermore, the 

implementation of the observer should satisfy two conditions as: 

- The pair (𝐴, 𝐵)is controllable and (𝐴, 𝐶)is detectable while  

- The system is observable and controllable and 𝑓(𝑥𝑘 , 𝑢𝑘) is Lipschitzian with respect to the state 𝑥𝑘 

uniformly in the control 𝑢𝑘, then there exists a constant 𝜕 such that: 

 

{

‖𝛼(𝑥𝑘 , 𝑢𝑘) −  𝛼(𝑥𝑘+1, 𝑢𝑘+1)‖ ≤ ∂‖𝑥𝑘 − 𝑥𝑘+1‖,

𝑥𝑘 , 𝑥𝑘+1 ∈ 𝑅𝑛𝑎 , 𝑢𝑘 ∈ 𝑅𝑛𝑖𝑛  
‖𝛼(𝑥𝑘 , 𝑢𝑘)‖ ≤ ∂‖𝑥𝑘‖, ∀𝑢𝑘 ∈ 𝑅𝑛𝑖𝑛  

  (3) 

 

the new nonlinear observer to detect and diagnose the fault and estimate the states of the system has been 

designed as (4): 

 

{
�̂�𝑘+1 = 𝐴�̂�𝑘 + 𝐵𝑢𝑘 + 𝛼(�̂�𝑘 , 𝑢𝑘) + 𝐻𝑟𝑘 + �̂�𝑓휁̂𝑘

�̂�𝑘 = 𝐶�̂�𝑘

 (4) 

 

where the gain matrix of the observer 𝐿 ∈ 𝑅𝑛𝑎×𝑛𝑎 can be found by the pole placement method so it achieves 

Lyapunov conditions. �̂�𝑓 ∈ 𝑅𝑛𝑎×𝑛𝑎 is prespecified matrix of a diagnosed fault 휁̂𝑘. In addition, 𝛼(�̂�𝑘 , 𝑢𝑘) is 

Lipschitzian with respect to the state �̂�𝑘. To find the output residual 𝜑𝑘 the output of the observer 

needed�̂�𝑘and the output error 𝜙𝑘is the error between the output 𝑦𝑘  and the desired output 𝑦𝑘𝑑𝑒𝑠𝑖𝑟𝑒𝑑
where 𝛵𝑓 is 

the fault threshold. 

 

𝜑𝑘 = 𝑦𝑘 − �̂�𝑘 (5) 

 

𝜙𝑘 = 𝑦𝑘𝑑𝑒𝑠𝑖𝑟𝑒𝑑
− 𝑦𝑘  (6) 

 

{
‖𝜙𝑘‖ ≥ 𝛵𝑓 𝑓𝑎𝑢𝑙𝑡 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑜𝑐𝑐𝑢𝑟𝑒𝑑

‖𝜙𝑘‖ < 𝛵𝑓 𝑛𝑜 𝑓𝑎𝑢𝑙𝑡 𝑜𝑐𝑐𝑢𝑟𝑠
 (7) 

 

To diagnose the fault after the alarm has been generated in (7), the diagnosed fault vector represents 

the process fault occurred in the system as (8).  

 

휁𝑘 = [휁1 , . . . . . . . , 휁𝑟𝑖𝑛
]𝑇 (8) 

 

When no fault occurs, the fault will be assumed as (9) [45]. 

 

휁𝑘  = 0𝑟𝑖𝑛. (9) 

 

Therefore, to obtain an accurate estimation, need (10). 

 

𝑙𝑖𝑚
𝑘→∞

휁̂𝑘 = 휁𝑘 (10) 

 

Furthermore, the faults error can be expressed as (11). 

 

휁̃𝑘 = (휁𝑘 + 𝑣𝑘) − 휁̂𝑘 (11) 
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The proposed dynamic fault and dynamic fault error can have rewritten as (12). 

 

휁̂𝑘+1 = −𝛤1휁̂𝑘 − 𝛤2𝜑𝑘 (12) 

 

Where 𝛤1 , 𝛤2 are the prespecified learning operators to be determined. The proposed diagnostic fault 

[34] is switch of term −𝛤1휁̂𝑘 which is determined by the upper bound of 휁̂𝑘 and by the observation output 

error 𝜑𝑘.  As result, the goal of the fault diagnosis is to find a diagnostic algorithm for 휁̂𝑘 and an observer 

gain vector �̂�𝑓 such that: 

 

{
lim
𝑘→∞

𝜑𝑘 → 𝑜

lim
𝑘→∞

휁̃𝑘 → 𝑜
 (13) 

 

3.1.  Assumption the theorem 

The states error can be written as shown in (14) and (15). 

 

𝑒𝑘 = 𝑥𝑘 − �̂�𝑘 (14) 

 

𝑒𝑘+1 = 𝑥𝑘+1 − �̂�𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝛼(𝑥𝑘 , 𝑢𝑘) + 𝐿𝑓휁𝑘 − 

(𝐴𝛿(�̂�𝑘)�̂�𝑘 + 𝐵𝑢𝑘 + 𝛼(𝛿(�̂�𝑘)�̂�𝑘 , 𝑢𝑘) + 𝐻𝜑𝑘 + �̂�𝑓 휁̂𝑘) (15) 

 

Then the equation of states error can be expressed as: 

 

𝑒(𝑘 + 1) = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝛼(𝑥𝑘 , 𝑢𝑘) + 𝐿𝑓휁𝑘 − 

(𝐴𝛿(�̂�𝑘)�̂�𝑘 + 𝐵𝑢𝑘 + 𝛼(𝛿(�̂�𝑘)�̂�𝑘 , 𝑢𝑘) + 𝐻𝜑𝑘 + �̂�𝑓 휁̂𝑘) 

= 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝛼(𝑥𝑘 , 𝑢𝑘) + 𝐿𝑓휁𝑘 − (
𝐴𝛿(�̂�𝑘)�̂�𝑘𝐵𝑢𝑘 + 𝛼(𝛿(�̂�𝑘)�̂�𝑘 , 𝑢𝑘)

+𝐻(𝑦𝑘 − �̂�𝑘) − �̂�𝑓휁̂𝑘
) (16) 

 

it can be further expressed as: 
 

𝑒𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝛼(𝑥𝑘 , 𝑢𝑘) + 𝐿𝑓휁𝑘 − (
𝐴𝛿(�̂�𝑘)�̂�𝑘 + 𝐵𝑢𝑘 + 𝛼(𝛿(�̂�𝑘)�̂�𝑘 , 𝑢𝑘)

+𝐻(𝐶𝑥𝑘 − 𝐶𝛿(�̂�𝑘)�̂�𝑘) − �̂�𝑓 휁̂𝑘
) (17) 

 

for more simplification, assume: 

 

�̃�𝑓 휁̃𝑘 = 𝐿𝑓휁𝑘 − �̂�𝑓휁̂𝑘 , �̃�(𝑥𝑘 , 𝛿(�̂�𝑘)�̂�𝑘 , 𝑢𝑘) = 𝛼(𝑥𝑘 , 𝑢𝑘) − �̃�(𝛿(�̂�𝑘)�̂�𝑘 , 𝑢𝑘), �̄� = 𝐴 − 𝐻𝐶  

 

then, the dynamic error rewritten as: 
 

𝑒𝑘+1 = (𝐴 − 𝐻𝐶)𝑥𝑘 + �̃�(𝑥𝑘 , 𝛿(�̂�𝑘)�̂�𝑘 , 𝑢𝑘) + �̃�𝑓 휁̃𝑘) − (𝐴 − 𝐻𝐶)𝛿(�̂�𝑘)�̂�𝑘  

= �̄�(𝑥𝑘 − 𝛿(�̂�𝑘)�̂�𝑘) + �̃�(𝑥𝑘 , 𝛿(�̂�𝑘)�̂�𝑘 , 𝑢𝑘) + �̃�𝑓휁̃𝑘 = �̄�𝑒𝑘 + �̃�(𝑥𝑘 , 𝛿(�̂�𝑘)�̂�𝑘 , 𝑢𝑘) + �̃�𝑓휁̃𝑘 (18) 

 

hence, the dynamical error can be rewritten as: 

 

𝑒𝑘+1 = �̄�𝑒𝑘 + 𝜋𝑘 + 𝑤𝑘 (19) 

 

assume positive definite matrices𝑄1 , 𝑄2 to ensure the convergence where exist a symmetric, positive definite 

matrices 𝑃1, 𝑃2 that solves and satisfy. 

 

�̄�𝑇𝑃1�̄� − 𝑃1 = −𝑄1, �̄�𝑇𝑃2�̄� − 𝑃2 = −𝑄2 (20) 

 

3.2.  Proof of the theorem 

Define the Lyapunov function ϒ(𝑒𝑘, �̄�𝑘, 휁̃𝑘) candidate. 

 

𝛥ϒ(𝑒𝑘, 휁̃𝑘) = ϒ(𝑒𝑘+1) − ϒ(𝑒𝑘) − 𝑡𝑟𝑎𝑐𝑒 ((휁̂𝑘 − 휁𝑘)𝛤2
−1(휁̃𝑘 − 휁𝑘)) −  

𝑡𝑟𝑎𝑐𝑒 (휁𝑘𝛤2
−1(휁̂𝑘 − 휁𝑘)) (21) 
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Assume that: 

 

�̄�𝑇𝑃1�̄� − 𝑃1 = −𝑄1 (22) 

 

�̄�𝑇𝑃2�̄� − 𝑃2 = −𝑄2 (23) 

 

where 𝑄1, 𝑄2 > 0 and matrices of other parameters 𝛤1, 𝛤2. They should all be positively defined to ensure 

convergence of error diagnoses in (12). (𝛤1 = 휂𝐼) where 휂 is the scalar and 𝐼 is the unit matrix. These 

parameter matrices will affect the convergence speed. So, Lyapunov's function will be as shown in (24): 

 

𝛥ϒ(𝑒𝑘, 휁̃𝑘) = ϒ  

((𝑒𝑘+1
𝑇 𝑃1𝑒𝑘+ − 𝑒𝑘

𝑇𝑃1𝑒𝑘) + (𝑒𝑘+1
𝑇 𝑃2𝑒𝑘+1 − 𝑒𝑘

𝑇𝑃2𝑒𝑘) − 𝑡𝑟𝑎𝑐𝑒 (휁𝑘𝛤2
−1(휁̂𝑘 − 휁𝑘))) (24) 

 

for further simplifying: 

 

𝛥ϒ(𝑒𝑘, 휁̃𝑘) =  

(

 

 ([�̄�𝑒𝑘 + 𝜋𝑘 + 𝑤𝑘]
𝑇𝑃1[�̄�𝑒𝑘 + 𝛱𝑘 + 𝑤𝑘] − 𝑒𝑘

𝑇𝑃1𝑒𝑘)

+([�̄�𝑒𝑘 + 𝜋𝑘 + 𝑤𝑘]
𝑇𝑃2[�̄�𝑒𝑘 + 𝜋𝑘 + 𝑤𝑘] − 𝑒𝑘

𝑇𝑃2𝑒𝑘)

−
1

2
𝑡𝑟𝑎𝑐𝑒 ((휁̂𝑘 − 휁𝑘)

𝑇
𝛤2

−1(휁̂𝑘 − 휁𝑘)) −
1

2
𝑡𝑟𝑎𝑐𝑒(휁̂𝑘

𝑇𝛤2
−1휁̂𝑘) +

1

2
𝑡𝑟𝑎𝑐𝑒(휁𝑘

𝑇𝛤2
−1휁𝑘))

  (25) 

 

for stability, the Lyapunov function can be further expressed as an inequality as: 

 

𝛥ϒ(𝑒𝑘, 휁̃𝑘) ≤ (

 (−𝜆𝑚𝑖𝑛(𝑄1)‖𝑒𝑘‖
2‖𝑃1‖‖𝜋𝑘‖ + ‖𝑃1‖‖𝑤𝑘‖ )

 +(−𝜆𝑚𝑖𝑛(𝑄2)‖�̄�𝑘‖
2‖𝑃2‖‖𝜋𝑘‖ + ‖𝑃2‖‖𝑤𝑘‖)

−
1

2
𝑡𝑟𝑎𝑐𝑒(휁̂𝑘

𝑇𝛤2
−1휁̂𝑘) +

1

2
𝑡𝑟𝑎𝑐𝑒(휁𝑘

𝑇𝛤2
−1휁𝑘)

)  (26) 

 

for further simplification, assumptions are: 

 

𝜆1 = 𝜆𝑚𝑖𝑛(𝑄1)‖𝑒𝑘‖, 𝜆2 = 𝜆𝑚𝑖𝑛(𝑄2)‖𝑒𝑘‖, 𝜆3 = 𝜆𝑚𝑎𝑥(𝑃1), 𝜆4 = 𝜆𝑚𝑎𝑥(𝑃2), 𝜆5 = 𝜆𝑚𝑖𝑛(𝛤1
𝑇𝛤2

−1),  

𝜆6 = 𝜆𝑚𝑎𝑥(𝛤1
𝑇𝛤2

−1), 𝜆7 = 𝜆𝑚𝑖𝑛(𝛤2
−1), 𝜆8 = 𝜆𝑚𝑎𝑥(𝛤2

−1), 𝜆9 = 𝜆𝑚𝑖𝑛(𝑃1𝑄1
−1𝑃1), 𝜆10 

= 𝜆𝑚𝑖𝑛(𝑃2𝑄2
−1𝑃2),  

𝛤3 = 𝑠𝑢𝑝‖휁𝑘‖, 𝛿0 = 𝑚𝑖𝑛 {
𝜆1

𝜆6
,
𝜆2

𝜆6
,
𝜆5

𝜆8
} (27) 

 

then the inequality will be:  
 

𝛥ϒ(𝑒𝑘(𝑘), 휁̃𝑘) ≤  

(

−𝜆1

𝜆3
𝑒𝑘𝑄1𝑒𝑘 + ‖𝑃1‖‖𝜋𝑘‖ + ‖𝑃1‖‖𝑤𝑘‖

−𝜆2

𝜆4
𝑒𝑘𝑄2𝑒𝑘 + ‖𝑃2‖‖𝜋𝑘‖ + ‖𝑃2‖‖𝑤𝑘‖

−
𝜆5

2𝜆8
𝑡𝑟𝑎𝑐𝑒(휁̂𝑘

𝑇𝛤2
−1휁̂𝑘) + 𝜆6‖휁𝑘‖

) (28) 

 

the inequality will be further expressed as (29). 

 

𝛥ϒ(𝑒𝑘(𝑘), 휁̃𝑘) ≤

(

 
 
 
 

−𝜆1

𝜆3
‖𝑒𝑘‖ +

𝜆3

𝜆3
(‖𝜋𝑘‖ + ‖𝑤𝑘‖)

−𝜆2

𝜆4
‖𝑒𝑘‖

+
𝜆4

𝜆3
(‖𝜋𝑘‖ + ‖𝑤𝑘‖)

−
𝜆5

2𝜆8
𝑡𝑟𝑎𝑐𝑒 ((휁̂𝑘 − 휁𝑘)

𝑇
𝛤2

−1(휁̂𝑘 − 휁𝑘)) + 𝜆6𝛤3
2
)

 
 
 
 

 (29) 

 

For the first term, the Rayleigh-Ritz inequality, the Cauchy-Schwarz inequality, and the index matrix rule 

were used for the second. The linearity can be satisfied by approximating the nonlinear dynamic equation to 

the linear dynamic equation which leads to: 
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( 𝑙𝑖𝑚
‖𝑒𝑘‖→0

‖𝜋𝑘‖

‖𝑒𝑘‖
+ 𝑙𝑖𝑚

‖𝑒𝑘)‖→0

𝑤𝑘

‖𝑒𝑘‖
) = 0   

 

this mean that for any 1 2, 0   , no matter how small, there exists 1 2, 0   , yields that: 

 

‖𝑒𝑘‖ < 𝜎1 ⇒
‖𝜋𝑘‖

‖𝑒𝑘‖
< 휀1,

‖𝑤𝑘‖

‖𝑒𝑘‖
< 휀2 (30) 

 

to satisfy the condition in (30), 1ke   and ku  can be chosen to obtain: 

 

𝛥ϒ(𝑒𝑘(𝑘), 휁̃𝑘) ≤

(

 
 
 
 

‖𝑒𝑘‖(
−𝜆1

𝜆3
+

𝜆1

𝜆3‖𝑒𝑘‖
(‖𝜋𝑘‖ + ‖𝑤𝑘‖))

‖𝑒𝑘‖(
−𝜆2

𝜆4
+

𝜆2

𝜆4‖𝑒𝑘‖
(‖𝜋𝑘‖ + ‖𝑤𝑘‖))

−
𝜆5

2𝜆8
𝑡𝑟𝑎𝑐𝑒 ((휁̂𝑘 − 휁𝑘)

𝑇
𝛤2

−1(휁̂𝑘 − 휁𝑘)) + 𝜆6𝛤3
2
)

 
 
 
 

 (31) 

 

it can be more represented as: 

 

𝛥ϒ(𝑒𝑘(𝑘), 휁̃𝑘) ≤  

(‖𝑒𝑘‖ (
−𝜆1

𝜆3
+

𝜆1

𝜆3
(𝜎1 + 𝜎2)) ‖𝑒𝑘‖ (

−𝜆2

𝜆4
+

𝜆2

𝜆4
(𝜎1 + 𝜎2)) ‖휁̂𝑘 − 휁𝑘‖

2
(

−𝜆7

𝜆8
+ 𝜆6𝛤3

2)) (32) 

 

to satisfy stability; the equilibrium of a nonlinear system must be asymptotically stable by Lyapunov stability 

theory, and the condition 𝛥ϒ(𝑒𝑘, 휁̃𝑘) < 0 should be realized. 

 

(휀1 + 휀2) <
1

2
, 𝛤3 < √

𝜆7𝜆6

𝜆8
 (33) 

 

 

4. PROGNOSIS ALGORITHM (PA) 

A new prognosis algorithm PA was implemented to show the relationship between the occurrence of 

the observer-diagnosed fault and the parameter estimation error simultaneously by online iterative least 

square. The new idea also creates a new function to calculate the weight of the error. In addition, the 

implementation of the algorithm is a known number of batches, and each batch is a set of iterations with 

specific time samples for each iteration. To evaluate the algorithm, the average and maximum weights for 

each batch are kept in memory. Subsequently, the EKD kernel density function is used to find the 

probabilities of the mean and maximum weights, as shown in the following steps of the proposed algorithm.  

 

4.1.  At first batch, initializing the matrices 

Due to parameters fault, the model of the system in (2) will be introduced as a stochastic plant to 

express the parameter matrices as a nonlinear ARMAX model: 

 

�̂� =

[
 
 
 
�̂�1,1 . . �̂�1,𝑛𝑎

. . .

. . .
�̂�1,𝑛𝑎

. . �̂�𝑛𝑎,𝑛𝑎]
 
 
 

, �̂� =

[
 
 
 
 
�̂�1,1 . . �̂�1,𝑛𝑎

. . .

. . .
�̂�𝑛𝑎,1 . . �̂�𝑛𝑎,𝑛𝑏]

 
 
 
 

  (34) 

 

휃̄𝑘,𝑖 = [�̂� �̂�]  (35) 

 

�̄�𝑘,𝑖 = 𝑓𝑝(�̂�1,𝑘,𝑖 , �̂�2,𝑘,𝑖 , . . . . . . . . , �̂�𝑛𝑎,𝑘,𝑖 , 𝑢1,𝑘,𝑖 , 𝑢2,𝑘,𝑖 , . . . . . . . . , 𝑢𝑛𝑏,𝑘,𝑖 , �̆�𝑘,𝑖)  (36) 

 

where 𝑓𝑝 is the unknown nonlinear plant equation, bounded and first order differentiable with respect to all of 

its variables. �̂� ∈ 𝑅𝑛𝑎×1 and 𝑢 ∈ 𝑅𝑛𝑏×1represent the observed state of the observer and the input as in (4) and 

(2) respectively. 
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Based on the above, the nonlinearity of the estimated system causes an error between the estimated 

and true values as in most practical engineering systems. Hence, bounded noise �̆�𝑘,𝑖can be assumed using 

least-squared method [46] by choosing a number of sampling points as (37). 

 

𝑓𝑘,𝑖 = 휃̄𝑘−1,𝑖
𝑇 �̄�𝑘,𝑖  (37) 

 

4.2.  NEW: starting for a new prognosis batch 

From the observed output of the observer in (4), predicated least square parameters in (35) and 

predicted input vector in (36), the predicated error 휀�̄�,𝑖 will be expressed as (38). 

 

휀�̄�,𝑖 = �̂�𝑘,𝑖 − 휃̄𝑘−1,𝑖  �̄�𝑘,𝑖  (38) 

 

Form the assumed probability �̅�𝑘,𝑖 using (39). 

 

�̄�𝑘,𝑖 = �̄�𝑘−1,𝑖 (𝐼 −
�̄�𝑘,𝑖�̄�𝑘,𝑖

𝑇
�̄�𝑘−1,𝑖

(1+�̄�𝑘,𝑖
𝑇
�̄�𝑘−1,𝑖�̄�𝑘,𝑖)

)  (39) 

 

Update the least squares estimate 휃̄𝑘,𝑖 

 

휃̄𝑘,𝑖 = 휃̄𝑘−1,𝑖 + 휀�̄�,𝑖 �̄�𝑘,𝑖�̄�𝑘,𝑖  (40) 

 

furthermore, the parameters changes will be defined as (41): 

 

휃̃𝑘,𝑖  =휃
𝑘,𝑖

𝑠𝑒𝑡𝑝𝑜𝑖𝑛�̄�𝑘,𝑖
  (41) 

 

where 휃𝑘,𝑖
𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡

 represents the desired values of the parameters. 

Calculating the weight function at the sample 𝑘. 

The suggested weight in the sample 𝑘 for 𝑖𝑡ℎ iteration is a function of four items; The parameter 

amount changes in (42), the output residual in (5), the output error in (6), and the dynamic diagnosed fault in 

(12) according as (42). 

 

𝑓𝑤𝑘,𝑖
= 휃̃𝑘,𝑖 + 𝜑𝑘,𝑖 + 𝜙𝑘,𝑖 + 휁̂𝑘+1,𝑖  (42) 

 

In addition, the unnormalize weight 𝑓𝑤𝑘,𝑖−1
 of the previous weight will be added to the existence weight to 

show whether the fault is persistent in the same sample as (43). 

 

𝑓𝑤𝑘,𝑖
= 𝑓𝑤𝑘,𝑖

+ 𝑓𝑤𝑘,𝑖−1
  (43) 

 

Calculate mean and maximum weight values for each batch. After 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, the mean 𝐸𝑏  and maximum 

values 𝛭𝑏 for 𝑁𝐵 batches are (45) and (46).  

 

𝐸𝑏 =
1

𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
∑ 𝑓𝑤𝑘,𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
𝑁=1   (44) 

 

𝛭𝑏 = 𝑠𝑢𝑝 {𝑓𝑤𝑘,𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
}  (45) 

 

4.3.  Finally, at the end of the 𝑵𝑩 batches 

The estimated density kernel (EDK) is used to find the probabilities for the mean and maximum 

values as shown in (46) and (47): 

 

𝑓𝐸𝑏
=

1

𝑁𝐵𝐻
∑ 𝐾𝑟 (

𝑟−𝐸𝑏

𝐻
)

𝑁𝐵
𝑖=1   (46) 

 

𝑓𝛭𝑏
=

1

𝑁𝐵𝐻
∑ 𝐾𝑟 (

𝑟−𝛭𝑏

𝐻
)

𝑁𝐵
𝑖=1   (47) 

 

where 𝑁𝐵 , 𝐻 are the batches number and the bandwidth for the kernel smoothing function rK . 
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5. CASE STUDY AND RESULTS 

To validate the results of the new proposed algorithm, the continues time nonlinear model of the DC 

Motor system is considered as (48) [31]. 

 

[
İ𝐴(𝑡)

�̇�(𝑡)
] = [

−𝑅𝑎/𝐿𝑎 −𝛹/𝐿𝑎

(𝛹/𝐽) −𝑀𝐹1/𝐽
] [

𝐼𝐴(𝑡)

𝜔(𝑡)
] + [

1/𝐿𝑎 0
0 −1/𝐽

] [
𝑈𝐴(𝑡)

𝑀𝐿(𝑡)
] + [

−𝐾𝐵|𝜔(𝑡)|𝐼𝐴(𝑡)

−𝑀𝐹𝑂  𝑠𝑖𝑔𝑛(𝜔(𝑡))
]

[
𝐼𝐴(𝑡)

𝜔(𝑡)
] = [

1 0
0 1

] [
𝐼𝐴(𝑡)

𝜔(𝑡)
]

 (48) 

 

The parameter matrix in (49) is assumed to be affected by the assumption of the parameter fault where the 

nonlinear model of the motor can be as: 

 

[
휁1(𝑡)

휁2(𝑡)
] = [

−𝑅𝑎/𝐿𝑎 −𝛹/𝐿𝑎

(𝛹/𝐽) −𝑀𝐹1/𝐽
] [

𝐼𝐴(𝑡)

𝜔(𝑡)
] − [

−𝑅𝑎/𝐿𝑎 −𝛹/𝐿𝑎

(𝛹/𝐽) + 𝑓𝑎𝑢𝑙𝑡(𝑡) −𝑀𝐹1/𝐽
] [

𝐼𝐴(𝑡)

𝜔(𝑡)
] 

 

then the system with the additive fault 휁(𝑡) and sensor noise 𝑣(𝑡) can be represent as: 

 

[
İ𝐴(𝑡)

�̇�(𝑡)
] = [

−𝑅𝑎/𝐿𝑎 −𝛹/𝐿𝑎

(𝛹/𝐽) −𝑀𝐹1/𝐽
] [

𝐼𝐴(𝑡)

𝜔(𝑡)
] + [

1/𝐿𝑎 0
0 −1/𝐽

] [
𝑈𝐴(𝑡)

𝑀𝐿(𝑡)
] + [

−𝐾𝐵|𝜔(𝑡)|𝐼𝐴(𝑡)

−𝑀𝐹𝑂  𝑠𝑖𝑔𝑛(𝜔(𝑡))
] + [

휁1(𝑡)

휁2(𝑡)
]

[
𝐼𝐴(𝑡)

𝜔(𝑡)
] = [

1 0
0 1

] [
𝐼𝐴(𝑡)

𝜔(𝑡)
] + [

1 0
0 1

] [
𝑣(𝑡)

𝑣(𝑡)
]

  

 

to verify the PA algorithm, a discrete nonlinear has been used where the following matrices values have been 

chosen to satisfy the conditions of observer design in (20) and (12). 

 

𝑃1 = [
1.1897 0.0947

 0.0947 0.0792
]  

𝑄1 = [
0.92 0

0 0.04
]  

𝑃2 = [
−1.1556 0.0259

 0.6751 −1.2956
]  

𝑄2 = [
−0.3583 0.117

0.6774 −1.2615
]  

𝐻 = [
−0.512 −0.325350

0.56 0.5949
]    

,�̂�𝑓 = [
0.2 0
0 0.2

]  

𝛤1 = [
−0.8 0

0 −0.9
]  

𝛤2 = [
−2 0
0 −15

]  

 

The following lines show the detection of various faults under the open loop strategy of eight 

batches, each batch containing ten iterations of sixty seconds in length. To study the algorithm, Gaussian 

sensor noise has been considered, the mean has zero value and the variance is 0.3. In addition, the PA 

algorithm is realized by introducing two types of faults in the second and eighth iteration of each batch where 

the mean Gaussian fault is 1.2, the variance=0.5 but the non-Gaussian fault is proposed to be 𝑓𝑎𝑢𝑙𝑡(𝑡) =
2.5 + 3 𝑠𝑖𝑛(𝑡). 

To investigate the performance of the paper, two types of faults have been assumed two obtain the 

changes in the second and eighth batches according to the maximum values; i) in existence Gaussian fault 

with mean, Figure 2 and Figure 3 include the means and maximums values of the weights for the eight 

batches respectively while Figure 4 and Figure 5 demonstrate the symmetrical shape of the estimated density 

kernel for the means and maximums values respectively, and ii) in presence non Gaussian fault, the Figure 6 

and Figure 7 show the means and maximums values of the weights for the batches whereas Figure 8 and 

Figure 9 demonstrate the symmetrical shape of the estimated density kernel for the means and maximums 

respectively. Hence, it is evident from the following figures that the designed prognosis algorithm 

successfully detects all parameter changes since the efficiency of the proposed PA algorithm is achieved 

under the evaluation of conditions values. 
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Figure 2. The means for the weights in eight batches (Gaussian fault) 

 

 

 
 

Figure 3. The maximums for the weights of the weights in eight batches (Gaussian fault) 

 

 

  
  

Figure 4. The estimated density kernel for the means 

of weights in eight batches (Gaussian fault) 

Figure 5. The estimated density kernel for the 

maximum weights in eight batches (Gaussian fault) 
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Figure 6. The means for the weights in eight batches 

(non-Gaussian fault) 

Figure 7. The maximums of the weights for the 

weights in eight batches (non-Gaussian fault) 

 

 

  
  

Figure 8. The estimated density kernel for the 

means of the weights in eight batches  

(non-Gaussian fault) 

Figure 9. The estimated density kernel for the 

maximum weights in eight batches  

(non-Gaussian fault) 

 

 

6. CONCLUSION 

To overcome two critical problems of non-linear automated systems; uncertainty and unnecessary 

plant maintenance, a new prognosis (alarm) algorithm was implemented and studied. The uncertainty is due 

to uncertainties in the nonlinear model, process perturbations, parameter changes and measurement noise. 

The main concern of this paper is the development of a new diagnostic algorithm based on the nonlinear fault 

diagnostic observer and online parameter estimation. The objectives were investigated by looking at the 

relationship between fault occurrence and parameter uncertainty in the time sample. The implementation of 

the algorithm depends on dividing the time into a number of batches, each batch consisting of a number of 

iterations and each iteration, a number of time samples.  

To realize the algorithm; a new non-linear fault observer is designed that detects and diagnoses the 

fault simultaneously, introducing a new optimal online parameters estimation and generating a function to 

calculate the weight at each time sample. Furthermore, to achieve the prediction with precision and 

craftsmanship to avoid sudden stops in the parameters, the new function was generated based on four 

elements; parameter changes, output residuals, output errors and the error diagnosed by the new observer. 

However, to monitor the parameter condition which is the main goal; the mean and maximum values of the 

weights in iterations for one batch are saved in the memory. Subsequently, the measured values for one batch 

are used to find mean and maximum values for a known number of batches where the estimated density 

kernel is used as an additional tool to make correct decision about a maintenance. To summarize, the 

nonlinear model of the proposed algorithm has been successfully demonstrated with the help of a realistic 

example of a nonlinear DC motor assuming that it has been exposed to Gaussian and non-Gaussian faults and 

disturbances. 
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