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 This work offers a graphics processing unit (GPU)-based system for real-time 

face recognition, which can detect and identify faces with high accuracy. This 

work created and implemented novel parallel strategies for image integral, 

computation scan window processing, and classifier amplification and 

correction as part of the face identification phase of the Viola-Jones cascade 

classifier. Also, the algorithm and parallelized a portion of the testing step 

during the facial recognition stage were experimented with. The suggested 

approach significantly improves existing facial recognition methods by 

enhancing the performance of two crucial components. The experimental 

findings show that the proposed method, when implemented on an NVidia 

GTX 570 graphics card, outperforms the typical CPU program by a factor of 

19.72 in the detection phase and 1573 in the recognition phase, with only 2000 

images trained and 40 images tested. The recognition rate will plateau when 

the hardware's capabilities are maxed out. This demonstrates that the suggested 

method works well in real-time. 
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1. INTRODUCTION  

Recognizing someone by their face is the most intuitive kind of recognition by a human. Due to the 

exponential growth of computing power, face recognition algorithms have become more commonplace in 

scientific inquiry and experimentation in recent years. The study of pattern recognition and image processing 

has seen a surge in interest in face recognition technologies. The initial phase in face recognition is face 

detection, which may be used to verify an image's subject and begin cleaning up any imperfections, as shown 

in Figure 1. In 2001, Viola and Jones, introduced the Viola-Jones cascade classifier [1] as a rapid real-time 

object identification approach. The algorithm of AdaBoost [2], [3], the integral image, and the cascade of 

classifier increase the speed of detection in real-time on the central processing unit. Recognizing the faces in 

the test images comes after the first stage of finding the face area. Principal component analysis (PCA) using 

Eigen-faces [4], [5] is an established face recognition technique.  

Numerous ways are utilized to increase recognition accuracy and minimize the computational 

complexity [6]-[9]. When it comes to feature extraction from images of faces, there are two main schools of 

thought: the appearance-based method and the model-based approach [10]. Each of these has its own particular 

traits. As an illustration, the first strategy is meant to accommodate photographs with poor quality and/or low 

resolution, whereas in the second method, face variation and other fixed points are assessed before a face 
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feature model is built. Human interaction is a common component of this strategy. Generally, image face 

recognition has relied heavily on the first method, which provides a high degree of accuracy but requires a 

specific face model, such as the expression and position of a human image. 

 

 

 
 

Figure 1. Illustrates the system of face recognition  

 

 

As a consequence, various suggestions, such as linear discriminant analysis (LDA), independent 

component analysis (ICA), isometric feature mapping (ISOMAP), fisher analysis (FA), PCA, Kernel PCA 

(KPCA), and fisher analysis (FA), have embraced the appearance-based technique [6], [11]. PCA and its 

variations have been employed owing to numerous properties. For instance, principal component analysis 

(PCA) is a linear technique for reducing a set of high-dimensional vectors to a set of lower-dimensional vectors 

with a low mean squared error. In PCA, the model parameters can be derived directly from the data, with no 

additional processing required. This indicates that PCA just needs matrix modification. PCA needs fewer 

characteristics to retain accuracy quality. These benefits increase identification accuracy, even when working 

with a limited data set [10]. Even though PCA has numerous advantages, one of its shortcomings is that it is 

pretty hard to grasp since it includes a lot of massive matrix manipulation operations. 

A high quantity of memory is also needed since the memory demand grows with image quality and 

resolution and the number of training images used for image matching or classification [10], [12]. Many 

academics have looked at ways to make PCA even more effective, such as symmetric PCA and two-

dimensional PCA [10]. Some offered an alternate way to minimize the computing complexity of PCA, i.e., 

replacing singular value decomposition (SVD) by employing QR decomposition; where Q is an orthogonal 

matrix (its columns are orthogonal unit vectors meaning (𝑄𝑇 = 𝑄−1) and R is an upper triangular matrix (also 

called right triangular matrix) [12]. Howreover, one viable technique for coping with heavy computational jobs 

is to minimize the serial constraint by leveraging the parallelism notion. Recent fast improvements in computer 

chips and integrated circuit technology have made multi-cores [13], [14], and associated parallelization 

methods accessible and inexpensive, which may give a viable solution to some of the constraints of PCA [15]. 

As a result of their speed and efficiency, GPUs are increasingly being included in data and 

computation-intensive programs. Compared to central processing units, the computing capacity of modern 

GPUs is enormous. Using parallel computing to quicken facial recognition is brilliant because of the inherent 

data parallelism. NVidia's compute unified device architecture (CUDA) is a framework for GPGPU 

programming that supports parallel processing and the execution of hundreds of threads simultaneously [16].  

We suggested a real-time of the system of facial recognition based on the CUDA platform to speed 

up the identification process using parallel computing. Extremely rapid facial recognition would have many 

real-world applications. Kumar [17] identification system obtained a high frontal face detection rate, the study 

only looked at the detection rate and not the whole system's efficiency. Some work on boosting face recognition 

performance in parallel was published in papers [15], [18], [19]. Instead of focusing on the number of errors, 

ours dramatically increased the identification speed like the other systems. This made it possible for real-time 

facial recognition to become a reality. 

 

 

2. RECOGNIZING FACES APPROACHES  

The camera takes test images, which are subsequently processed by a real-time facial recognition 

algorithm to extract unique identifiers for individual human faces. This process has two main phases: finding 

faces and identifying them. Images of faces should be recognized only if they are present. Thus, our suggested 

method incorporates both facial recognition and detection. After doing a face detection and face ID lookup, we 

get the exciting face area. 

 

2.1.  The technique of face detection  

Viola and Jones at Cambridge University developed the cascade classifier system that could recognize 

faces in real time. The three essential ideas they've brought to the table are the algorithm of AdaBoost, the 

integral image, and the classifiers' cascade. A face-identification approach that uses Haar-like characteristics 

is the cascade classifier method. The so-called characteristic value of the feature rectangle is utilized as the 

foundation for face detection, and it is calculated by subtracting the total pixel values in the white area from 
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the sum in the black region, as shown in Figure 2. Figure 2(a) displays their work employed six distinct types 

of Haar-like feature rectangles. While Figure 2(b) illustrates Viola and Jones Haar-like features [1].  

The boosting approach classifies an image area as a face or non-face using many weak classifiers with a slightly 

better classification rate than a random classifier. These weak classifiers add pixels in rectangles and subtract 

them from others. Viola and Jones introduced the integral image to reduce summing costs. Each integral picture 

point is computed once. The gray area in Figure 2(b) represents the integral image, at (𝑎, 𝑏), which is contains 

the total of the pixels, and can be computed by (1), and the sum of pixel (𝑃) values across a rectangular area 

are shown by (2): 

 

𝑦(𝑎, 𝑏) = ∑ 𝑥(𝑎′, 𝑏′) ;  ∀ 𝑎′ ≤ 𝑎 𝑎𝑛𝑑 𝑏′ ≤ 𝑏 (1) 

 

𝑃 = 𝑦(𝑎4, 𝑏4) − 𝑦(𝑎3, 𝑏3) − 𝑦(𝑎2, 𝑏2) + 𝑦(𝑎1, 𝑏1) (2) 

 

 

 
(a) 

 
(b) 

 

Figure 2. The Haar-like feature rectangles: (a) six distinct types of Haar-like feature rectangles and (b) Viola 

and Jones' Haar-like features 

 

 

A classifier function 𝑓 = (𝛼, 𝛽), where 𝛼 is the feature rectangle and 𝛽 is the threshold value, may be 

learned using the provided training set and feature rectangle set. The connection between 𝛼 and 𝛽 determines 

the function 𝑓′𝑠 return value. Rectangles covering face features are picked using the AdaBoost algorithm. This 

set of feature rectangles may be used to build a weak classifier, and a set of such classifiers can be combined 

to create a robust one. A cascade classifier, formed by chaining together the strong classifier, can determine 

whether the scan window includes face information. 

 

2.2.  The algorithms for facial recognizability  

The goal of principal component analysis (PCA) in face recognition is to identify the characteristics 

necessary for comparing faces by decreasing the dimensionality of the data. After identifying facial features, 

the images containing them are scaled (𝑃𝑤 pixels wide by 𝑃𝑙  pixels length) and preprocessed. Different training 

images are used; within each class are many image graphs of the same individual displaying various emotions. 

A vector 𝑉(𝑃𝑤𝑃𝑙 ′ × 1) stores information about each image. Assume that there are 𝑇 =
1

𝑁
 , where 𝑁 is a training 

images in the database and that you want to get the average face vector 𝐿 by using (3). By taking the median 

away from the 𝑉 − 𝑠𝑖𝑑𝑒, we can calculate 𝐾𝑖. The covariance matrix 𝑀 is calculated by using 4. 

 

𝐿 = 𝑇 ∑ 𝑉𝑖
𝑁
𝑖=1  (3) 

 

𝑀 = 𝑇 ∑ 𝐾𝑗𝐾𝑗
𝑇𝑁

𝑗=1 = 𝑆𝑆𝑇 (4) 

 

Where 𝑆 = [𝐾1, 𝐾2, . . . , 𝐾𝑁]. 
It can be calculated the eigenvectors 𝑣𝑖 of 𝑆𝑆𝑇 because the eigenvectors 𝑚𝑖 of 𝑆𝑆𝑇 are huge and have 

the same eigenvalues as 𝑆𝑇𝑆. Multiplying the 𝑣𝑖 by 𝑆 yields the 𝑚𝑖. In this work, the linear combination of the 

top 𝐸 eigenvectors, 𝑁 − 1, represents each face 𝐾𝑖 in the training set. There is a particular name for these 

eigenvectors: eigenfaces. The eigenspace 𝜎 is formed by aligning the previously calculated eigenvectors for 

each image, by using (5). 

 

𝜎𝑇𝐾𝑖 = [𝑠𝑗
𝑖],      𝑖 = 1,2, , … , 𝑁, 𝑗 = 1, . . . , 𝐸 (5) 
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After this, the test images are normalized and projected onto the eigenspace 𝜎. We utilize Mahalanobis 

distance (6) to classify the image and find out where the test face belongs. Projected test images are compared 

to each projected training image using the Mahalanobis distance. The recognition result is the closest distance 

to the class if the minimum distance is less than a threshold 𝜃. 

 

𝜔𝑖 = √∑ (
𝑠𝑗

𝑖−𝑠𝑗

𝜏𝑗
)

2

𝑒
𝑗=1  (6) 

 

 

3. CUDA-BASED FACE RECOGNIZER 

To begin, a camera captures the test images, which are then preprocessed to a standard size that 

includes just the facial area. With the help of the recognition algorithm, we can then confidently establish the 

person's identity. However, the procedure will take a long time since there is so much information. New CUDA-

based parallel detection and identification methods were created and optimized. 

 

3.1.  Parallel apporach 

After the classifier and images have been loaded, we compute the image integral using a graphics 

processing unit (GPU) [20], [21]. To get around the data dependence of image integral computation, a kernel 

based on the CUDA platform separately calculates the integrals of rows and columns in the order of priority 

(rows first, columns second). The number of threads is dependent on the image's width. But warp is responsible 

for scheduling the CUDA threads. The same warp doing the computation of the row integral requires access to 

data from several columns in the image, but there are only 32 threads in total. Communication costs will 

increase due to the discontinuity of the column image data. A similar issue also arises with the write-back 

procedure of row integral calculations. There is a significant drop in system performance. 

We used shared memory, as described in CUDA [22], to improve memory access performance.  

A shared memory of size 𝑁 × 𝑁 has required if each thread in a block has a width of 𝑃𝑤 pixels. A block's 

threads transfer image data into shared memory through row access and perform integral computations. As 

soon as the calculations are complete, the shared memory containing the results should be written back to the 

global memory on the GPU. The technique is better suited to the CUDA platform, and memory access time 

has been decreased.  

After that, we use a scan window to locate the offending portion of the image. Since each window 

may be treated separately, the kernel can speed up this section. The scan window's parallel structure is seen in 

Figure 3. Although the GPU's execution units are single instruction, multiple data (SIMD), the thread is 

scheduled via warp. An uneven load occurs when thread1 only goes through the first robust classifier, but 

thread2, from the same warp, goes through all the robust classifiers. 

 

 

 
 

Figure 3. A scan window that is computed in parallel 
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Reducing the parallel thread granularity to a robust classifier and remapping the thread with the 

window after one step of the classifier is complete helped us address the unbalanced load issue and ensure that 

many threads run simultaneously on GPU. Using zero-copy technology [23], the block of page-locked host 

memory may also be mapped into the address space of the device side, reducing the extra cost of data transfer 

between the host CPU and the device GPU. Because face size varies, it is necessary to adjust the feature 

rectangle in the classifier by increasing the scan window size after the first detection. Because the feature 

rectangle's operation is asynchronous, it only takes one thread to manage one feature rectangle. By running 

many threads simultaneously, we can reduce the overall processing time, and CPU-to-GPU delays in 

classification due to a classifier can be eliminated by storing the results in the global memory. When finished, 

save the merged face window in a fixed-size format. Now that we know where the faces are located, we can 

go on to the recognition phase of face processing. 

 

3.2.  Recognized in a parallel approach  

In the recognition phase, training is not required if the database has not been modified. Testing takes 

the most time; therefore, we focus on how to speed up that part of the process. The flowchart of parallel 

recognition is shown in Figure 4. Since there is no connection between the testing images, the projection may 

be computed in parallel after loading the testing images and the training results.  

Multiple threads carry out the task simultaneously, as seen in Figure 5. Each component of the vector 

is independently computed in parallel. The length of a feature vector is equal to K times the number of threads 

in a block. Our system is now faster and more efficient, and we were able to accomplish it by creating a parallel 

between images and inside images. 

Ultimately, we do facial recognition by finding the most negligible value between the calculations 

outlined in (6). However, this process might take a long time if either the training faces number M or the testing 

faces number N is massive. To address the real-time latency issue, we have implemented this procedure in 

parallel. Each thread in a given block is responsible for calculating the distance between a testing image and a 

specific training image. The GPU's global memory is where the final calculations are saved. Then, a reduction 

method is used to get the smallest possible value. If the minimum distance is less than a threshold, the smallest 

integer is the identifier for the testing face. 

 

 

 
 

Figure 3. Shows the flow chart of the parallel recognition 

 

 

3.3.  Database 

Specifically, we implemented our database of faces (ORL) [24], [25], a widely used database for facial 

recognition. The ORL Database has 40 separate topics, with 10 images for each. Images of certain subjects 

were captured at different times of day, with variable lighting conditions and subject attitudes (closed/open 

eyes, not smiling/smiling, no glasses/glasses). The models were image-graphed in a frontal, standing pose 

against a uniformly black backdrop (with tolerance for some side movement). The portable gray map (PGM) 

formatted database files include images that are 92×112 in size and have 256 levels of grayscale. Using the 

power of the GPU and the adaptability of the software, we may design our own database to meet the standards 

set by the ORL database. This allowed us to further gauge GPU performance and determine the optimal 

recognition rate. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 A parallel algorithm of multiple face detection on multi-core system (Mohammed W. Al-Neama) 

1171 

4. THE EXPERIMENTS AND RESULTS 

The study employes a Core i7 (9300) quad-core processor as the CPU and a (GTX570) GeForce with 

computational capability 2.0 as the GPU to evaluate CPU and GPU performance. The OS is Windows 10 64-

bit. The database of ORL comprised 400 images and was chosen as the training set. To illustrate the full power 

of a GPU, we added images in the same BMP format to the ORL database, bringing the number of faces from 

800 to 1600. The image size has a role in the parallel particle and speedup during the detection phase. The 

speedup of the recognition phase depends on many factors, such as the number of training and testing images. 

The results of our testing of the detection phase with images of varying sizes and durations as shown in Table 1. 

The face detection is the first step in identifying a person's face in real-time, and CUDA is better at this task. 

We begin by identifying 10 image graphs in the database with varying magnification degrees. The 

executing time of GPUs and CPUs (excluding training time), as well as speed-up, are recorded in Table 2. It is 

clear that as the database grows, the CPU time rises sharply while the GPU time rises more slowly but steadily. 

It demonstrates that a huge database is ideal for using CUDA for face recognition. 

 

 

Table 1. Speed-up and the time it takes to detect images of varying sizes 

Pixels CUDA (sec.) 
CPU 

(sec.) 
Speed-up 

640×480 0.20 1.2 6 
800×600 0.21 1.7 8 

1024×768 0.20 2.2 11 

1280×720 0.19 2.3 12 
1920×1080 0.29 4.9 17 

3680×2070 0.90 19.7 22 

 

 

Table 2. The elapsed time for recognition depending on the total number of training images 

No. CUDA (sec.) 
CPU 

(sec.) 
Speed-up 

50 0.02 0.01 0.5 

100 0.05 0.01 0.2 

200 0.03 0.02 0.66 

300 0.03 1.19 39.66 
400 0.04 2.78 69.5 

500 0.05 5.38 107.6 

600 0.05 9.3 186 
700 0.06 14.79 246.5 

 

 

 

Training images are represented by threads, and the number of threads in a given block equals the 

number of training images. Since there are just 10 test images, we can utilize only 10 blocks, and each block 

will include as many threads as training images. The NVIDIA GeForce (GTX) 570-based experimental 

platform has 15 multiprocessors, each capable of running 1536 threads. However, not all these threads are 

currently being used, and some multiprocessors are sitting idle. So, the acceleration is growing horribly with 

the number of image graphs in the database. 

We evaluated 40 video stills with varying database sizes to see how different sizes might affect the 

performance of the real-time face recognition system. A visualization of CUDA's performance boost is shown 

in Figure 5. Each sample face serves as a building component in the face recognition process. The maximum 

speedup cannot be determined since there are not enough images in the database. Based on the information 

gathered during the trial, the identification rate is close to 99%. 

However, the correct of detection, recognition and system recognition rates of CUDA and CPU are 

(93.77%), (93.53%), (98.72%), (98.15%), (91.21%) and (90.75%) respectively. It is clear that the correct 

recognition rate of the system is not very high, even though the CPU program and are the CUDA program 

practically the same. It will be due to the low proportion of accurate detections. When we can't determine where 

a face is, we can't identify it. It is necessary to initially increase the system's accurate detection rate before 

increasing the correct recognition rate. 

When the training images number surpasses 1024, the block in the GTX 570 can no longer 

accommodate all of them. Thus, we must rearrange the threads. The grid's square should be shown in two 

dimensions. Both the x index of the block and the thread index are used to locate the training image. The y-

index of the block specifies the test image. The experiment results show that the CUDA-based face recognition 

system outperforms the CPU-based system in speed and accuracy. This proves that our facial recognition 

algorithm works in real-time. 
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Figure 5. Shows the speedup of visualization of CUDA's performance 

 

 

5. CONCLUSION 

To finish the face detection and identification tasks efficiently, this study suggested a real-time face 

recognition system based on CUDA. Because we additionally optimized the recognition portion of our face 

recognition system in tandem with the detection portion, our approach has a high acceleration performance. 

Our software runs far more quickly than the CPU equivalent. With this speed boost, facial recognition can be 

used in real-time, which is especially helpful when these apps are needed. 

We expect that by using the latest tools, such as a graphics card of NVidia's Kepler architecture, we 

will be able to better address the data migration problems that arise during the recognition phase. In addition, 

we want to develop a new classifier that contributes more to the success rate of detection. Optimizing the 

system will result in significant improvements 
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