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 Critical diagnostic information inferred using state of the artradiology 

techniques helps radiologists in determining the severity of diseases and hence 

suggest suitable treatment procedures. As a result, dealing with medical image 

compression necessitates a trade-off between good perceptual quality and 

high compression rate. The objective of this work is twofold, i) to investigate 

the effect of increasing the number of encoding loops on medical image 

compression parameters, and ii) to determine the most suitable wavelet for 

medical image compression. Haar, Daubechies, Biorthogonal Demeyer, 

Coifletand Symlet wavelets are used for comparison. Six different sets of 

medical images are used for testing and from the results obtained it is observed 

that increasing the number of encoding loops results in better compression 

parameters but increasing beyond 9 has no significant effect on compression 

parameters and thus the optimum choice for the number of encoding loops is 9. 

From the second analysis it is observed that changing the type of wavelets 

used has no significant effect on the compression parameters. 
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1. INTRODUCTION  

Hospitals and health care centers generate huge number of medical images such as Magnetic 

resonance elastography (MRE), magnet resonance imaging (MRI), computed axial tomography (CAT), and 

ultra sound (US). which are loaded with critical radiological information. Secure storage and digital 

transmission of medical images, reports, and other therapeutically pertinent data is handled by a variety of 

systems, such as radiology information system (RIS) and patient archival and communication systems (PACS). 

Handling large volume of images is a challenging task for these data handling systems, thus demanding the 

need for high bit rate compression techniques. Lossy image compression techniques, though efficient in 

achieving good compression, may result in false diagnosis due to information loss. Thus, lossless compression 

techniques are most frequently used to compress medical images [1]-[3], so that the decompressed image is 

lossless in terms of aesthetics and diagnostics. Image compression techniques falls into various categories such 

as transform-based, machine learning-based, fractal-based, contextual-based and other hybrid methods. 

Though, transform-based compression techniques are computationally complex, the compression rate achieved 

is higher compared to other methods. Of the available popularly used transforms such as discrete cosine 

transform (DCT), ripplet transform, discrete wavelet transforms (DWT), radon transform, and contourlet 

transform wavelet transform is the most powerful one which can produce compressed images at higher 

compression ratios with higher peak to signal noise ratio (PSNR) values [4].  
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Wavelet exhibits exceptional de-correlation property and supports multi-resolution analysis (MRA) 

making it the most preferable image transformation technique and is predominantly used in several standards 

such as JPEG2000 and MPEG-2/4. The transform coefficients are to be encoded at the transmitter end to 

achieve compression and decoded at the receiver end to decompress. Codec algorithms are used to compress 

the transform coefficients and play the most significant role in achieving higher compression rate. Embedded 

zerotree wavelet (EZW), spatial-orientation tree wavelet (STW) [5]-[7], set partitioning in hierarchical trees 

(SPIHT), 3D-Set partitioning in hierarchical trees (3D-SPIHT) [8]-[12], Adaptively scanned wavelet difference 

reduction (ASWDR) algorithm proposed by Walker [13] and wavelet difference reduction (WDR) algorithm 

[14]-[16] are the most popularly used codec algorithms. Feature preserving image compression techniques and 

contextual based image compression techniques are also found to be promising techniques to compress medical 

images [17]-[24]. Manigandan and Deepa [25], carried out a comprehensive analysis to determine the most 

efficient encoding technique, and from the results obtained, it is evident that EZW and STW algorithms prove 

to minimize the mean square error. Minimum MSE of images, guarantees fault free diagnosis. Thus, in this 

paper, EZW algorithm is used to compress the transform coefficient and investigations are carried out to 

understand the effect of increasing the number of encoding loops on the compression parameters. In the second 

analysis, the performance of various wavelets is compared to determine the most efficient wavelet for medical 

image compression.  

 

 

2. METHODS 

In DWT, analysis filter bank and synthesis filter bank are employed in the transmitter end and receiver 

end, respectively. Appropriate wavelet (such as Haar, Symlet, or Coiflet) and number of levels (n) for the 

decomposition are selected in the first stage. The approximation, vertical detail, horizontal detail, and diagonal 

detail subbands are created from the input images by the analysis filter bank. The detail coefficients are 

thresholded from scales J-1 to J-n in the second stage. An example of wavelet decomposition is shown in Figure 1. 

Figure 1(a) shows the original MRI image, Figure 1(b) shows the wavelet decomposed image, and Figure 1(c) 

shows decompressed image. 

 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 1. Compression of MRI image using wavelet decomposition: (a) original MRI image, (b) first level 

decomposition, and (c) decompressed image 

 

 

2.1.  Performance measures 

The decompressed image might not be the same as the original image when the compression is lossy in 

nature. A high compression ratio results in the loss of more visual features. Finding the ideal balance between a 

high compression ratio and a decent perceptual result is the problem presented by compression techniques. The 

compression ratio (CR), mean square error (MSE), peak signal to noise ratio (PSNR), maximum error, L2-Norm 

Ratio, and bits per pixel are the metrics used to compare the different image compression approaches (BPP). 

 

2.2.  Proposed analysis 1 

In the first analysis, the effect of changing the number of encoding loops on the performance measures 

is analyzed. In this analysis, the wavelet and the encoding method are fixed, whereas the number of encoding 

loops is varied and its effect on compression parameters is analyzed. Initially, the input image is decomposed 

using Haar wavelet transform and the transformed coefficients are encoded using EZW coding. The number of 
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encoding loops can vary from 1 to 9. The input image is compressed, and the compression parameters are 

computed by varying the number of encoding loops from 1 to 9. The flow diagram is shown in Figure 2.  

 

 

 
 

Figure 2. Flowchart of proposed analysis 1 

 
 

Various performance metrics are obtained and the graphs are plotted as shown in Figure 3. MSE 

obtained for various input images are tabulated in Table 1 and Figure 3(a) shows the graph of the same. From 

the graph, it is clear, that as the number of encoding loops is increased the MSE decreases, thus improving the 

quality of the decompressed image. Increasing the encoding loops beyond 9 does not have any significant effect 

on MSE. 

Table 2 shows the maximum error obtained for various input images and Figure 3(b) shows the graph of 

the same. From the graph it is clear, that as the number of encoding loops is increased the ME decreases, thus 

improving the quality of the decompressed image. Increasing the encoding loops beyond 9 does not have any 

significant effect on ME. Table 3 shows the L2 normal ratio obtained for various input images and Figure 3(c) 

shows the graph of the same. From the graph, it is clear that as the number of encoding loops is increased the L2 

normal ratio increases, thus improving the quality of the decompressed image. Increasing the encoding loops 

beyond 9 does not have any significant effect on L2 normal ratio. Table 4 shows the peak signal noise to ratio 

(PSNR) obtained for various input images and Figure 3(d) shows the graph of the same. From the graph, it is clear 

that as the number of encoding loops is increased the PSNR increases, thus improving the quality of the 

decompressed image. Increasing the encoding loops beyond 9 does not have any significant effect on PSNR. 

Table 5 shows the Bits Per Pixel obtained for various input images and Figure 3(e) shows the graph 

of the same. From the graph, it is clear that as the number of encoding loops is increased the B.P.P increases, 

thus improving the quality of the decompressed image. Increasing the encoding loops beyond 9 does not have 

any significant effect on B.P.P. Table 6 shows the compression ratio obtained for various input images and 

Figure 3(f) shows the graph of the same. From the graph, it is clear that as the number of encoding loops is 

increased the CR increases, thus improving the quality of the decompressed image. Increasing the encoding 

loops beyond 9 does not have any significant effect on CR. 

 

 

Table 1. Mean square error obtained using Haar wavelet and EZW encoding method 
Image Type No. of Encoding Loops 

1 2 3 4 5 6 7 8 9 

Ultrasound 3559 342.6 55.45 20.81 10.75 4.717 1.363 0.363 0.05601 

XRAY 1661 1724 43.68 23.63 6.79 3.357 1.411 0.3904 0.3904 

CT Scan 1878 739.1 231.2 72.48 24.77 7.005 1.692 0.2941 0.04453 

MRI 1 1476 853.5 105.6 28.79 8.219 2.426 0.5577 0.09416 0.0148 

/ 2680 282.1 103.7 31.7 9.382 3.179 0.08084 0.134 0.02082 
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Figure 3. Performance measures: (a) MSE, (b) Max error, (c) L2 normal ratio, (d) PSNR, (e) BPP, and (f) CR 

obtained using Haar wavelet and EZW encoding method by varying the number of encoding loops 

 

 

Table 2. Maximum error obtained using Haar wavelet and EZW encoding method 
Image Type No. of Encoding Loops 

1 2 3 4 5 6 7 8 9 

Ultrasound 218 145 81 50 23 13 6 3 2 

XRAY 208 108 73 40 22 10 5 3 3 

CT Scan 209 168 105 53 22 11 7 3 1 

MRI 1 253 179 100 55 30 15 7 4 2 

MRI2 238 152 101 59 31 15 7 3 2 

 

 

Table 3. L2 normal ratio obtained using Haar wavelet and EZW encoding method 
Image Type No. of Encoding Loops 

1 2 3 4 5 6 7 8 9 

Ultrasound 81.51% 98.37% 99.74% 99.91% 99.95% 99.98% 99.99% 100.00% 100.00% 

X-RAY 96.52% 99.64% 99.91% 99.95% 99.99% 99.99% 100.00% 100.00% 100.00% 

CT Scan 38.18% 81.47% 94.59% 98.34% 99.44% 99.84% 99.96% 99.99% 100.00% 

MRI 1 75.81% 86.84% 98.47% 99.58% 99.88% 99.97% 99.99% 100.00% 100.00% 

MRI2 75.63% 97.72% 99.17% 99.75% 99.93% 99.97% 99.99% 100.00% 100.00% 

 

 

Table 4. Peak signal to noise ratio obtained using Haar wavelet and EZW encoding method 
Image Type No. of Encoding Loops 

1 2 3 4 5 6 7 8 9 

Ultrasound 12.62 22.78 30.7 35.09 37.82 41.39 46.79 53.22 60.65 

XRAY 15.93 25.77 31.7 34.4 39.81 42.87 46.64 52.22 52.22 

CT Scan 15.39 19.44 24.5 29.53 34.19 39.68 45.85 53.45 61.64 

MRI 1 16.44 18.82 27.9 33.54 38.98 44.28 50.67 58.39 66.43 

MRI2 1.7999 1.9937 2.29 2.7281 3.2917 3.9642 4.8627 5.8522 6.2035 
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Table 5. Bits per pixel obtained using Haar wavelet and EZW encoding method 
Image Type No. of Encoding Loops 

1 2 3 4 5 6 7 8 9 

Ultrasound 2.1475 2.3527 2.6201 2.9434 3.3519 3.9976 5.026 6.334 7.0597 

XRAY 2.8784 3.0659 3.3027 3.5994 3.9851 4.4869 5.27 6.564 6.5643 

CT Scan 1.5758 1.7312 2.0745 2.6339 3.4557 4.6649 6.267 8.081 8.8457 

MRI 1 1.8007 1.9771 2.3174 2.7378 3.2683 3.8883 4.635 5.426 5.7591 

MRI2 1.7991 1.9937 2.2898 2.7281 3.2917 3.9642 4.863 5.852 6.2235 

 

 

Table 6. Compression ratio obtained using Haar wavelet and EZW encoding method 
Image Type No. of Encoding Loops 

1 2 3 4 5 6 7 8 9 

Ultrasound 26.84% 29.41% 32.75% 36.75% 41.90% 49.90% 62.83% 79.17% 88.25% 

XRAY 35.98% 38.32% 41.28% 44.99% 49.81% 56.09% 65.87% 81.30% 81.30% 

CT Scan 19.70% 21.64% 25.93% 32.93% 43.20% 58.31% 78.34% 101.01% 110.57% 

MRI 1 22.51% 24.71% 28.97% 34.22% 41.15% 49.55% 60.78% 73.15% 77.79% 

MRI2 88.25% 95.37% 75.94% 86.33% 82.78% 95.37% 98.46% 97.80% 101.41% 

 

 

2.3.  Proposed analysis 2 

In the second analysis, the effect of changing the type of wavelet on the performance measures is 

analyzed. From analysis 1, it is clear that the best result is produced for number of encoding loops equal to 9, 

thus for this analysis the number of encoding loops is fixed as 9 and the type of compression algorithm is fixed 

as 3-D SPIHT, the wavelet filters are varied, and the compression parameters are computed. The proposed 

flowchart is shown in Figure 4. The various wavelets used for analysis are Haar, Daubechies, Coiflets, Symlet, 

Biorthogonal, Reverse Biorthogonal, Discrete FIR Meyer wavelet and Fejer-Korovkin wavelets. 

 

 

 
 

Figure 4. Flowchart of proposed analysis 2 

 

 

For each type of wavelet, the level of decomposition is set as one, and 3-D SPIHT compression 

algorithm with 9 encoding loops are used for analysis. Figure 5 shows the various performance metrics 

obtained. Figures 5(a) and (b) show the mean square error and the maximum error obtained respectively for 

various types of wavelets. The other compression parameters L2 normal ratio, PSNR, BPP and CR obtained 

by varying the type of wavelets are shown in Figures 5(c)-(f) respectively. From the graphs, it is evident that 

the type of wavelet does not have a great impact on the compression parameters obtained. Figure 6 shows the 

output images obtained using Haar wavelets on different types of medical images. Figure 6(a) shows the input 

images, Figure 6(b) shows the wavelet decomposed images, and Figure 6(c) shows the decompressed images 

obtained using Haar wavelets.  
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Figure 5. Performance measures: (a) MSE, (b) max error, (c) L2 normal ratio, (d) PSNR, (e) BPP, and (f) CR 

obtained for various wavelet filter functions 
 

 

   

   

   
(a) (b) (c) 

 

Figure 6. Output obtained on various images: (a) input image, (b) wavelet decomposed image, and 

 (c) decompressed image obtained using Haar wavelets 
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3. RESULTS AND DISCUSSIONS  

The results obtained using the proposed methods cannot be compared directly with the reported work 

in literature since the input images used by researchers are not the same and the size of the images also vary. 

Thus, the obtained results are compared with other significant methods found in literature. Four different and 

significant transform-based methods are considered for comparison, i) discrete cosine transform with SPIHT 

encoding, ii) contourlet transform with SPIHT encoding, iii) ripplet transform, and iv) curvelet transform based 

image compression techniques are used for comparison. For five test images, all the experiments are conducted 

using MATLAB 2014a for both the existing techniques reported in literature and the methods proposed in this 

paper. The performance metrics obtained are tabulated in Table 7. The proposed method 1, with Haar wavelets 

and 9 encoding loops has performed better in terms of performance measures and from the tabulated values, it 

is observed that modifying the type of wavelet has no significance on image compression. 

 

 

Table 7. Comparison of the proposed methods with other existing techniques 
Image type DCT-SPIHT Contourlet-SPIHT Ripplet Curvelet Proposed method1 Proposed analysis 2 

Mean square error 

Ultra sound 1.0123 0.0986 0.0864 0.0923 0.05601 0.07275 

XRAY 1.428 1.326 1.346 1.196 0.3904 0.44 

CT scan 0.0976 0.7426 0.0882 0.0812 0.04453 0.0547 

MRI 1 0.04356 0.396 0.0412 0.0402 0.0148 0.0139 

MRI2 0.0656 0.0586 0.0426 0.0428 0.02082 0.0215 

 PSNR 

Ultra sound 34.56 40.12 41.22 45.62 60.65 39.51 

XRAY 32.86 39.64 38.42 41.68 52.22 36.23 

CT scan 39.88 39.06 39.78 45.82 61.64 39.97 

MRI 1 39.62 40.04 40.12 46.12 66.43 40.32 

MRI2 39.41 40.96 42.22 45.34 62.035 41.01 

 Compression Ratio 

Ultra sound 81.26 83.52 82.28 86.89 88.25 85.75 

XRAY 75.48 76.25 74.12 82.24 81.30 79.40 

CT scan 88.41 100.06 88.46 91.26 110.57 92.15 

MRI 1 76.84 74.42 74.896 80.098 77.79 81.30 

MRI2 75.42 75.48 76.42 80.16 101.41 80.65 

 

 

4. CONCLUSIONS 

Two different analyses viz, i) varying the number of encoding loops and ii) varying the wavelets are 

carried out. From the first analysis, it is evident that increasing the number of encoding loops beyond 9 has no 

significant effect on the obtained results and thus the number of encoding loops is fixed as 9. For the second 

analysis SPIHT 3D entropy algorithm with nine encoding loops is fixed and the effect of varying the type of 

wavelets on the compression parameters are analyzed. The impact of varying the wavelets on the compression 

parameters is very minimal. Regions of interest (ROIs) in medical images, such as the location of lesions or 

tumors, carry significant information. Thus, a hybrid method of applying lossless compression for ROI and 

lossy compression on the non ROI regions shows the future directive in the field of medical image compression.  
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