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 Nonlinear conjugate gradient (CG) methods are extensively used as an 

important technique for addressing large-scale unconstrained optimization 

problems which are arise in many aspects of science, engineering, and 

economics. That is due to their simplicity, convergence properties, and low 

memory requirements. To generate a new approximation solution in each 

iteration, the CG methods usually implement under the strong Wolfe line 

search. For good performance, many studies have been carried out to modify 

well-known CG methods. In this paper, we did some modifications on one 

of CG method called RMIL+ in order to obtain a new CG method possesses 

the sufficient descent property and the global convergence under strong 

Wolfe line search. The numerical results demonstrate that the suggested 

method outperforms other CG methods. 
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1. INTRODUCTION  

Considering the next unconstrained optimization problem,  
 

min𝑓(𝑥) ,   𝑥 ∈ 𝑅𝑛,  (1) 
 

where  𝑓: 𝑅𝑛 → 𝑅 is a continuous and differentiable. The conjugate gradient (CG) method considered as one 

of the choicest for solving (1), particularly for the case n is large. The nonlinear conjugate gradient method’s 

iterative formula is given by, 
 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , (2) 
 

where 𝑥𝑘 is present iterate point and 𝛼𝑘 is step length, which is calculated by performing a line search, and 𝑑𝑘 

is the search direction, which is defined by, 
 

𝑑𝑘+1 = {

𝑔𝑘+1 ,                               𝑖𝑓    𝑘=0

−𝑔𝑘+1 + 𝛽𝑘+1𝑑𝑘, 𝑖𝑓  𝑘 ≥ 1,
 (3) 

 

https://creativecommons.org/licenses/by-sa/4.0/
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where 𝛽𝑘 is paramter. The classical conjugate gradient method includes the Hestenes and Stiefel [1]. The 

Fletcher and Reeves [2]. The Polak [3], method Polyak and Ribiere [4]. The conjugate descent method [5]. The 

Liu and Storey method, [6] and the Dai and Yuan method [7], the parameters 𝛽𝑘 of these methods are as 

follow:  
 

𝛽𝑘
𝐻𝑆 =

𝑔𝑘
𝑇 (𝑔𝑘−𝑔𝑘−1)

(𝑔𝑘−𝑔𝑘−1)
𝑇 𝑑𝑘−1

,                𝛽𝑘
𝐹𝑅 =

𝑔𝑘
𝑇 𝑔𝑘

𝑔𝑘−1
𝑇  𝑔𝑘−1

,                         𝛽𝑘
𝑃𝑅𝑃 =

𝑔𝑘
𝑇(𝑔𝑘−𝑔𝑘−1)

𝑔𝑘−1
𝑇  𝑔𝑘−1

,  

 

𝛽𝑘
𝐶𝐷 = −

𝑔𝑘
𝑇 𝑔𝑘

𝑑𝑘−1
𝑇  𝑔𝑘−1

,                  𝛽𝑘
𝐿𝑆 = −

𝑔𝑘
𝑇(𝑔𝑘−𝑔𝑘−1)

𝑑𝑘−1
𝑇  𝑔𝑘−1

,                  𝛽𝑘
𝐷𝑌 =

𝑔𝑘
𝑇  𝑔𝑘

(𝑔𝑘−𝑔𝑘−1)
𝑇 𝑑𝑘−1

.  

 

usually, in the conjugate gradient methods convergence analysis and implementation, the step length 𝛼𝑘 is 

requireed to satisfy some line search to be imprecise line searches [8]-[11], such as an Armijo line search or a 

strong Wolfe line search. The strong Wolfe line search is utilized to find 𝛼𝑘 such as: 
 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) − 𝑓(𝑥𝑘) ≤ 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘,  

|𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)
𝑇𝑑𝑘| ≤ −𝜎𝑔𝑘

𝑇𝑑𝑘  (4) 
 

where 𝛿 ∈ (0,
1

2
) , 𝑎𝑛𝑑 𝜎 ∈ (𝛿, 1).  

The nonlinear conjugate gradient method's sufficient descent condition is as (5). 
 

𝑔𝑘
𝑇𝑑𝑘 ≤ −𝑐‖𝑔𝑘‖

2, ∀𝑘 ≥ 1, 𝑐 ∈ (0,1).  (5) 
 

The sufficient decent property and the global convergence have been studied by many researchers such as Baali 

[12] who established the global convergence of the FR method under strong Wolfe line search, Liu et al. [13] 

and Dai and Yuan [14] extended the results to 𝜎 =
1

2
 , Gilbert and Nocedal [15], established the global 

convergence property of the PRP+ method, the PRP+ indicated that is a non-negative parameter. For more 

studies [16]-[18]. 

This paper is organised into four sections. In section 2, a new parameter for the coefficient 𝛽𝑘  is 

proposed followed by an algorithm. The sufficient descent condition and the global convergence analysis 

under strong Wolfe line search is presented in subsection 2.1. In section 3, the numerical performance of the 

new formula versus other well-known conjugate gradient methods are presented. Finally, in section 4, the 

conclusion is presented. 

 

 

2. THE MODIFICATION METHOD  

Recently, Rivaie et al. [19], [20], proposed two new formulas as (6), (7). 
 

𝛽𝑘
𝑅𝑀𝐼𝐿 = 

𝑔𝑘
𝑇 ( 𝑔𝑘−𝑔𝑘−1)

‖𝑑𝑘−1‖
2 , (6) 

 

𝛽𝑘
𝑅𝑀𝐼𝐿+ = 

𝑔𝑘
𝑇 ( 𝑔𝑘−𝑔𝑘−1−𝑑𝑘−1)

‖𝑑𝑘−1‖
2 ,  (7) 

 

Zhang [21] presented an improved formula called 𝛽𝑘
𝑁𝑃𝑅𝑃 to Wei-Yao-Liu which is given by, 

 

𝛽𝑘
𝑁𝑃𝑅𝑃 =

‖𝑔𝑘‖
2−

‖𝑔𝑘‖

‖𝑔𝑘−1‖
|𝑔𝑘
𝑇𝑔𝑘−1|

‖𝑔𝑘−1‖
2

, (8) 

 

the NPRP method satisfies the descent property given in condition (5). 

Motivated by the in (7) and (8), we propose a modified formula of RMIL+ as: 
 

𝛽𝑘
𝐴𝑂 =

{
 
 

 
 ‖𝑔𝑘‖2−

‖𝑔𝑘‖

‖𝑔𝑘−1‖
|𝑔𝑘
𝑇𝑔𝑘−1|

𝑚𝑎𝑥(‖𝑑𝑘−1‖
2,‖𝑔𝑘−1‖

2)
 , 𝑖𝑓 ‖𝑔𝑘‖

2 ≥
‖𝑔𝑘‖

‖𝑔𝑘−1‖
|𝑔𝑘
𝑇𝑔𝑘−1|

0                            , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

  (9) 

 

where AO denotes Abashar and Osman.  

By defining the formula 𝛽𝑘
𝐴𝑂, we have a new CG method which can be described in Algorithm 2.1.  
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Algorithm 2.1 

Step 0. Initialization, given 𝑥0 ∈ 𝑅
𝑛, 𝜀 ≥ 0, 𝑠𝑒𝑡 𝑑0 = −𝑔0, 𝑘 = 0. 

Step 1. If ‖𝑔𝑘‖ ≤ 𝜀 , then exit. 

Step 2. Find 𝛼𝑘 using (4). 

Step 3. Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑔𝑘+1 = 𝑔(𝑥𝑘+1), 𝑖𝑓 ‖𝑔𝑘+1‖ ≤ 𝜀, 𝑡ℎ𝑒𝑛 𝑠𝑡𝑜𝑝. 
Step 4. compute 𝛽𝑘 by the (6, 7, 8, 9 and FR method), generated 𝑑𝑘 by (3). 

Step 5. Put 𝑘 = 𝑘 + 1 and go to Step 2. 

 

2.1.  Analysis of convergence  

In this subsection, the analysis of Algorithm 2.1 is presented. We proved that the algorithm satisfies 

condition (5) and the properties of global convergence. The next lemma is required to simplify the new 𝛽𝑘
𝐴𝑂. 

 

Lemma.  2.1.1 

𝛽𝑘
𝐴𝑂  satisfies,  𝛽𝑘

𝐴𝑂 ≤
‖𝑔𝑘‖

2

‖𝑑𝑘−1‖
2    , 𝛽𝑘

𝐴𝑂  ≥ 0. 

 

From the definition (9), we get, 
 

𝛽𝑘
𝐴𝑂 =

‖𝑔𝑘‖
2−

‖𝑔𝑘‖

‖𝑔𝑘−1‖
|𝑔𝑘
𝑇𝑔𝑘−1|

𝑚𝑎𝑥(‖𝑑𝑘−1‖
2,‖𝑔𝑘−1‖

2)
≤

‖𝑔𝑘‖
2

‖𝑑𝑘−1‖
2 (10) 

 

using Cauchy- Schwarz inequality, we get (11). 
 

𝛽𝑘
𝐴𝑂 =

‖𝑔𝑘‖
2 −

‖𝑔𝑘‖
‖𝑔𝑘−1‖

|𝑔𝑘
𝑇𝑔𝑘−1|

𝑚𝑎𝑥(‖𝑑𝑘−1‖
2, ‖𝑔𝑘−1‖

2)
≥

‖𝑔𝑘‖
2 −

‖𝑔𝑘‖
‖𝑔𝑘−1‖

|𝑔𝑘||𝑔𝑘−1|

𝑚𝑎𝑥(‖𝑑𝑘−1‖
2, ‖𝑔𝑘−1‖

2)
= 0 

𝛽𝑘
𝐴𝑂 ≥ 0. (11) 

 

Lemma.  2.1.2 

Suppose that  {𝑔𝑘} and {𝑑𝑘} are generated by the Algorithm 2.1 for  𝜎 <
1

2
 , then, 

 

 
‖𝑔𝑘‖

‖𝑑𝑘‖
≤ 1,   ∀𝑘 ≥ 0. (12) 

 

Proof. The proof is by induction. For 𝑘 = 0, 
‖𝑔0‖

‖𝑑0‖
= 1 ≤ 1, hence (12) holds for 𝑘 = 0. 

From (3), multiplying by 𝑔𝑘+1
𝑇  , we get, 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖

2 + 𝛽𝑘+1𝑔𝑘+1
𝑇 𝑑𝑘 

‖𝑔𝑘+1‖
2 = 𝛽𝑘+1𝑔𝑘+1

𝑇 𝑑𝑘 − 𝑔𝑘+1
𝑇 𝑑𝑘+1  (13) 

 

from (4) and absolute value of (13), obained, 
 

‖𝑔𝑘+1‖
2 ≤ |𝛽𝑘+1𝑔𝑘+1

𝑇 𝑑𝑘| + |𝑔𝑘+1
𝑇 𝑑𝑘+1| 

‖𝑔𝑘+1‖
2 ≤ −𝜎𝛽𝑘+1‖𝑔𝑘‖‖𝑑𝑘‖ + ‖𝑔𝑘+1‖‖𝑑𝑘+1‖ 

 

by applying (12), and substitute (10), we get, 
 

‖𝑔𝑘+1‖
2 ≤ −𝜎

‖𝑔𝑘+1‖
2

‖𝑑𝑘‖
2
‖𝑔𝑘‖‖𝑑𝑘‖ + ‖𝑔𝑘+1‖‖𝑑𝑘+1‖ (14) 

‖𝑔𝑘+1‖
2 ≤ −𝜎‖𝑔𝑘+1‖

2 ‖𝑔𝑘‖

‖𝑑𝑘‖
+ ‖𝑔𝑘+1‖‖𝑑𝑘+1‖    

‖𝑔𝑘+1‖
2 ≤ −2𝜎‖𝑔𝑘+1‖

2 + ‖𝑔𝑘+1‖‖𝑑𝑘+1‖   

 
‖𝑔𝑘+1‖

2 + 2𝜎‖𝑔𝑘+1‖
2 ≤ ‖𝑔𝑘+1‖‖𝑑𝑘+1‖ (15) 

 

Divided by ‖𝑔𝑘+1‖‖𝑑𝑘+1‖, we get, 
 
‖𝑔𝑘+1‖

‖𝑑𝑘+1‖
≤

1

1+2𝜎
 (16) 

 

hence this holds true for 𝑘 + 1. 
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Theorem 2.1.1 

Assume that  𝑔𝑘 and 𝑑𝑘 are produced by the methods (2) and (3), respectively, and that the step size 

𝛼𝑘  is calculated by (4), if 𝜎 <
1

2
 , then the relation, 

 

−1+2𝜎

1+2𝜎
≤

𝑔𝑘
𝑇𝑑𝑘

‖𝑔𝑘‖
2 ≤

−1−2𝜎

1+2𝜎
, (17) 

 

holds. Henceforth, condition (5) holds as 𝑔𝑘 ≠ 0. 

Proof. By induction, true if  𝑘 = 0, assume (17) is true if 𝑘 ≥ 0 , from (3), we have: 
 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖

2 + 𝛽𝑘+1𝑔𝑘+1
𝑇 𝑑𝑘 (18) 

 

Dividing both sides by ‖𝑔𝑘+1‖
2 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1
‖𝑔𝑘+1‖

2
= −1 + 𝛽𝑘+1

𝑔𝑘+1
𝑇 𝑑𝑘

‖𝑔𝑘+1‖
2
 

 

using strong Wolfe condition (4) we have (19). 
 

|𝛽𝑘+1𝑔𝑘+1
𝑇 𝑑𝑘| ≤ −𝜎|𝛽𝑘| 𝑔𝑘

𝑇𝑑𝑘 

−1 + 𝜎 𝛽𝑘+1
𝑔𝑘
𝑇𝑑𝑘

‖𝑔𝑘+1‖
2 ≤

𝑔𝑘+1
𝑇 𝑑𝑘+1

‖𝑔𝑘+1‖
2 ≤ −1 − 𝜎 𝛽𝑘+1

𝑔𝑘
𝑇𝑑𝑘

‖𝑔𝑘+1‖
2 (19) 

 

By using (10) and Cauchy inequality, we have, 
 

−1 + 𝜎
‖𝑔𝑘+1‖

2

‖𝑑𝑘‖
2

‖𝑔𝑘‖‖𝑑𝑘‖

‖𝑔𝑘+1‖
2 ≤

𝑔𝑘+1
𝑇 𝑑𝑘+1

‖𝑔𝑘+1‖
2 ≤ −1 − 𝜎 

‖𝑔𝑘+1‖
2

‖𝑑𝑘‖
2

‖𝑔𝑘‖‖𝑑𝑘‖

‖𝑔𝑘+1‖
2   

−1 + 𝜎
‖𝑔𝑘‖

‖𝑑𝑘‖
≤

𝑔𝑘+1
𝑇 𝑑𝑘+1

‖𝑔𝑘+1‖
2 ≤ −1 − 𝜎 

‖𝑔𝑘‖

‖𝑑𝑘‖
 (20) 

 

from the induction hypothesis (16), we obtain (21). 
 

−1+2𝜎

1+2𝜎
≤

𝑔𝑘+1
𝑇 𝑑𝑘+1

‖𝑔𝑘+1‖
2 ≤

−1−2𝜎

1+2𝜎
  (21) 

 

We conclude that (17), holds for 𝑘 + 1 . 
 

Assumption 2.1.1 

(i) The set  Ω = {𝑥 ∈ 𝑅𝑛 𝑓(𝑥) ≤ 𝑓(𝑥0)} is bounded with an initial guess 𝑥0. 

(ii) 𝑓 is continuously differentiable and its gradient is Lipschitz continuous in some neighborhood 𝑁 of Ω, 

that is, there exists a constant 𝑙 > 0 such that  ‖𝑔(𝑥) − 𝑔(𝑦)‖  ≤ 𝑙 ‖𝑥 − 𝑦‖ , ∀ 𝑥, 𝑦 ∈ 𝑁). 
 

Theorem 2.1.2 

Suppose that Assumption 2.1.1 holds. Let  {𝑔𝑘} be obtained by Algorithm 2.1, then lim
𝑘→∞

‖𝑔𝑘‖ = 0. 

Proof. We use contradiction, that is, there is a scalar 𝜀 > 0, such that (22). 
 

‖𝑔𝑘‖  ≥ 𝜀, (22) 
 

From (4), we have (23). 
 

|𝑔𝑘
𝑇𝑑𝑘| ≤  −𝜎𝑔𝑘−1

𝑇 𝑑𝑘 ≤
𝜎

1+2𝜎
‖𝑔𝑘−1‖

2,  

 

Thus from (3) and (10), we obtain,  
 

‖𝑑𝑘‖
2 ≤ ‖𝑔𝑘‖

2 + 2|𝛽𝑘||𝑔𝑘
𝑇𝑑𝑘| + 𝛽𝑘

2‖𝑑𝑘−1‖
2, (23) 

‖𝑑𝑘‖
2 ≤ ‖𝑔𝑘‖

2 +
𝜎

1+2𝜎
‖𝑔𝑘−1‖

2|𝛽𝑘| + 𝛽𝑘
2‖𝑑𝑘−1‖

2,   

‖𝑑𝑘‖
2 ≤ ‖𝑔𝑘‖

2 +
𝜎

1+2𝜎
‖𝑔𝑘−1‖

2 ‖𝑔𝑘‖
2

‖𝑑𝑘−1‖
2 + 𝛽𝑘

2‖𝑑𝑘−1‖
2,    

‖𝑑𝑘‖
2 ≤ ‖𝑔𝑘‖

2 +
𝜎

1+2𝜎
‖𝑔𝑘‖

2 (
‖𝑔𝑘−1‖

2

‖𝑑𝑘−1‖
2)  

 

by applying (16), we get,   
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‖𝑑𝑘‖
2 ≤ ‖𝑔𝑘‖

2 +
𝜎

1+2𝜎
‖𝑔𝑘‖

2 (
1

1+2𝜎
)
2

  

‖𝑑𝑘‖
2 ≤ ‖𝑔𝑘‖

2 + ‖𝑔𝑘‖
2𝑀   ,    𝑀 =

𝜎

(1+2𝜎)2
  

‖𝑑𝑘‖
2 ≤ (1 +𝑀)‖𝑔𝑘‖

2   (24) 
 

dividing both sides by ‖𝑔𝑘‖
4 to obtain (25).  

 

‖𝑑𝑘‖
2

‖𝑔𝑘‖
4 ≤

(1+𝑀)

‖𝑔𝑘‖
2   

‖𝑑𝑘‖
2

‖𝑔𝑘‖
4 ≤ ∑

(1+𝑀)

‖𝑔𝑖‖
2

𝑘
𝑖=0  (25) 

 

Therefor it follows from (22) and (25), 
 

‖𝑑𝑘‖
2

‖𝑔𝑘‖
4 ≤

(1+𝑀)𝑘

𝜀2
  

‖𝑔𝑘‖
4

‖𝑑𝑘‖
2 ≥

𝜀2

(1+𝑐𝑀2)𝑘
  (26) 

‖𝑔𝑘‖
4

‖𝑑𝑘‖
2 ≥

𝑐2

𝑘
  

 

this implies that, 
 

∑
‖𝑔𝑘‖

4

‖𝑑𝑘‖
2

∞
𝑘=0 = ∞  

 

this contradicts the condition of Zoutendijk [22]. Hence, the proof is come true. We now state that Algorithm 

2.1 satisfies the property (*). The Property (*) states that: given a method of form (2), (3), and, 
 

0 < 𝛾 ≤ ‖𝑔𝑘‖ ≤ �̅�, (27)  
 

where 𝛾 and �̅� are positive constant, a method is said to have property. (*), if for all 𝑘 ≥ 1, there a constant 

𝑏 > 1 , 𝜆 > 0, such that |𝛽𝑘| ≤ 𝑏 and ‖𝑠𝑘‖ ≤ 𝜆 implies |𝛽𝑘| ≤
1

2𝑏
, where 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘. 

 

Lemma 2.1.3 

Let Assumption 2.1.1 be satisfied, then property (*) holds when Algorithm 2.1 applied. 

Proof. Suppose that (27) holds, set 𝑏 =  
𝛾2̅̅ ̅̅

𝛾2
> 1, 𝜆 =  

𝛾2

4𝐿�̅�𝑏
> 0.  

From the definition of 𝛽𝑘
𝐴𝑂 that, 

 

|𝛽𝑘
𝐴𝑂| = |

‖𝑔𝑘‖
2−

‖𝑔𝑘‖

‖𝑔𝑘−1‖
|𝑔𝑘
𝑇𝑔𝑘−1|

𝑚𝑎𝑥(‖𝑑𝑘−1‖
2,‖𝑔𝑘−1‖

2)
| ≤

‖𝑔𝑘‖
2−

‖𝑔𝑘‖

‖𝑔𝑘−1‖
|𝑔𝑘
𝑇𝑔𝑘−1|

‖𝑔𝑘−1‖
2 ≤

‖𝑔𝑘‖
2

‖𝑔𝑘−1‖
2 ≤

𝛾2̅̅ ̅̅

𝛾2
= 𝑏, (28) 

 

by assumption 2.2.1, and properties of norm, we can get that if 𝑠𝑘−1 ≤ 𝜆 , then, 
 

|𝛽𝑘
𝐴𝑂| = |

‖𝑔𝑘‖
2−

‖𝑔𝑘‖

‖𝑔𝑘−1‖
|𝑔𝑘
𝑇𝑔𝑘−1|

𝑚𝑎𝑥(‖𝑑𝑘−1‖
2,‖𝑔𝑘−1‖

2)
| ≤

|‖𝑔𝑘‖
2−

‖𝑔𝑘‖

‖𝑔𝑘−1‖
|𝑔𝑘
𝑇𝑔𝑘−1||

‖𝑔𝑘−1‖
2 ≤

|‖𝑔𝑘‖(‖𝑔𝑘‖−
|𝑔𝑘
𝑇𝑔𝑘−1|

‖𝑔𝑘−1‖
|

‖𝑔𝑘−1‖
2 ,  

≤
‖𝑔𝑘‖(‖𝑔𝑘−

|𝑔𝑘
𝑇𝑔𝑘−1|

‖𝑔𝑘−1‖
‖)

‖𝑔𝑘−1‖
2 ≤

‖𝑔𝑘‖ (‖𝑔𝑘−𝑔𝑘−1‖+‖𝑔𝑘−1−
|𝑔𝑘
𝑇𝑔𝑘−1|

‖𝑔𝑘−1‖
‖)

‖𝑔𝑘−1‖
2 ≤

‖𝑔𝑘‖ (‖𝑔𝑘−𝑔𝑘−1‖+‖𝑔𝑘−1−𝑔𝑘‖)

‖𝑔𝑘−1‖
2 ,  

 ≤
‖𝑔𝑘‖ (‖𝑔𝑘−𝑔𝑘−1‖+‖𝑔𝑘−𝑔𝑘−1‖)

‖𝑔𝑘−1‖
2 ≤

2𝐿𝜆�̅�

𝛾2
=

1

2𝑏
. 

 

 

3. NUMERICAL DISCUSSIONS  

In this section, we ran some experiments to put the Algorithm 2.1 to the test; we referred to test 

problem addressed in Andrei [23]. In order to compare the performance of the proposed formula with those 

of the CG methods listed in (6) and (7). The comparisons were based on the amount of time spent on the 

CPU and the number of iterations. Considered 𝜀 =  10−6 and ‖𝑔𝑘‖  ≤  𝜀 as a stopping criterion as presented 

in Hillstrom [24]. All test problems in Table 1 are executed using MATLAB. 
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Table 1. Problem functions list 
No. Function N Initial point 

1. Six hump 2 (4,4),(10,10) 

2. Booth 2 (25,25),(100,100) 

3. Treccani 2 (5,5),(10,10) 

4. Three hump 2 (-5,5),(-3,12) 

5. Zettl 2 (15,15),(10,10) 

6. Leon 2 (20,20),(50,50) 

7. Matyas 2 (15,15),(6,6) 

8. Wood 4 (6,6,6,6),(13,13,13,13) 

9. Colville 4 (10,10,10,10),(30,30,30,30) 

10. Powell 4 (2,2,2,2),(20,20,20,20) 

11. Power 4 

10,100 

(2,2,2,2),(8,8,8,8) 

(2,2,…,2),(8,8,…,8) 

12. Extended Peanlty 2, 4 

100,500 

(5,5),(11,11),(5,5,5,5),(11,11,11,11) 

(5,5,…5),(11,11,…,11) 

13. Generalized Tridiagonal 1 2,4 

10,100,500 

(5,5),(20,20),(5,5,5,5),(20,20,20,20) 

(5,5,…,5),(20,20,…,20) 

14. Raydan 1 2,4 

10,100 

(3,3),(10,10),(3,3,3,3),(10,10,10,10) 

(3,3,…,3),(10,10,…,10) 

15. Dixon and Price 4 

10,100 

(80,80,80,80),(150,150,150,150) 

(80,80,…,80),(150,150,…,150) 

16. Hager 4 

10,100 

(2,2,2,2),(15,15,15,15) 

(2,2,…,2),(15,15,…,15) 

17. Flethcr 4 

10,100,500 

(40,40,40,40),(60,60,60,60) 

(40,40,…,40),(60,60,…,60) 

18. Nonscomp 2 

10,100 

(8,8),(-1,-1) 

(8,8,…,8),(-1,-1,…,-1) 

19. Extended Freudenstein and Roth 4 

10,100,500 

(-3,-3,-3,-3),(7,7,7,7) 

(-3,-3,…,-3),(7,7,…,7) 

20. Generalized Tridiagonal 2 4 

10,100,500 

(1,1,1,1),(4,4,4,4) 

(1,1,…,1),(4,4,…,4) 

21. Extended Quadratic Penalty QP2 4 

10,100,500,1000 

(6,6,6,6),(14,14,14,14) 

(6,6,…,6),(14,14,…,14) 

22. Extended Beale 4 

10,100,500,1000,10000 

(-1,-1,-1,-1),(2,2,2,2) 

(-1,-1,…,-1),(2,2,…,2) 

23. Diagonal 4 500,1000,10000 (7,7,…,7),(18,18,…,18) 

24. Extended Maratos 10,100,500,1000 (0.5,0.5,…,0.5),(1.5,1.5,…,1.5) 

25. Shallow 100,500,1000,10000 (-5,-5,…,-5),(-20,-20,…,-20) 

26. Extended Rosen Brock 100,500,1000,10000 (5,5,…,5),(10,10,…,10) 

27. Extended White and Holst 10,100,500,1000,10000 (-5,-5,…,-5),(-7,-7,…,-7) 

28. Quadratic QF2 10,100,500,1000 (2,2,…,2),(60,60,…,60) 

29. Extended Denschnb 10,100,500,1000,10000 (4,4,…,4),(16,16,…,16) 

30. Extended Himmelblau 10,100,500,1000,10000 (30,30,…,30),(200,200,…,200) 

 

 

Figures 1 and 2 display performance results that were established using the performance profile 

proposed by Dolan and More [25]. Based on their performance profile, we take 𝑡𝑝,𝑠 to be the outcome when 

the solver 𝑠 is used to solve problem, and 𝑟𝑝,𝑠 to be the ratio  
𝑡𝑝,𝑠

min{𝑡𝑝,𝑠∶𝑠 ∈𝑆}
, where 𝑆 is the set of all solvers. 

Then we can order the values 𝑟𝑝,𝑠 increasingly and plot them versus 𝑝𝑠(𝑡), where 𝑝𝑠(𝑡) is the ratio 
𝑇ℎ𝑒 𝑜𝑟𝑑𝑒𝑟 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠
. Clearly the method of top curve is the winner. Overall, a solver with a high p(t) value 

or the curve that seems on top of the Figures is the most effective problem solver. As can be seen in Figures 1 

and 2, our new proposed hast the choicest results whenever it could solve every test problem as in Table 2. 
 

 

 
 

Figure 1. Performance results based on the number of iterations 
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Figure 2. Performance results based on the CPU time 
 

 

Table 2. Relative efficiency of the methods 
AO RMIL RMIL+ NPRP FR 

1 0.7812 0.8143 0.8516 0.8094 

 

 

4. CONCLUSION  

In this paper, we presented a parameter for 𝛽𝑘 that has better convergence. Numerical outcomes 

have reflected that proposed formula 𝛽𝑘 highlighted better than FR, RMIL, RMIL+ and NPRP. In the future, 

the new formula can be applied under another line search. 
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