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Bug finding is a critical component of the verification flow and is resource
intensive. In a typical week, a debug engineer writes triages, which take up
significant amount of time that could be spent debugging another unique issue,
and the lack of standardization in scripting causes maintainability issues in
functional verification bug triage. A framework that allows customizable
triage script generation is developed based on inputs from the engineer
deploying YAML isn’t another markup language (YAML) files and practical
extraction and report language (PERL) scripting, and this methodology is
made automated and is standardized across projects to ensure maximum
benefit going forward. The use of auto-triage in the project of functional
verification bug triage has contributed to a 18% increase in triaged signatures
on average, from 40% before its use to 58% after. A similar earlier project vs.
current project comparison shows a 20% uplift. The triaged inputs that are
parsed are currently being fed to a machine learning algorithm, which will
help further improve the debug efficiency. As part of future work, the

information from input YAML files can be used to analyze simulation failure
attributes, hence improving the overall efficiency of debugging.
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1. INTRODUCTION

In any verification industry, source codes, details regarding the project, bugs, or simulation failures
are stored in large-scale databases called repositories. One such repository for storing all the details related to
bugs or simulation failures is the bug repository. Core verification companies spend a significant amount of
time just debugging the issues and filing them. A bug tracking system will be employed by most of the large
ventures to support debug details and aid developers in handling debug details. The quantity of bug data is one
of the challenges that engineers face. As the complexity of the processor increases, it becomes difficult to
handle such large-scale information manually. The other challenge is its quality. The quality is measured in
terms of redundancy, which squanders the limited debugging time. The efficiency of the core verification
process can be enhanced by reducing the redundancy and introducing automation wherever possible. At the
projectpeak, several thousand simulations are run every week for complex central processing unit/processor
(CPU) cores. Among them, a few thousand produce simulation failures. The failures produced are not all
unique, and most of them can be categorized based on some unique fingerprints that are found in logs. This
process is called triaging. For example, there are 100 failures of a particular type called “signature.” One is
debugged, and there are 99 unassigned fails. To identify the failures that can be associated with the same bug,
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a triage script is written that parses logs from all the unassigned failures and matches the unique fingerprint
linked to that bug and marks them as debugged. In a typical week, a debug engineer writes 3 triages, which
take 30 minutes each and eat up the time that could be spent debugging a unique issue. In most cases, triaging
is considered as assigning the different bugs to the developer accurately. A predictive model is used to
determine which developer is best suited to analyze the bug [1], [2]. Extended techniques were proposed to
enhance the accuracy of text classification, such as reduction techniques [3]. Also, formulation of bug reports
that are adversarial have helped to some extent [4]. Data reduction methods are adopted to reduce the
redundancy and increase the quality of the bug data in the repositories [5]-[7]. Bug triaging has been made
automated using numerous machine learning techniques [8]. The graph methods were also adopted for efficient
triaging [9]-[25]. The contributions made by this paper primarily are Time consumed due to the manual triaging
process has been very high, and this problem has been addressed by automating the same. The problem of lack
of stan- dardization and maintainability issues has been addressed. The paper is organized as follows: Section
2 gives the analysis of the triaging process and the manual triaging. In section 3 provides the details on how
the triaging gets automated using practical extraction and report language (PERL) scripting and how the issues
of standardization and time consumption have been eliminated. In section 4 provides results and analysis.
In section 5 contains the conclusion.

2. TRIAGING PROCESS

The flow of the core verification bug triage process is as shown in Figure 1. The fails get assigned to
each of the engineers for the purpose of debugging. The status of that fail becomes “assigned.” The path for
debugging the fail will be present in the database itself. The fail has to be debugged to formulate the bug report.
The procedure for debugging any fail in is discussed in this section. The sim.out file, which is the output file
of the simulation, has to be read and analyzed. The error due to which the corresponding fail has emerged will
be obtained here in the sim out file. Signatures are unique fingerprints that are used to classify failures. Fails
that occur due to the same root cause will have similar signatures. These signatures indicate the root cause of
the fail. The details of the signature will be present in sim.out files along with the last instruction due to the
execution of which the error was encountered. After checking the sim.out file, other configuration and register
transfer level (RTL) microcode files have to be checked where the other information required, such as dispatch
and retire cycles of each instruction, registe contents after the execution of each instruction, and exceptions
caused is checked, thereby finding the root cause for it.
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Figure 1. Core verification bug triage process flow
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Then the information collected is produced in detail in the form of a bug report. Once the bug report
has been filed, a big number will be obtained and the status of that fail in the database will change to ‘debugged’
as shown in Figure 2. The bug number is used to mark similar fails as “debugged.” The next step is to create a
triage script. The triage script is written in the PERL language. The PERL scripting language was chosen as it
is well known for processing texts and analysis of strings. This script is used to categorize all the failures that
occurred due to the same root cause. A triage script contains fields such as the owner’s name, batch name, i.e.,
the regression batch to which it belongs, signature, and other information. The first section of the triage script
contains the database query. Simulation results will have simulation fails from all the regressions. It has to be
made sure that selected fails are from the current project only.

A database query includes entering into the database and parsing the logs. The database module at the
back end is responsible for the previously mentioned operations. Many arguments have to be given to the
database query module, such as project name, owner name, regression batch and bug number. All the fails that
are of the project other than the one mentioned in the database query will be removed. The next section of the
triage script is the signature matching. The script parses the sim.out log file, does string comparison, and checks
if the signatures match. If so, then it moves to the next part of the code. The next section is the logic matching
for which the RTL code log file has to be parsed. The script looks for any exceptions and the last instructions
due to which the fail is encountered. If these match, the next few sections are code line and the change list
check. The fails which satisfy all these checks will be marked as “debugged” with the same bug number as
they have been caused by the same root cause. Similarly, all the other fails in the database get marked as
’debugged’ thereby achieving the faster verification cycles. The manual process of triaging as depicted by
Figure 3 includes writing the whole triage script manually, and these triage scripts are unique for each fail.
After debugging a specific fail, the engineer writes the entire triage script for that The database query set up
function is hard coded within the script itself. So, unless the source code itself is changed, the database query
cannot be altered. This dependency makes it harder to port the triage script across different regressions. In a
typical week, a debug engineer writes 3 triages, which take around 30 minutes each and eat up the time that
could be spent debugging a unique issue. So, automation is required.

Debug Record

State:
DEBUGGED v

Component:
(none) v
This list is created from the UBTS hierarchy for this project

Owner(s):
sheetash
Comma separated Unix IDs only

Bug Number(s):
DENVRTVF-18851
Comma separated, numbers only

Figure 2. Window showing the status of the fail

[ Manual triaging J

Triage script

[ Mark similar fails J

Figure 3. Current triaging process
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3. PROPOSED METHOD

The proposed solution replaces the manual effort in triaging with a YAML isn’t another markup language
(YAML) input-based methodology and is represented in Figure 4. The user needs to add the triage inputs in a
key: value format that is then processed and returned in the form of a PERL script that follows a standardized
format. The automated triage script that is now generated is independent of the database query attributes. It
invokes a specialized PERL module called the triage helper that handles the setup code of the triage so that
only the matching logic remains in the generated PERL script. A command line interface is adopted that accepts
the query attributes that can range from feature bring up regressions to derivative core regressions, ensuring
portability of triages across regressions. To give inputs, a YAML format file is used. Data in YAML is written
in key: value pair format. The details that are to be given are just these oneword values. The details to be
provided are owner name, error message, bug number, signature, and instruction. These details are given to the
framework called triage generator that generates a triage script automatically considering YAML as input file.

@

Substitutes triage
writing process

Triage script

[ Mark similar fails }

Figure 4. Automated triaging process

3.1. Triage generator

The triage generator plays an important role in the generation of the triage script. The triage gen-erator
is built using PERL language that enables it to read the information present in the YAML file and setup the
database query on its own. The process in which the triage helper is designed and it proceeds is shown in
Figure 5. The signature field from the YAML file is taken as the first argument and is used to parse the sim.out
file where the script searches for the string “error:” and reads until the end so as to get the information about
the fail. Then it tries to compare the strings obtained from the YAML file with the strings read from the new
sim.out file which the script parses. If the signature matches, then it goes to the next section, which is logic
matching. The Triage script has to parse the configuration files, RTL files, and simulation files in order to
perform the logic matching. For this operation, the script removes all the other strings except the series of
strings present in the last instruction cycle. Once the last instruction and the register contents match, then it
tries to match the exceptions or interrupts that occurred if there are any, in the YAML file. Then the code line
and changelist checks occur. There are separate modules for each of them, and the triage generator
automatically generates the entire script required. If the bug number is ABCDO0O01, then the triage script
generated by the triage generator will be saved as ABCDO001.pl. The format of the triage script is shown in
Figure 6. There occurs redundancy problem due to several problems such as side regression, tape out branch
and derivativecores triaging. To solve the redundancy problem, the solution involves making the triage smarter.

3.2. Proposed solution to eliminate redundancy

Towards the back end of the project, in order to keep the tape out code line clean, a branch is forked
off the trunk called the tape out branch. The tape out branch creates an obstacle in triaging because now the
triages need to cater to two different code lines. Previous projects circumvented this problem by creating a
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clone of each trunk bug on the tape out branch and then using that to create two identical triages that only differ
in the bug number they use. This can be observed in Figure 7. The p1 label mentioned in Figures 7-10 indicates
parent core name representing the project name. This creates a redundancy in the bug filed since most bugs are
not even considered for a tape out branch fix and are outright rejected, while creating two identical triages uses

up unnecessary disc space.

Process command-line options
and the default

I

Get an instance to the Database
query object
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~
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Figure 5. Triage flow
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Figure 6. Triage script details
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Figure 8. Proposed solution to reduce redundancy
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Figure 9. Triage failing at the code line check

Only issues approved for a tape out branch go through a creep process where a bug is automatically
filed to track that fix on the branch. The triage helper uses the original bug number to issue an API call where
it picks up the bug number and the code line for the automatically filed creep bug. It then creates an interface
and leverages the existing database triage code, enabling a single triage script to service both code lines. This
is represented in Figure 8. Text mining was also being used to reduce redundancy [20]. In a CPU core that
spawns multiple derivative cores, it becomes important to extend the triaging process to those cores that
undergo a process of auto integration using the parent core code line. The debug engineer who looks at the
simulation failures of derivative cores often runs into issues that were found on the parent core as they are
being brought up in parallel, leading to duplication of effort as shown in Figure 9. The label d1lmentioned in
Figures 9 and 10 indicates the derivative core. The triages need to be able to map the parent code line version
onto the derivative core to mark simulation failures. Derivative cores undergo a periodic (often daily) auto
merge process. In order to pass the code line check, the triage helper maps the fixed revision in parent core
bugs to the relevant code line and change list specified in a runtime argument by making a perforce call as
shown in Figure 10.

» Corresponding d1 change list

&+ BxB

Revision where ﬁied :
pl1/p1_trunk@372213
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Project : p1
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/

Figure 10. Proposed solution for derivative core triaging

4. RESULTS AND DISCUSSION

The data on number of triaged signatures were noted down for the span of two years and it is rep-
resented in Tables 1 and 2. Table 1 represents the number of signatures triaged before the check-in of automated
triage process. Table 2 represents the number of signatures triaged after the check-in of automated triage
process. The data is represented graphically as shown in Figure 11, before the check-in of automated triaging,
the average percentage of signatures that ended up being triaged were around 40%. And once the triaging has
been made automated, the average percentage of signatures that are being triaged has become 58%. From this,
it can be said that the use of automated triage in the project of functional verification bug triage has contributed
to a 18% increase in triaged signatures on average.

Indonesian J Elec Eng & Comp Sci, Vol. 32, No. 3, December 2023: 1361-1369



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 O 1367

Table 1. Data indicating the number of triaged signatures before automation
Month/year  No. of triaged signatures in (%)

Mar/2020 35
Apr/2020 28
May/2020 39
Jun/2020 45
Jul/2020 65
Aug/2020 35
Sep/2020 44
Oct/2020 31
Nov/2020 30
Dec/2020 40
Jan/2021 33
Feb/2021 35

This methodology greatly eases the parsing problem, and the triaged inputs that are now parsed are
currently being fed to a machine learning algorithm [21], which will help further improve the debug efficiency.
As part of future work, the information from input YAML files can be used to analyze simulation failure
attributes. A direct consequence of this is a reductionin duplicate debugs. The comprehensive automation of
the triaging framework has helped save engineeringtime that would have otherwise been spent manually coding
and porting the triages across projects. There are many disadvantages of approaches used to reduce the
redundancy in the bug data, keyword extraction [14]. But eliminating the whole string series and consider only
required bug information as done in [15] proved to be efficient. This in turn free sup time that can now be spent
on debugging and therefore helps improve debugrates.

Table 2. Data indicating the number of triaged signatures after automation
Month/year  No. of triaged signatures in (%) Month/year  No. of triaged signatures in (%)

Mar/2021 61 Nov/2021 53
Apr/2021 45 Dec/2021 57
May/2021 55 Jan/2022 64
Jun/2021 57 Feb/2022 59
Jul/2021 59 Mar/2022 52
Aug/2021 62 Apr/2022 67
Sep/2021 58 May/2022 65
Oct/2021 51 Jun/2022 63

Auto-triage checked in
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Figure 11. Week over week triaged signatures data

5. CONCLUSION

Triages now take a fraction of the time to write. As a result, problems associated with missing triages,
such as duplicate debug effort, are avoided. The proposed methodology reduces duplicate effort in the form of
redundancy, by eliminating cloning of bugs and creating multiple copies of a triage, for each tape out branches.
The triage helper usage in the script has now extended the triaging mechanism beyond mainline core
regressions and into side regressions, tape out branches, and derivative core regressions with no extra effort for
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the engineer. The automation of the triage writing process ensures standardization of format across projects,
which makes the code readable and maintainable. Hence, an automated approach to improve functional
verification bug triage has uplifted the efficiency by 18%. There will be a difficulty in comparing the results
of the proposed framework with the related models because of the different mode of analysis and metrics used.
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