
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 32, No. 3, December 2023, pp. 1361~1369

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v32.i3.pp1361-1369 1361

Journal homepage: http://ijeecs.iaescore.com

Design and development of frameworks for CPU verification

efficiency improvement

Sheetal Singrihalli Hemaraj1, Shylashree Nagaraja1, Sunitha Yariyur Narasimhaiah2, Madhu Patil3
1Department of Electronics and Communication Engineering, RV College of Engineering, Bengaluru, India
2Department of Electronics and Communication Engineering, SJB Institute of Technology, Bengaluru, India

3Department of Computer Science and Engineering, BGS College of Engineering and Technology, Bengaluru, India

Article Info ABSTRACT

Article history:

Received Jun 30, 2022

Revised Jan 31, 2023

Accepted Oct 8, 2023

 Bug finding is a critical component of the verification flow and is resource

intensive. In a typical week, a debug engineer writes triages, which take up

significant amount of time that could be spent debugging another unique issue,
and the lack of standardization in scripting causes maintainability issues in

functional verification bug triage. A framework that allows customizable

triage script generation is developed based on inputs from the engineer

deploying YAML isn’t another markup language (YAML) files and practical
extraction and report language (PERL) scripting, and this methodology is

made automated and is standardized across projects to ensure maximum

benefit going forward. The use of auto-triage in the project of functional

verification bug triage has contributed to a 18% increase in triaged signatures
on average, from 40% before its use to 58% after. A similar earlier project vs.

current project comparison shows a 20% uplift. The triaged inputs that are

parsed are currently being fed to a machine learning algorithm, which will

help further improve the debug efficiency. As part of future work, the
information from input YAML files can be used to analyze simulation failure

attributes, hence improving the overall efficiency of debugging.

Keywords:

Debugging

Functional verification bug

triage

PERL

Triaging

YAML

This is an open access article under the CC BY-SA license.

Corresponding Author:

Shylashree Nagaraja

Department of Electronics and Communication Engineering, RV College of Engineering

RV Vidyanikethan Post, 8th Mile, Mysuru Road, Bengaluru, Karnataka, India

Email: shylashreen@rvce.edu.in

1. INTRODUCTION

In any verification industry, source codes, details regarding the project, bugs, or simulation failures

are stored in large-scale databases called repositories. One such repository for storing all the details related to

bugs or simulation failures is the bug repository. Core verification companies spend a significant amount of

time just debugging the issues and filing them. A bug tracking system will be employed by most of the large

ventures to support debug details and aid developers in handling debug details. The quantity of bug data is one

of the challenges that engineers face. As the complexity of the processor increases, it becomes difficult to

handle such large-scale information manually. The other challenge is its quality. The quality is measured in

terms of redundancy, which squanders the limited debugging time. The efficiency of the core verification

process can be enhanced by reducing the redundancy and introducing automation wherever possible. At the

projectpeak, several thousand simulations are run every week for complex central processing unit/processor

(CPU) cores. Among them, a few thousand produce simulation failures. The failures produced are not all

unique, and most of them can be categorized based on some unique fingerprints that are found in logs. This

process is called triaging. For example, there are 100 failures of a particular type called “signature.” One is

debugged, and there are 99 unassigned fails. To identify the failures that can be associated with the same bug,

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 32, No. 3, December 2023: 1361-1369

1362

a triage script is written that parses logs from all the unassigned failures and matches the unique fingerprint

linked to that bug and marks them as debugged. In a typical week, a debug engineer writes 3 triages, which

take 30 minutes each and eat up the time that could be spent debugging a unique issue. In most cases, triaging

is considered as assigning the different bugs to the developer accurately. A predictive model is used to

determine which developer is best suited to analyze the bug [1], [2]. Extended techniques were proposed to

enhance the accuracy of text classification, such as reduction techniques [3]. Also, formulation of bug reports

that are adversarial have helped to some extent [4]. Data reduction methods are adopted to reduce the

redundancy and increase the quality of the bug data in the repositories [5]–[7]. Bug triaging has been made

automated using numerous machine learning techniques [8]. The graph methods were also adopted for efficient

triaging [9]-[25]. The contributions made by this paper primarily are Time consumed due to the manual triaging

process has been very high, and this problem has been addressed by automating the same. The problem of lack

of stan- dardization and maintainability issues has been addressed. The paper is organized as follows: Section

2 gives the analysis of the triaging process and the manual triaging. In section 3 provides the details on how

the triaging gets automated using practical extraction and report language (PERL) scripting and how the issues

of standardization and time consumption have been eliminated. In section 4 provides results and analysis.

In section 5 contains the conclusion.

2. TRIAGING PROCESS

The flow of the core verification bug triage process is as shown in Figure 1. The fails get assigned to

each of the engineers for the purpose of debugging. The status of that fail becomes “assigned.” The path for

debugging the fail will be present in the database itself. The fail has to be debugged to formulate the bug report.

The procedure for debugging any fail in is discussed in this section. The sim.out file, which is the output file

of the simulation, has to be read and analyzed. The error due to which the corresponding fail has emerged will

be obtained here in the sim out file. Signatures are unique fingerprints that are used to classify failures. Fails

that occur due to the same root cause will have similar signatures. These signatures indicate the root cause of

the fail. The details of the signature will be present in sim.out files along with the last instruction due to the

execution of which the error was encountered. After checking the sim.out file, other configuration and register

transfer level (RTL) microcode files have to be checked where the other information required, such as dispatch

and retire cycles of each instruction, registe contents after the execution of each instruction, and exceptions

caused is checked, thereby finding the root cause for it.

Figure 1. Core verification bug triage process flow

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Design and development of frameworks for CPU verification … (Sheetal Singrihalli Hemaraj)

1363

Then the information collected is produced in detail in the form of a bug report. Once the bug report

has been filed, a big number will be obtained and the status of that fail in the database will change to ‘debugged’

as shown in Figure 2. The bug number is used to mark similar fails as “debugged.” The next step is to create a

triage script. The triage script is written in the PERL language. The PERL scripting language was chosen as it

is well known for processing texts and analysis of strings. This script is used to categorize all the failures that

occurred due to the same root cause. A triage script contains fields such as the owner’s name, batch name, i.e.,

the regression batch to which it belongs, signature, and other information. The first section of the triage script

contains the database query. Simulation results will have simulation fails from all the regressions. It has to be

made sure that selected fails are from the current project only.

A database query includes entering into the database and parsing the logs. The database module at the

back end is responsible for the previously mentioned operations. Many arguments have to be given to the

database query module, such as project name, owner name, regression batch and bug number. All the fails that

are of the project other than the one mentioned in the database query will be removed. The next section of the

triage script is the signature matching. The script parses the sim.out log file, does string comparison, and checks

if the signatures match. If so, then it moves to the next part of the code. The next section is the logic matching

for which the RTL code log file has to be parsed. The script looks for any exceptions and the last instructions

due to which the fail is encountered. If these match, the next few sections are code line and the change list

check. The fails which satisfy all these checks will be marked as ”debugged” with the same bug number as

they have been caused by the same root cause. Similarly, all the other fails in the database get marked as

’debugged’ thereby achieving the faster verification cycles. The manual process of triaging as depicted by

Figure 3 includes writing the whole triage script manually, and these triage scripts are unique for each fail.

After debugging a specific fail, the engineer writes the entire triage script for that The database query set up

function is hard coded within the script itself. So, unless the source code itself is changed, the database query

cannot be altered. This dependency makes it harder to port the triage script across different regressions. In a

typical week, a debug engineer writes 3 triages, which take around 30 minutes each and eat up the time that

could be spent debugging a unique issue. So, automation is required.

Figure 2. Window showing the status of the fail

Figure 3. Current triaging process

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 32, No. 3, December 2023: 1361-1369

1364

3. PROPOSED METHOD

The proposed solution replaces the manual effort in triaging with a YAML isn’t another markup language

(YAML) input-based methodology and is represented in Figure 4. The user needs to add the triage inputs in a

key: value format that is then processed and returned in the form of a PERL script that follows a standardized

format. The automated triage script that is now generated is independent of the database query attributes. It

invokes a specialized PERL module called the triage helper that handles the setup code of the triage so that

only the matching logic remains in the generated PERL script. A command line interface is adopted that accepts

the query attributes that can range from feature bring up regressions to derivative core regressions, ensuring

portability of triages across regressions. To give inputs, a YAML format file is used. Data in YAML is written

in key: value pair format. The details that are to be given are just these oneword values. The details to be

provided are owner name, error message, bug number, signature, and instruction. These details are given to the

framework called triage generator that generates a triage script automatically considering YAML as input file.

Figure 4. Automated triaging process

3.1. Triage generator

The triage generator plays an important role in the generation of the triage script. The triage gen-erator

is built using PERL language that enables it to read the information present in the YAML file and setup the

database query on its own. The process in which the triage helper is designed and it proceeds is shown in

Figure 5. The signature field from the YAML file is taken as the first argument and is used to parse the sim.out

file where the script searches for the string “error:” and reads until the end so as to get the information about

the fail. Then it tries to compare the strings obtained from the YAML file with the strings read from the new

sim.out file which the script parses. If the signature matches, then it goes to the next section, which is logic

matching. The Triage script has to parse the configuration files, RTL files, and simulation files in order to

perform the logic matching. For this operation, the script removes all the other strings except the series of

strings present in the last instruction cycle. Once the last instruction and the register contents match, then it

tries to match the exceptions or interrupts that occurred if there are any, in the YAML file. Then the code line

and changelist checks occur. There are separate modules for each of them, and the triage generator

automatically generates the entire script required. If the bug number is ABCD001, then the triage script

generated by the triage generator will be saved as ABCD001.pl. The format of the triage script is shown in

Figure 6. There occurs redundancy problem due to several problems such as side regression, tape out branch

and derivativecores triaging. To solve the redundancy problem, the solution involves making the triage smarter.

3.2. Proposed solution to eliminate redundancy

Towards the back end of the project, in order to keep the tape out code line clean, a branch is forked

off the trunk called the tape out branch. The tape out branch creates an obstacle in triaging because now the

triages need to cater to two different code lines. Previous projects circumvented this problem by creating a

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Design and development of frameworks for CPU verification … (Sheetal Singrihalli Hemaraj)

1365

clone of each trunk bug on the tape out branch and then using that to create two identical triages that only differ

in the bug number they use. This can be observed in Figure 7. The p1 label mentioned in Figures 7-10 indicates

parent core name representing the project name. This creates a redundancy in the bug filed since most bugs are

not even considered for a tape out branch fix and are outright rejected, while creating two identical triages uses

up unnecessary disc space.

Figure 5. Triage flow

Figure 6. Triage script details

Figure 7. Redundand flow

Figure 8. Proposed solution to reduce redundancy

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 32, No. 3, December 2023: 1361-1369

1366

Figure 9. Triage failing at the code line check

Only issues approved for a tape out branch go through a creep process where a bug is automatically

filed to track that fix on the branch. The triage helper uses the original bug number to issue an API call where

it picks up the bug number and the code line for the automatically filed creep bug. It then creates an interface

and leverages the existing database triage code, enabling a single triage script to service both code lines. This

is represented in Figure 8. Text mining was also being used to reduce redundancy [20]. In a CPU core that

spawns multiple derivative cores, it becomes important to extend the triaging process to those cores that

undergo a process of auto integration using the parent core code line. The debug engineer who looks at the

simulation failures of derivative cores often runs into issues that were found on the parent core as they are

being brought up in parallel, leading to duplication of effort as shown in Figure 9. The label d1mentioned in

Figures 9 and 10 indicates the derivative core. The triages need to be able to map the parent code line version

onto the derivative core to mark simulation failures. Derivative cores undergo a periodic (often daily) auto

merge process. In order to pass the code line check, the triage helper maps the fixed revision in parent core

bugs to the relevant code line and change list specified in a runtime argument by making a perforce call as

shown in Figure 10.

Figure 10. Proposed solution for derivative core triaging

4. RESULTS AND DISCUSSION

The data on number of triaged signatures were noted down for the span of two years and it is rep-

resented in Tables 1 and 2. Table 1 represents the number of signatures triaged before the check-in of automated

triage process. Table 2 represents the number of signatures triaged after the check-in of automated triage

process. The data is represented graphically as shown in Figure 11, before the check-in of automated triaging,

the average percentage of signatures that ended up being triaged were around 40%. And once the triaging has

been made automated, the average percentage of signatures that are being triaged has become 58%. From this,

it can be said that the use of automated triage in the project of functional verification bug triage has contributed

to a 18% increase in triaged signatures on average.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Design and development of frameworks for CPU verification … (Sheetal Singrihalli Hemaraj)

1367

Table 1. Data indicating the number of triaged signatures before automation
Month/year No. of triaged signatures in (%)

Mar/2020 35

Apr/2020 28

May/2020 39

Jun/2020 45

Jul/2020 65

Aug/2020 35

Sep/2020 44

Oct/2020 31

Nov/2020 30

Dec/2020 40

Jan/2021 33

Feb/2021 35

This methodology greatly eases the parsing problem, and the triaged inputs that are now parsed are

currently being fed to a machine learning algorithm [21], which will help further improve the debug efficiency.

As part of future work, the information from input YAML files can be used to analyze simulation failure

attributes. A direct consequence of this is a reductionin duplicate debugs. The comprehensive automation of

the triaging framework has helped save engineeringtime that would have otherwise been spent manually coding

and porting the triages across projects. There are many disadvantages of approaches used to reduce the

redundancy in the bug data, keyword extraction [14]. But eliminating the whole string series and consider only

required bug information as done in [15] proved to be efficient. This in turn free sup time that can now be spent

on debugging and therefore helps improve debugrates.

Table 2. Data indicating the number of triaged signatures after automation
Month/year No. of triaged signatures in (%) Month/year No. of triaged signatures in (%)

Mar/2021 61 Nov/2021 53

Apr/2021 45 Dec/2021 57

May/2021 55 Jan/2022 64

Jun/2021 57 Feb/2022 59

Jul/2021 59 Mar/2022 52

Aug/2021 62 Apr/2022 67

Sep/2021 58 May/2022 65

Oct/2021 51 Jun/2022 63

Figure 11. Week over week triaged signatures data

5. CONCLUSION

Triages now take a fraction of the time to write. As a result, problems associated with missing triages,

such as duplicate debug effort, are avoided. The proposed methodology reduces duplicate effort in the form of

redundancy, by eliminating cloning of bugs and creating multiple copies of a triage, for each tape out branches.

The triage helper usage in the script has now extended the triaging mechanism beyond mainline core

regressions and into side regressions, tape out branches, and derivative core regressions with no extra effort for

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 32, No. 3, December 2023: 1361-1369

1368

the engineer. The automation of the triage writing process ensures standardization of format across projects,

which makes the code readable and maintainable. Hence, an automated approach to improve functional

verification bug triage has uplifted the efficiency by 18%. There will be a difficulty in comparing the results

of the proposed framework with the related models because of the different mode of analysis and metrics used.

REFERENCES
[1] J. Xuan et al., “Towards effective bug triage with software data reduction techniques,” IEEE Transactions on Knowledge and Data

Engineering, vol. 27, no. 1, pp. 264–280, Jan. 2015, doi: 10.1109/TKDE.2014.2324590.

[2] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic summarization of bug reports,” IEEE Transactions on Software Engineering,

vol. 40, no. 4, pp. 366–380, Apr. 2014, doi: 10.1109/TSE.2013.2297712.

[3] N. Sreenivas and S. J. Saritha, “Enhancement towards efficient bug triage with software data reducing methods,” in 2017

International Conference on Energy, Communication, Data Analytics and Soft Computing, ICECDS 2017, Aug. 2018, pp. 3649–

3652, doi: 10.1109/ICECDS.2017.8390144.

[4] M. H. Kim, D. S. Wang, S. T. Wang, S. H. Park, and C. G. Lee, “Improving the robustness of the bug triage model through

adversarial training,” in International Conference on Information Networking, Jan. 2022, vol. 2022-Janua, pp. 478–481, doi:

10.1109/ICOIN53446.2022.9687279.

[5] A. Goyal, “Effective bug triage for non-reproducible bugs,” in 2017 IEEE/ACM 39th International Conference on Software

Engineering Companion (ICSE-C), May 2017, pp. 487–488, doi: 10.1109/ICSE-C.2017.41.

[6] C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more accurate retrieval of duplicate bug reports,” in 2011 26th IEEE/ACM

International Conference on Automated Software Engineering, ASE 2011, Proceedings, Nov. 2011, pp. 253–262, doi:

10.1109/ASE.2011.6100061.

[7] V. Jain, A. Rath, and S. Ramaswamy, “Field weighting for automatic bug triaging systems,” in Conference Proceedings - IEEE

International Conference on Systems, Man and Cybernetics, Oct. 2012, pp. 2845–2848, doi: 10.1109/ICSMC.2012.6378180.

[8] M. Alenezi, K. Magel, and S. Banitaan, “Efficient bug triaging using text mining,” Journal of Software, vol. 8, no. 9, pp. 2185–

2190, Sep. 2013, doi: 10.4304/jsw.8.9.2185-2190.

[9] S. F. A. Zaidi and C. G. Lee, “Learning graph representation of bug reports to triage bugs using graph convolution network,” in

International Conference on Information Networking, Jan. 2021, vol. 2021-January, pp. 504–507, doi:

10.1109/ICOIN50884.2021.9333902.

[10] S. F. A. Zaidi, H. Woo, and C. G. Lee, “A graph convolution network-based bug triage system to learn heterogeneous graph

representation of bug reports,” IEEE Access, vol. 10, pp. 20677–20689, 2022, doi: 10.1109/ACCESS.2022.3153075.

[11] S. F. A. Zaidi and C. G. Lee, “One-class classification based bug triage system to assign a newly added developer,” in International

Conference on Information Networking, Jan. 2021, vol. 2021-January, pp. 738–741, doi: 10.1109/ICOIN50884.2021.9334002.

[12] Z. Li and H. Zhong, “Revisiting textual feature of bug-triage approach,” in Proceedings - 2021 36th IEEE/ACM International

Conference on Automated Software Engineering, ASE 2021, Nov. 2021, pp. 1183–1185, doi: 10.1109/ASE51524.2021.9678863.

[13] T. Zhang, G. Yang, B. Lee, and E. K. Lua, “A novel developer ranking algorithm for automatic bug triage using topic model and

developer relations,” in Proceedings - Asia-Pacific Software Engineering Conference, APSEC, Dec. 2014, vol. 1, pp. 223–230, doi:

10.1109/APSEC.2014.43.

[14] T. S. Gadge and N. Mangrulkar, “Approaches for automated bug triaging: a review,” in IEEE International Conference on

Innovative Mechanisms for Industry Applications, ICIMIA 2017 - Proceedings, Feb. 2017, pp. 158–161, doi:

10.1109/ICIMIA.2017.7975592.

[15] V. C. Georgopoulos and C. D. Stylios, “Fuzzy cognitive maps for decision making in triage of non-critical elderly patients,” in 2017

International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Nov. 2017, vol. 2018-Janua, pp. 225–228,

doi: 10.1109/ICIIBMS.2017.8279752.

[16] H. A. Chong and K. B. Gan, “Development of automated triage system for emergency medical service,” in 2016 International

Conference on Advances in Electrical, Electronic and Systems Engineering, ICAEES 2016, Nov. 2017, pp. 642–645, doi:

10.1109/ICAEES.2016.7888125.

[17] V. Dedik and B. Rossi, “Automated bug triaging in an industrial context,” in Proceedings - 42nd Euromicro Conference on Software

Engineering and Advanced Applications, SEAA 2016, Aug. 2016, pp. 363–367, doi: 10.1109/SEAA.2016.20.

[18] A. Oleksiak, S. Cieslak, K. Marcinek, and W. A. Pleskacz, “Design and verification environment for RISC-V processor cores,” in

Proceedings of the 26th International Conference “Mixed Design of Integrated Circuits and Systems”, MIXDES 2019, Jun. 2019,

pp. 206–209, doi: 10.23919/MIXDES.2019.8787108.

[19] H. Yang and D. Ma, “The research on formal verification of CPU structure based on theorem proving,” in Proceedings of the IEEE

International Conference on Software Engineering and Service Sciences, ICSESS, Oct. 2019, vol. 2019-October, pp. 139–143, doi:

10.1109/ICSESS47205.2019.9040731.

[20] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang, “Improving automated bug triaging with specialized topic

model,” IEEE Transactions on Software Engineering, vol. 43, no. 3, pp. 272–297, Mar. 2017, doi: 10.1109/TSE.2016.2576454.

[21] D. Amran, M. Frid-Adar, N. Sagie, J. Nassar, A. Kabakovitch, and H. Greenspan, “Automated triage of covid-19 from various lung

abnormalities using chest ct features,” in 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Apr. 2021, vol.

2021-April, pp. 155–159, doi: 10.1109/ISBI48211.2021.9433803.

[22] S. Chopade and P. More, “Effective bug triage with prim’s algorithm for feature selection,” in Proceedings of IEEE International

Conference on Signal Processing and Communication, ICSPC 2017, Jul. 2018, vol. 2018-January, pp. 217–220, doi:

10.1109/CSPC.2017.8305842.

[23] N. A. Hidayat, P. Megantoro, A. Yurianta, A. Sofiah, S. A. Aldhama, and Y. A. Effendi, “The application of instrumentation system

on a contactless robotic triage assistant to detect early transmission on a COVID-19 suspect,” Indonesian Journal of Electrical

Engineering and Computer Science (IJEECS), vol. 22, no. 3, pp. 1334–1344, Jun. 2021, doi: 10.11591/ijeecs.v22.i3.pp1334-1344.

[24] M. Mohagheghi and K. Salehi, “Improving graph-based methods for computing qualitative properties of markov decision

processes,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 17, no. 3, pp. 1571–1577, 2020,

doi: 10.11591/ijeecs.v18.i1.pp1571-1577.

[25] D. Yashas, P. S. H. Babu, and N. Shylashree, “UVM-based logic verification of input output interface,” in 2019 4th IEEE

International Conference on Recent Trends on Electronics, Information, Communication and Technology, RTEICT 2019 -

Proceedings, May 2019, pp. 420–423, doi: 10.1109/RTEICT46194.2019.9016934.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Design and development of frameworks for CPU verification … (Sheetal Singrihalli Hemaraj)

1369

BIOGRAPHIES OF AUTHORS

Sheetal Singrihalli Hemaraj received her B.E. degree in Electronics and

Communication Engineering at Visvesvaraya Technological University, and her M.Tech. in

VLSI design and embedded systems at RV College of Engineering, India in the year 2022.

Her research lines are CPU core verification, memory in-computation. She can be contacted
at email: sheeta+lsh62@gmail.com.

Shylashree Nagaraja is currently working as Associate Professor in the

Department of Electronics and Communication Engineering at RV College of Engineering,

Bengaluru. She is having 17 years of teaching experience. She was a recipient of the best
Ph.D. thesis award for the year 2016-2017 in Electronics and Communication Engineering

from BITES. She has received the best IEEE researcher award in IEEE-AGM meeting held

during 2021 from Bangalore IEEE section. She has also received the best paper award in

IEEE-ICERECT held during 2015 at Mandya. She has research publication in 40
International Journals (out of which 12 journals are SCI journals), 6 Springer book chapters

and 10 International conferences. She received one US patent grant, two Indian patent grant

in cryptography. She has also received two Indian patent grants in the area of VLSI. She is

also the co-author of the network theory, engineering statistics and linear algebra and control
engineering textbook. She has funded projects consultancy projects and has delivered many

technical talks on VLSI. She has delivered lectures as a subject matter expert in VTU e-

shikshana and EDUSAT program. She is a recipient of an international travel grant under

SERB young research scholar category. She is a life member of ISTE, IETE, fellow member

of ISVE, senior member of IEEE and IEEE CAS Secretary, Bangalore section. Her areas of

interest include cryptography network security, network analysis, analysis and design of

digital circuits, digital VLSI design, analog mixed mode VLSI design, low power VLSI

design, statistics and linear algebra and control engineering. She can be contacted at email:
shylashreen@rvce.edu.in.

Sunitha Yariyur Narasimhaiah is currently working as Assistant Professor in

the Department of Electronics and Communication Engineering at SJB Institute of

Technology, Bengaluru. She is having 16 years of teaching experience. She has completed
her M.Tech and Ph.D. from VTU, Belagavi in the year 2003 and 2020 repectivley. Her areas

of interest are Machine learning algorithm implemented for image fusion applications. She

can be contacted at email: sunithayn@sjbit.edu.in.

Madhu Patil received her Ph.D. degree in Communication from University of

Mysore. She is currently working as Professor in the department of computer science and
Engineering in BGS College of Engineering and Technology, Bengaluru, India. She has 19

years of teaching experience. Her main research interest is in areas of communication and

signal processing. She can be contacted at email: p25.madhu@gmail.com.

mailto:shylashreen@rvce.edu.in
https://orcid.org/0000-0002-2536-6098
https://orcid.org/0000-0003-4185-6190
https://scholar.google.com/citations?hl=en&user=yaTBzd8AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56045640200
https://orcid.org/0000-0003-3119-5536
https://scholar.google.com/citations?hl=en&user=OY9EBzIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55823112400
https://orcid.org/0000-0003-3585-4009
https://www.scopus.com/authid/detail.uri?authorId=57193578965

