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 Due to the variability of weather conditions and equipment properties the 

maximum power point tracking (MPPT) performance is influenced. MPPT 

controllers are widely used to improve photovoltaic (PV) efficiency because 

MPPT can produce maximum power under various weather conditions. 

Among the most used techniques and representing a satisfactory efficiency 

are those based on artificial intelligence. Since the use of neural networks 

requires resources at the implementation level, the optimization of these 

systems is an important phase. This work represents an optimized system for 

tracking the maximum power point, the latter based on a multi-layer neural 

network. The optimized multi layer perceptron (MLP) will ensure a fast 

convergence to the maximum power point with a low oscillation compared 

to the classical method. 
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1. INTRODUCTION  

The recently, renewable energy systems have become very important and photovoltaic (PV) 

technology production has grown exponentially around the world. Among these renewable energy sources, 

the most known and widespread systems in the world are the solar photovoltaic energy and wind energy sources 

[1], [2]. Photovoltaic panels produce electricity by converting sunlight into electricity through the 

photovoltaic effect of semiconductors. Among the advantages and the strong points that encourage the use of 

these renewable sources other than the conventional or traditional energy sources (fossil energy) are the 

following: the renewable energy sources are nearly inexhaustible, clean, green and do not represent a danger 

to the environment [3]. Due to the availability of PV modules, solar PV has seen considerable growth 

compared to other renewable energy technologies. 

The PV modules are recognized by their non-linear behavior and the non-linear current versus 

voltage curve. This means that the production of energy with maximum efficiency is not an easy task, since 

the maximum power points are unique and reaching their specific techniques is important. All these 

techniques are collectively called maximum power point tracking (MPPT) techniques or algorithms. These 

algorithms make the PV system function at about its maximum power point by adapting the impedance of the 

load and the PV source. As a result of their nonlinear characteristics, MPPT techniques are fundamental to 

any PV system.  

https://creativecommons.org/licenses/by-sa/4.0/
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There are dozens of methods that have been reported in the literature to track the maximum power 

point [4], [5]. Among the most widely used methods and techniques used by researchers cited by [6], [7], are 

the following: fractional open circuit voltage, perturbation and observation (P&O), fractional short circuit 

current and incremental conductance (IncCon). The research and development communities are continuously 

striving to improve the existing methods with the addition of artificial intelligence (AI) based systems such as 

fuzzy logic, neuronal networks and ANFIS [8], [9]. 

This paper represents a maximum power point tracking system of a photovoltaic system based on 

artificial neural networks (MLP). The objective of this work is to improve the efficiency of MPPT search by 

integrating the optimized MLP model. The Figure 1 illustrates the main components of the system under study. 

 

 

 
 

Figure 1. The studied system architecture 

 

 

2. EQUIVALENT MODULE OF A PHOTOVOLTAIC SOLAR CELL  

A solar or photovoltaic cell is in fact a source of current that is produced when sunlight is incident 

on the surface of the cell. The process of transforming light into electricity is known as the "photovoltaic 

effect". In order to show the characteristics of voltage, current and power under different operating 

conditions, the mathematical model of the PV cell is necessary for the simulation. Figure 2 shows a 

simplified equivalent model of a PV device. As illustrated in Figure 2, photovoltaic cell model consists 

mainly of a series resistor (𝑅𝑠), this latter connected with a parallel shunt resistor combination (𝑅𝑠ℎ) in 

series, exponential diode (𝐷) and cell photo-current (𝐼𝑝ℎ) [10]. Vp𝑣, and Ip𝑣 are respectively corresponding 

to the current voltage of the PV cell. 

 

 

 
 

Figure 2. The equivalent model of a PV cell 

 

 

In (1) and (2) representing the current generated by the solar cell: 

 

Ipv = Iph − Id − Ish  (1) 

 

Ipv = Iph − I0. (e
q(Vpv+Ipv.Rs)

nKT − 1) −
Vpv+Ipv.Rs

Rsh
 (2) 
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where 𝐼𝑝ℎ, 𝐼𝑠, q, K, n and T represent respectively the solar current indued, the saturation current of the diode, 

the charge of the electrons (1.6𝑒−19C), the Boltzmann constant (1.38𝑒−23J/K), the Ideality factor of the PN 

junction (1~ 2) and the Temperature (K). Table 1, demonstrates the main electrical characteristics of the solar 

panel used in this study. As mentioned in the table, the maximum power that can be produced by this 

photovoltaic generator is 220 watts. 

 

 

Table 1. The electrical characteristics of the used photovoltaic array 
Parameters and symbol Value 

Rated power 𝑃𝑀𝑃 220W 

Open circuit voltage 𝑉𝑂𝐶 54V 

Voltage at maximum power 𝑉𝑀𝑃 44.63V 

Short circuit current 𝐼𝑆𝐶  5.52A 

Current at maximum power 𝐼𝑀𝑃 4.94A 

 

 

3. DC/DC CONVERTER 

A DC/DC converter is used to convert the DC voltage delivered by the PV array into a DC voltage that 

is suitable for supplying DC voltage to consumers. In this study, a DC-DC boost converter is used to realize the 

MPPT power stage due to its high reliability, reduced implementation costs and reduced number of components 

[11], [12]. The Figure 3 demonstrates the electrical model of boost converter used in this study. 

 

 

 
 

Figure 3. The equivalent circuit of a DC-DC boost converter 
 

 

by : 
 

𝐷 =  1 − 
𝑉𝑖𝑛

𝑉𝑜𝑢𝑡

 

 

the peak-to-peak inductance current ripple magnitude ΔL is represented by:  

 

ΔL =
𝑉𝑖𝑛.𝐷

𝑓𝑠.𝐿
  

 

and, the voltage ripple of the output capacitor ΔV is represented by:  

 

ΔV =
𝐼0.𝐷

𝑓𝑠.𝐶
  

 

 

4. THE MPPT OPTIMISATION TECHNIQUES 

4.1.  Perturbation and observation technique 

The P&O algorithm is one of the most widely used and well-known MPPT technique in the 

literature. The flowchart in Figure 4 represents the mechanism of the P&O technique [13], [14]. The principle 

of this algorithm is to perturb the voltage (by the variation of the duty cycle) in one direction, and if the 

power value continues to increase in the same direction as the perturbation of the voltage, the algorithm will 

continue to perturb in the same direction. If the new power value is lower than the last value, the voltage is 

perturbed in the reverse direction. When this algorithm attains the MPP, it continues to oscillate in the 

vicinity of the MPP. Moreover, this algorithm tends to malfunction when the meteorological conditions 

change rapidly [15]. 
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Figure 4. The mechanism of the P&O algorithm 

 

 

4.2.  Incremental conductance technique 

One of the techniques that is frequently found in the literature is the incremental conductance 

technique (IncCon). The algorithm of this technique is based on the tracking of the slope of the photovoltaic 

module power curve (P-V). Figure 5 illustrates the flow chart of this method [15]-[17]. The basic idea of this 

algorithm is very simple: in the position where there is the maximum power point, the slope of the curve will 

be equal to zero. At the left side of the MPP, the slope is negative while it is positive at the other side. 

 

 

 
 

Figure 5. The diagram of Incremental conductance algorithm 

 

 

4.3.  The ANN technique 

As a definition to the artificial neural network (ANN), we find that ANN is an imitation of the human 

nervous system. The ANN learns from its environment in a similar way to humans in order to process tasks with 

a reasoning close to humans. In this work, we opted to implement the multilayer perceptron (MLP) model. 

In order to obtain an optimized architecture (maximum performance with a minimum of layers and a 

minimum of neurons per layer). We have chosen to use two of the most widely used and effective statistical 

indicators in this type of problem which is the mean square error (MSE) and the correlation coefficient (R) 
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[18]. In order to determine the most optimized architecture of the MLP model to be used, we have several 

training tests in which we have varied the number of hidden layers, the transfer functions, the number of 

neurons in a hidden layer, the number of iterations and the learning algorithms [19]. Tables 2, 3, 4 and 5, 

representing the main results obtained using the different algorithms. The first algorithm based on variable 

learning rate gradient descent, the second is Levenberg-Marquardt algorithm, the third based on the resilient 

backpropagation algorithm and the fourth algorithm is gradient descent with momentum. 

 

 
Table 2. Variable learning rate gradient descent 

Activation function in HL Activation function of OL R square MSE (x10-4) Number of epochs MLP model structure 

Logsig Logsig 0.79 905 46 [2-3-1] 
Logsig Tansig 0.976 1350 200 [2-3-1] 

Logsig Purelin 0.978 101 82 [2-3-1] 

Purelin Purelin 0.987 1340 632 [2-3-1] 
Purelin Logsig 0.996 10.2 130 [2-3-1] 

Purelin Tansig 0.985 56.99 218 [2-3-1] 

Tansig Tansig 0.990 46.5 621 [2-3-1] 
Tansig Purelin 0.981 87.8 191 [2-3-1] 

Tansig Logsig 0.996 1330 271 [2-3-1] 

 

 
Table 3. Levenberg-Marquardt 

Activation function in HL Activation function of OL R square MSE (x10-4) Number of epochs MLP model structure 

Logsig Logsig 0.887 38.32 32 [2-3-1] 
Logsig Tansig 0.999 0.017 14 [2-3-1] 

Logsig Purelin 0.999 0.0187 22 [2-3-1] 

Purelin Purelin 0.998 0.213 3 [2-3-1] 
Purelin Logsig 0.869 34.70 5 [2-3-1] 

Purelin Tansig 0.999 0.5431 8 [2-3-1] 

Tansig Tansig 0.999 0.208 1000 [2-3-1] 
Tansig Purelin 0.999 0.01307 261 [2-3-1] 

Tansig Logsig 0.988 3.742 318 [2-3-1] 

 

 
Table 4. Gradient descent with momentum 

Activation function in HL Activation function of OL R square MSE (x10-4) Number of epochs  MLP model structure 

Logsig Logsig 0.901 90.85 1000 [2-3-1] 
Logsig Tansig 0.961 17.44 1000 [2-3-1] 

Logsig Purelin 0.987 12.84 1000 [2-3-1] 

Purelin Purelin 0.997 1.250 1000 [2-3-1] 
Purelin Logsig 0.990 70.42 1000 [2-3-1] 

Purelin Tansig 0.997 0.609 1000 [2-3-1] 

Tansig Tansig 0.930 270.1 1000 [2-3-1] 
Tansig Purelin 0.987 250.8 1000 [2-3-1] 

Tansig Logsig 0.981 133.0 1000 [2-3-1] 

 

 
Table 5. The resilient backpropagation algorithm 

Activation function in HL Activation function of OL R square MSE (x10-4) Number of epochs MLP model structure 

Logsig Logsig 0.945 0.1050 67 [2-3-1] 

Logsig Tansig 0.997 0.0783 1000 [2-3-1] 

Logsig Purelin 0.998 0.0227 52 [2-3-1] 

Purelin Purelin 0.998 0.243 25 [2-3-1] 
Purelin Logsig 0.864 34.09 24 [2-3-1] 

Purelin Tansig 0.985 0.488 15 [2-3-1] 

Tansig Tansig 0.990 0.0615 350 [2-3-1] 
Tansig Purelin 0.999 0.0938 187 [2-3-1] 

Tansig Logsig 0.886 35.32 158 [2-3-1] 

 

 

With, HL represents the hidden layer and OL represents the output layer. Table 6 represents the better 

results obtained in the four learning algorithms cases. We can conclude from the table that the learning in the case 

where we used the algorithm of Levenberg-Marquardt we have achieved very good results of the R coefficient and 

the mean square error. where the value of the R coefficient equals 0.999 (≈ 1) which means that we have a high 

degree of correlation and the mse has reached in this case the value of 0.01307x10-4 to 261 iterations.  
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Table 6. Comparison of the best results obtained in the four cases 
Algorithms Labels Architecture R factor MSE (x10-4) 

Levenberg-Marquardt Tansig-Purelin [2-3-1] 0.999 0.01307 

Resilient backpropagation Logsig- Purelin [2-3-1] 0.998 0.0227 
Gradient descent with momentum Purelin- Tansig [2-3-1] 0.996 0.609 

Variable learning rate gradient descent Purelin- Logsig [2-3-1] 0.996 10.2 

 

 

The Figure 6 represents the chosen MLP and the training results of the latter. The Figure 6(a) shows 

the architecture of the adopted MLP model, which consists with an input layer with two neurons, a hidden 

layer with three neurons and an output layer with one neuron. The Figure 6(b) shows that the mean square 

errors (MSE) corresponding to training, testing and validation converge to the same value of 0.01307x10-4. 

This shows that the training of the network is done successfully, and the MLP the output converges perfectly 

to the target output values [20]-[22]. 

 

 

 
(a) 

 

 
(b) 

 

Figure 6. The ANN structure and training result (a) the ANN architecture and (b) the MSE in training, test 

and validation phases 

 

 

5. DISCUSSIONS OF THE OBTAINED RESULTS 

5.1.  The first test 

In this part we will try to verify and analyze the performance of the maximum power point tracking 

techniques in a stable condition (Temperature equal to 25° and irradiation equal to 1000 kw/m²). Figure 7 

represents the results obtained by the different techniques used. The Figures 7(a)-(c) aggregate respectively the 

power generated by the PV model system by using the MPPT P&O, IncCon and ANN techniques. Figure 7(d) 

shows that all MPPT controllers collect the power produced by the PV systems and which is very close to 

their maximum power. The efficiency of all methods is excellent (over of 98%). As shown in Table 7, the 

MPPT technique based on ANN represents the excellent results with a Tracking speed of 0.011s, a very high 

efficiency reaching 99.36% of the used photovoltaic panel power and a low oscillation [23]-[26]. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 28, No. 3, December 2022: 1276-1285 

1282 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 7. P&O, IncCon and ANN generator output power (a) perturb and observe, (b) incremental 

conductance, (c) ANN, and (d) P&O, IncCon and ANN 
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Table 7. P&O, IncCond and ANN (MLP) MPPT performances 
MPPT Technique Tracking speed (S) Average power (W) Efficiency (%) Oscillations  

P&O 0.022 215.7 98.04 High  
IncCon 0.017 217.2 98.72 Medium  

The optimized MLP 0.011 218.6 99.36 Very Low  

 

 

5.2.  The second test 

In this phase, we kept the temperature at 25° with a variable solar irradiance. The Figure 8 shows the 

results in the case where the test condition is variable. The Figure 8(a) represents the variable solar irradiation 

and the Figure 8(b) represents the MPP tracking results. In the presence of variable irradiation, all MPPT 

controllers collect the power produced by the PV systems, which is very close to their maximum power. The 

use of the ANN technique in tracking the MPP resulted in excellent speed and low ripple in the power curve. 

 

 

 
(a) 

 

 
(b) 

 

Figure 8. PV power and Solar irradiance variation (a) solar irradiance variation and (b) PV power variation 

 

 

6. CONCLUSION  

This paper discusses maximum power point tracking using a multi-layer perceptron with an 

optimization phase. By using a variety of learning algorithms, an ANN model with a minimum number of 

layers and a minimum number of neurons per layer was generated after multiple tests. The results of the 

simulation in MATLAB/Simulink show that the convergence of the ANN model to the desired output is 

achieved in a perfect way when using the Levenberg-Marquardt algorithm. The developed MLP model 

provides very satisfactory results for tracking the maximum power point in constant and in variable operating 

conditions. 
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