
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 30, No. 3, June 2023, pp. 1399~1406

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v30.i3.pp1399-1406  1399

Journal homepage: http://ijeecs.iaescore.com

An effective way to generate the shift timing constraints and

sanity checks

Shaik Mahammad Ameer Afridi1
, Nagaraja Shylashree1, Satish Tunga2,

Latha Bavikatte Nanjundappa3
1Department of Electronics and Communication Engineering, Rashtreeya Vidyalaya College of Engineering, Bengaluru, India

2Department of Electronics and Telecommunication Engineering, M. S. Ramaiah Institute of Technology, Bengaluru, India
3Department of Electronics and Communication Engineering, Jagadguru Sri Shivarathreeshwara Academy of Technical Education,

Bengaluru, India

Article Info ABSTRACT

Article history:

Received Jun 29, 2022

Revised Jan 18, 2023

Accepted Jan 26, 2023

 Design for testability (DFT) is a technique, which facilitates a design to

become testable after fabrication. As the technology node is shrinking,

complexity of the system-on-chip (SoC) becomes high and inserting DFT and

verifying its timing becomes complex. For these complex SoC, generating

DFT timing constraints becomes difficult in shift mode and the time required

for the generation of these timing constraints is also more. A new

methodology proposed to overcome these issues. The main objective of this

work is to propose the flow for generating DFT timing constraints for the

complex SoC in shift mode, by dividing the design blocks into scan blocks

and non-scan blocks. To target the whole design without getting all paths

reported, relaxation of the setup, and hold time for non-scan blocks plays

crucial role. If not, the time taken to generate DFT timing constraints would

be more. Implemented methodology of this paper includes design setup,

timing exceptions, and synopsys design constraints (SDC) generation for DFT

timing. Design setup consists of all pre-requisites for design such as netlists,

timing libraries, and exceptions. Synopsys primetime (PT Shell) is used for

all the timing-related checks. Compared to conventional methods, the

proposed flow reduces the overall time by 40% to generate constraints.

Keywords:

Design for testability

Primetime

Sanity checks

Scan

Static timing analysis

Synopsys design constraints

This is an open access article under the CC BY-SA license.

Corresponding Author:

Nagaraja Shylashree

Department of Electronics and Communication, Rashtreeya Vidyalaya College of Engineering

R. V. Vidyanikethan Post, 8th Mile, Mysuru Road, Bengaluru 560059, Karnataka, India

Email: shylashreen@rvce.edu.in

1. INTRODUCTION

Design for testability (DFT) is the process, to detect all the defects of a chip after fabrication. DFT

makes integrated circuits (ICs) testable which is the controllability and observability of internal nodes by

adding additional circuitry to the functionality of the design. This makes the testing of chips cost-effective [1].

The transistor number on a system on chip (SoC) has increased from millions to billions in the last few years.

The time to assess or verify a chip is obtained by the number of test patterns, test vectors [2] used, and the time

to apply each test vector. As the number of test cases increases, the time taken to apply them also increases.

So, the time taken to apply test vectors turned into an increasing worry. Currently, the very large-scale

integration (VLSI) industry is experiencing a huge difficulty in testing complex SoC designs [3]. Scan design

[4] is the DFT method that can test an extremely complex design with good fault detection. The goal of scan

design is to make every flip-flop in the chip controllable and observable. In DFT, a scan-based design is used

for testing to provide more fault coverage. Scan-based design for testability uses scan cells which are the

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 3, June 2023: 1399-1406

1400

combination of a mux and a D flip-flop. Several scan cells are stitched together to make a scan chain. In the

scan-based design approach, a few or all of the flip-flops are substituted with the scan cell, if all flip-flops in

the design are updated with scan cells it is called full scan [5] testing where only some flip-flops are updated

with scan cells it is known as partial scan testing [6]. High test coverage and fault coverage can be obtained by

using full scan testing.

 Timing constraints in a design are vital attributes to analyze the timing. In static timing analysis, one

of the inputs for the static timing analysis (STA) tool is a constraint file and the format of the file is synopsys

design constraints (SDC). This SDC file contains the timing constraint information related to the design and

should be the same as the constraint file used for synthesis. SDC file includes the clock definitions for design,

input/output delay, max/min delay, and timing exceptions [7] such as multicycle path, false path, set-case-

analysis, and set disabling time. The SDC file defines all timing constraints included for both setup and hold.

In designs first, all normal flip-flops replace with scan flops then scan stitching will be done. The nodes in the

design must control and observe and control and observe the test vectors should send through scan chains. This

testing will happen in three phases first load, second shift then capture [8], as each phase depends on the clock

edge, clock cycles play a significant role in the timing. In the shift to test the functionality, mainly against any

stuck-at faults [9], [10] of the designed chip, the sequential devices will be stitched in the chain order, and the

test pattern to detect the fault is applied in the series.

2. DESIGN SETUP TO GENERATE THE DFT TIMING CONSTRAINTS

DFT timing constraints [11] generation flow starts with design loading, to load the design

prerequisites are needed, which are shown in Figure 1. These prerequisites are categorized as three blocks for

simplicity: the timing exceptions [12] block, netlist block, and libraries block. Timing exceptions block

consists of clock information and exceptions of soft IP in SDC format.

Figure 1. Design setup to generate DFT timing con constraints

Clock information consists of timeperiods of test clocks and functional clocks, again in test clocks,

different fre quency clocks are present. For soft IP, constraints present in SDC format. The focus of the paper

is on timing exceptions in the shift mode, which is one of the test modes of DFT. In general, constraints are

present for functional synthesis and timing [13]. Similarly, timing constraints for the DFT part must be taken

care of to proceed further in the digital flow. One can expect errors in quality checks for timing due to

constraints that are already applied in functional mode and make sure that whatever errors that are getting are

due to exceptions that are already present. There is a tool command language (TCL) file called constraints.

TCL is present in the timing exceptions block to impose all constraints on the design.

Netlist block consists of tiles, containers, and soft IP. All the information on these netlists is in verilog

format. Containers are a group of tiles where some of the tiles are DFT-related. DFT-related tiles include clock

domain logic control [14], [15] tiles in DFT mode and power domain control logic tiles in test mode and so

on. All design-related information is covered in the netlist and libraries block. Libraries include memory, hard

IP, and standard cells, these libraries can be in .db format.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

An effective way to generate the shift timing constraints and sanity … (Shaik Mahammad Ameer Afridi)

1401

3. PRIMETIME FLOW TO GENERATE THE DFT TIMING CONSTRAINTS

Design data from all the blocks should be loaded into the tool named build. The build tool plays a key

role in setup the design. When it comes to build, this tool takes targets as inputs and runs them and each target

contains the pre-defined task. Once the targets got completed, this session should be saved to further debug

the timing violations and quality of the SDC generation. The session saved in build represents the primetime

session, by using that saved session one can easily restore the session in synopsys prime time tool. The session

that is saved after completing the targets in the build tool is restored in prime time. The design could be restored

in prime time and timing analysis can be done but timing analysis needs to be done by using the session. The

restored session is helpful to review whether the check timing is clean or not if it is clean proceed with report

timing. Check timing command helps to find the missing definitions for clocking, unconstrained endpoints,

undefined input arrival times, and undefined output constraints. If the check timing is not clean update the

constraints and update the run area, the flow will be the same after updating the run area again session should

be saved and restored in primetime. Once report timing is generated reports of paths that are violating cross-

verify why the path is failing to meet the timing. The reasons for getting the slack violation can be constraints

that are already provided by the functional design, if that is the reason waive the violations if not fix the

violations. Extracted timing models (ETM) should be the latest for the design.

ETMs are used to reduce the reporting time, in other words, all internal timing arcs will be suppressed

[16]. By suppressing all internal timing arcs, functionality can be secure and if the block is already met its

timing at the gate level, then there is no need to check its timing at the chip level. These are the advantages

of extracted timing models, as discussed earlier they mainly consist of interface timing arcs. If extracted

timing models are the latest then proceed with report timing otherwise update the constraints as shown in

Figure 2.

Figure 2. Design flow for SDC generation

Non-scan cells are the cells which don’t involve in scan mode, for this there are multiple explanations.

One of the reasons is some cells and IPs are provided by third parties which intend those vendors don’t want

their IPs to be scanned for security purposes, and power consumption [17] in scan mode can be reduced. If

timing analysis is performed for these cells they all will be reported for timing, this process will take additional

time and effort to segregate results and reports. To avoid this, make a list of all non-scan cells and write a

script to exclude these cells from report timing. To segregate the non-scan list from the design the script is

available. Similar to ETM check non-scan list is also the latest or not, if not pick up the latest list by using the

script which is present in the non-scan exception block.

Update the constraints as per each block shown in Figure 2 and, update the run area after updating

the constraints. Once the report timing is done check whether the timing is clean or not, if not update the

constraints and then update the run area and follow the same steps again. Sanity checks are done to cross-

verify the basic things like connections and timing definitions that must be present in design before proceeding

further in the design cycle. Sanity checks can be done at different stages of the design cycle. In this paper,

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 3, June 2023: 1399-1406

1402

these sanity checks are done at the DFT timing stage, and these checks include chip-level scan flop check, tile-

level scan flop check memory check, and pipeline checks [18].

In chip-level scan flip-flop check, timing definitions and exceptions on the flops are being checked.

To restore the pt session which was saved during the end of the build tool run, scan cells must exclude from

the chip-level scan flip-flop check. To exclude them from design, keep all scan cells in a file and made list, and

write a script that generates a scan cell report by taking the scan cell list as input. These output reports should

be sourced in the pt session and then generate log files. Check for dominant exceptions in the log file, if any

exceptions are present on the scan path, then remove that exception from non-scan exceptions and regenerate

the SDCs. Chip-level sanity checks should be done for all the test modes. This process is explained using the

flow chart in Figure 3.

Figure 3. Sanity check for chip-level scan flops

Tile-level scan flip-flops are also having some timing constraints, in this check exceptions on the

tile-level scan, flops can be detected. If there are any exceptions found for tile scan flops verify whether those

exceptions came because of timing definitions from the point of functionality or because of an issue in design.

If the exceptions are because of design update the constraints and update the SDC as well. Repeat the same

procedure as shown in Figure 4. Release or generate the SDC, if no need to update constraints. The same

procedure is applicable to pipeline flops which are shown in Figure 5.

Figure 4. Sanity check for tile-level scan flops

Figure 5. Sanity check for pipeline flops

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

An effective way to generate the shift timing constraints and sanity … (Shaik Mahammad Ameer Afridi)

1403

Memories occupy a large part of VLSI designs, and the purpose of memories is to store a large amount

of data. As memories do not consist of any logic gates and flip-flops, as a result, comparatively different and

new fault models and methodologies have to use for memory testing. As a part of DFT, memory is one of the

major things to test or verify. To write data into memory blocks and read them back connections should be in

such a way to access all rows and columns in memory, a memory interface is needed. In this interface on some

of the sequential cells, timing exceptions can be found. This check is going to verify the timing exception on

the memory interface as shown in Figure 6. Restore the session first after setup the design then checks whether

there are any exceptions on the memory interface. If any exceptions are found update the constraints and

update the SDC if not generate the updated SDC.

Figure 6. Sanity check for memory interface

4. RESULTS AND DISCUSSION

An effective methodology is used to generate the DFT timing constraints and sanity checks for a

complex SoC in which there are thousands of scan flip-flops at the tile level and chip level and several

memory interfaces used for memories also a lot of pipeline flops were used. Results are plotted in terms

number of elements that had exceptions on them for sanity checks and elements that had default exceptions

as shown in Figure 7 along with timing reports [19]. The vertical axis represented the number of scan flops

that had default exceptions and exceptions that are found are described in order of thousands, and the

horizontal axis represents tile level, chip level scan flops, pipeline flops, and memory interface. Four thousand

three hundred scan flip-flops are having exceptions before generating the timing constraints, those are

predefined constraints. After generating constraints, 1200 flip-flops got reported as they have timing [20]

exceptions on them. If this issue moves forward in the design flow it will lead to timing failure in lateral

stages, the same is applicable to tile-level flops and pipeline flops as well. This paper completely eliminates

this propagation of timing exceptions towards the next stage with an effective method. This method finds

exceptions on flops by using the primetime tool. Eliminated those exceptions based on the type of exception

by updating the constraints file or using timing fixations [21]. Bidirectional signalling [22] methodology has

reduced overall test time by more than 40% but it will work for only 3-D stacked IC designs. Similar to

bidirectional signalling, a recursive hierarchical methodology [23] was proposed which reduces the overall

run time but this work will be a burden to the later stage in the design cycle.

Another improved test methodology [24] was proposed to reduce the test time unfortunately due to

usage of on-chip controller it will be applicable to only multi clock domain testing in SoC. When compared to

all these methodologies proposed methodology has no limitations over other parameters. Once set the design

and all inputs, with in less time will get timing constraints.

The time taken to generate the DFT timing constraints [25] using the proposed methodology is 40%

less time than the general approach which is shown in Figure 8. The vertical axis represents the two different

methodologies, and the horizontal axis represents the time in percentage. These results are calculated based on

different tools that take the time to generate constraints and sanity reports.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 3, June 2023: 1399-1406

1404

Figure 7. Exceptions in different sanity checks

Figure 8. Time graph for different scenarios using proposed methodology

5. CONCLUSION

A new methodology and effective way proposed in or- der to generate the timing constraints especially

in DFT. As there are many approaches present the time taken by them are very high compared to proposed

methodology, this work successfully reduced the time taken to generate constraints and sanity checks. The

main advantage of this method is it will completely stop the propagation of reported exceptions to move

forward in design cycle, by doing this we can avoid engineering change order (ECO) in the last stages of

project. If inputs of the tools that have been used in this experiment are automated using proper scripting further

time will get reduced and fewer time constraints will be generated.

REFERENCES
[1] B. Esen, A. Coyette, N. Xama, W. Dobbelaere, R. Vanhooren, and G. Gielen, “A very low cost and highly parallel DFT method for

analog and mixed-signal circuits,” in Proceedings of the European Test Workshop, May 2017, pp. 1–2, doi:

10.1109/ETS.2017.7968225.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

An effective way to generate the shift timing constraints and sanity … (Shaik Mahammad Ameer Afridi)

1405

[2] H. Chen, D. Chen, J. Ye, W. Cao, and L. Gao, “An integrated automatic test generation and executing system,” in 2011 IEEE
AUTOTESTCON, Sep. 2011, pp. 383–390, doi: 10.1109/AUTEST.2011.6058726.

[3] P. K. D. Jagannadha et al., “Advanced test methodology for complex SoCs,” in 2016 IEEE International Test Conference (ITC),

Nov. 2016, pp. 1–10, doi: 10.1109/TEST.2016.7805857.
[4] H. Yi, S. Kundu, S. Cho, and S. Park, “A scan cell design for scan-based debugging of an SoC with multiple clock domains,” IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 7, pp. 561–565, Jul. 2010, doi: 10.1109/TCSII.2010.2049923.

[5] H. Vranken, T. Waayers, H. Fleury, and D. Lelouvier, “Enhanced reduced pin-count test for full-scan design,” Journal of Electronic
Testing: Theory and Applications (JETTA), vol. 18, no. 2, pp. 129–143, 2002, doi: 10.1023/A:1014989408897.

[6] J. Rearick, “The case for partial scan,” Proceedings International Test Conference 1997, Washington, DC, USA, 1997, doi:

10.1109/TEST.1997.639722.
[7] D. Goswami, K.-H. Tsai, M. Kassab, and J. Rajski, “Test generation in the presence of timing exceptions and constraints,” in

Proceedings of the 44th annual conference on Design automation - DAC ’07, 2007, doi: 10.1145/1278480.1278653.

[8] S. Wu et al., “Using launch-on-capture for testing scan designs containing synchronous and asynchronous clock domains,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 3, pp. 455–463, Mar. 2011, doi:

10.1109/TCAD.2010.2092510.

[9] P. C. Reddy, K. SaiTulasi, T. J. Anuja, R. Rajarajeswari, and N. Mohan, “Automatic test pattern generation of multiple stuck-at
faults using test patterns of single stuck-at faults,” in Proceedings of the 5th International Conference on Trends in Electronics and

Informatics, ICOEI 2021, Jun. 2021, pp. 71–75, doi: 10.1109/ICOEI51242.2021.9452949.

[10] C. -H. Wu and K. -J. Lee, “An efficient diagnosis pattern generation procedure to distinguish stuck-at faults and bridging faults,”
2014 IEEE 23rd Asian Test Symposium, Hangzhou, China, 2014, pp. 306-311, doi: 10.1109/ATS.2014.56.

[11] A. Lamkanfi and S. Demeyer, “Filtering bug reports for fix-time analysis,” in 2012 16th European Conference on Software

Maintenance and Reengineering, Mar. 2012, pp. 379–384, doi: 10.1109/CSMR.2012.47.
[12] V. Bhargava, G. Kapoor, and S. S. Iqbal, “Enhanced timing closure using latches,” EDN Magazine, Jun. 2014.

[13] S. Savugathali, M. Mustapa, M. Sharazel Razali, and F. Faiz Zakaria, “Timing violation reduction in the FPGA prototyped design

using failed path fixes and time borrowing techniques,” Indonesian Journal of Electrical Engineering and Computer Science
(IJEECS), vol. 14, no. 2, pp. 628-636, May 2019, doi: 10.11591/ijeecs.v14.i2.pp628-636.

[14] A. Majumdar and B. Jayadev, “Handling clock-domain crossings in dual clock-edge logic for DFx features,” in 2018 IEEE 27th

Asian Test Symposium (ATS), Oct. 2018, pp. 36–41, doi: 10.1109/ATS.2018.00018.
[15] C. H. Ang, “Single test clock with programmable clock enable constraints for multi-clock domain SoC ATPG testing,” 2013 22nd

Asian Test Symposium, Yilan, Taiwan, 2013, pp. 195-200, doi: 10.1109/ATS.2013.44.

[16] C. W. Moon, H. Kriplani, and K. P. Belkhale, “Timing model extraction of hierarchical blocks by graph reduction,” in Proceedings
of the 39th conference on Design automation - DAC ’02, 2002, doi: 10.1145/513918.513957.

[17] S. Mitra and D. Das, “A comprehensive review on applications of don’t care bit filling techniques for test power reduction in digital

VLSI systems,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 12, no. 3, pp. 941-949, Dec.
2018, doi: 10.11591/ijeecs.v12.i3.pp941-949.

[18] H. Morisita, K. Inakagata, Y. Osana, N. Fujita, and H. Amano, “Implementation and evaluation of an arithmetic pipeline on FLOPS-

2D: multi-FPGA system,” ACM SIGARCH Computer Architecture News, vol. 38, no. 4, pp. 8–13, Sep. 2010, doi:
10.1145/1926367.1926370.

[19] T. Thiel, “Have I really met timing? - validating primetime timing reports with SPICE,” in Proceedings Design, Automation and

Test in Europe Conference and Exhibition, 2004, vol. 3, pp. 114–119, doi: 10.1109/DATE.2004.1269216.
[20] N. Shylashree, V. S. Bharadwaj, D. Yashas, V. Kulkarni, A. Bharadwaj, and V. Nath, “Comprehensive design and timing analysis

for high speed master slave D flip-flops using 18 nm FinFET technology,” IETE Journal of Research, pp. 1–8, Aug. 2021, doi:

10.1080/03772063.2021.1948925.
[21] B. Li, N. Chen, and U. Schlichtmann, “Timing model extraction for sequential circuits considering process variations,” 2009

IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers, San Jose, CA, USA, 2009, pp. 333-

343.
[22] I. A. Soomro, M. Samie, and I. K. Jennions, “Test time reduction of 3-D stacked ICs using ternary coded simultaneous bidirectional

signaling in parallel test ports,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 12,
pp. 5225–5237, Dec. 2020, doi: 10.1109/TCAD.2020.2977604.

[23] D. Trock and R. Fisette, “Recursive hierarchical DFT methodology with multi-level clock control and scan pattern retargeting,” in

Proceedings of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2016, pp. 1128–1131, doi:
10.3850/9783981537079_1131.

[24] E. M. Ooi and C. H. Ang, “Improved test methodology for multi-clock domain SoC ATPG testing,” in Fifth Asia Symposium on

Quality Electronic Design (ASQED 2013), Aug. 2013, pp. 33–38, doi: 10.1109/ASQED.2013.6643560.

[25] H. Chen, B. Lu, and D.-Z. Du, “Static timing analysis with false paths,” in Proceedings 2000 International Conference on Computer

Design, 2000, pp. 541–544, doi: 10.1109/ICCD.2000.878336.

BIOGRAPHIES OF AUTHORS

Shaik Mahammad Ameer Afridi is a student at RV College of Engineering.

He is pursuing his post-graduation in VLSI Design and Embedded Systems. He got his

graduation degree from IIIT Rajiv Gandhi University of Knowledge and Technologies, Rk

valley, idupulapaya in Electronics and communication engineering. His research line is static

timing analysis in the DFT domain. He can be contacted at email:

shaikmaafridi.lvs20@rvce.edu.in.

https://orcid.org/0000-0002-5886-5774

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 3, June 2023: 1399-1406

1406

Dr. Nagaraja Shylashree is currently working as Associate Professor in the

Department of Electronics and Communication Engineering at RV College of Engineering,

Bengaluru. She is having 15 years of teaching experience. She was a recipient of the best

Ph.D. thesis award for the year 2016-2017 in Electronics and Communication Engineering

from BITES. She has received the best IEEE researcher award in IEEE-AGM meeting held

during 2021 from Bangalore IEEE section. She has also received the best paper award in

IEEE-ICERECT held during 2015 at Mandya. She has research publication in 20

International Journals (out of which 8 journals are SCI journals), 6 Springer book chapters

and 9 International conferences. She received one US patent grant, one European patent grant,

one Indian patent grant and published one Indian patent in the area of cryptography. She has

also received 2 Indian patent grants in the area of VLSI. She is also the co-author of the

network theory, engineering statistics and linear algebra and control engineering textbook.

she has funded projects and consultancy projects and has delivered many technical talks on

VLSI. She has delivered lectures as a subject matter expert in VTU e-shikshana and EDUSAT

program. She is a recipient of international travel grant under SERB young research scholar

category. She is a life member of ISTE, IETE, fellow member of ISVE, senior member of

IEEE and Secretary of IEEE CAS, Bangalore section. Her areas of interest include

cryptography and network security, network analysis, analysis and design of digital circuits,

digital VLSI design, analog and mixed mode VLSI design, low power VLSI design, statistics

and linear algebra and control engineering. She can be contacted at email:

shylashreen@rvce.edu.in, shylashashi@gmail.com.

Dr. Satish Tunga received his Ph.D. in Electronics Engineering from Jain

University, Bangalore in 2018. He did his B.E. and M.E. in Electronics, in 1984 and 1991,

respectively, from University Visvesvaraya College of Engineering, Bangalore. He is

presently working as an associate professor in Department of Electronics and

Telecommunication Engineering, M S Ramaiah Institute of Technology, Bangalore. He has

published more than 10 papers in various international conferences and journals. His areas of

interests are image processing, signal processing, communication systems, antennas, and

electronic circuits. He can be contacted at email: satish.tunga@msrit.edu.

Prof. Latha Bavikatte Nanjundappa is currently working as Assistant

Professor in the Department of Electronics and Communication Engineering at JSS academy

of technical education, Bangalore. She has 30 years of teaching experience Her areas of

interest are signal processing, power electronics, computer networks, HDL, and control

engineering. She has completed BE and M. Tech from Mysore University and NITK,

Surthkal, Mangalore University in the year 1990 and 1997 respectively. She can be contacted

at email: lathabn@jssateb.ac.in; lathajss@gmail.com.

https://orcid.org/0000-0003-4185-6190
https://scholar.google.com/citations?hl=in&user=yaTBzd8AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56045640200
https://orcid.org/0000-0002-6206-606X
https://orcid.org/0000-0003-0691-405X

