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 Using photovoltaic (PV) energy has increased in recently, due to new laws 

that aim to reduce the global use of fossil fuels. The efficiency of a PV system 

relies on many types of malfunctions which may cause significant energy loss 

during the system’s operation, besides the ecological factors. Consequently, a 

monitoring system (MS) capable of measuring both the environmental and 

electrical factors is described in order to gather real-time and historical data 

and estimate the plant efficiency metrics. Additionally, a recursive linear 

model for detecting problems in the system is presented, where the input is 

the irradiance and temperature of the PV module, whereas the output is the 

power, using the same MS. The achieved fault detection’s accuracy for the 5-

kW power plant reached 93.09 percent, based on 16 days and 143 hours of 

failures under various situations. After detecting a defect, a machine-learning-

based algorithm categorizes each defect problem as short circuit, partial 

shadowing, deterioration, or open-circuit. The performance of the four most 

prevalent supervised machine learning (ML) approaches for this assignment 

(Naïve Bias, decision tree, LDA, and KNN) was evaluated according to their 

results. 
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1. INTRODUCTION 

During the last decade, the rise of renewable energy (RE) sources has accelerated, including solar 

energy, geothermal energy, biomass energy, hydro energy, and others. More specifically, an impressive total 

new capacity of 190 GW was added globally in 2018 to major hydro-power plants, which accounts for 

approximately half of the total power capacity installed during that year [1]. The number of solar photovoltaic 

(PV) plants had the most growth among the other commonly used renewable energy sources. In 2018, PV 

plants made up about 39 percent of the installed capacity [1]. 

The most convenient source of renewable energy is the sun, since it’s large and its heat and light are 

distributed all over the globe, depending, of course, on the alignment between the earth and the sun. For this 

reason, the sunrays can be harvested and converted into electrical energy through what are called solar panels, 

or PV panels [2]. This energy collected and transformed by PV panels can then be used in many industrial 

applications, as well as residential and commercial applications, which explains the fact that solar energy is 

becoming widely popular [3]. However, there are numerous performance challenges that must be addressed 

for the purpose of enhancing the overall performance of PV. PV performance can be compromised for a variety 

https://creativecommons.org/licenses/by-sa/4.0/
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of reasons, including excessive exposure to various weather conditions, such as soiling [4], wich leads to 

electrical and mechanical failures such as cracked cells and short-circuits [5]. Other factors that may have an 

impact on PV performance include PV material, battery type, panel orientation, and panel degradation. With 

such a high level of exposure, it becomes necessary to implement safety measures for maintaining the 

performance, reducing revenue losses and downtime, ensuring quick problem detection, problem classification, 

localization, and mitigation in PV systems [6]. Figure 1 depicts the challenges that influence the performance 

of the PV plate. 

 

 

 
 

Figure 1. Factors influencing the effectivity of a PV panel 

 

 

To protect the PV plate from the problems listed above, the PV plant should have a monitoring system 

(MS) that manages plant tasks, measures meteorological and electrical variables, finds errors and malfunctions, 

then reports benchmarking and performance to the grid operator either remotely or locally via a communication 

system [7], [8]. However, the MS alone is not sufficient to address the issues [9], since PV faults need the use 

of particular approaches to identify and categorize them using monitored data [8], [10]. In order to complete 

such duties, techniques are often separated into detecting and classifying the PV faults, with an emphasis on 

those that occur most, such as module mismatch, short circuit, and open-circuit [11]. There have been various 

ideas in the literature for defect detection. For example, in [12], fault detection according to satellite data is 

suggested. In another paper [13], the identification of PV panel faults through thermal imaging and the Canny 

edge detector is discussed. Various approaches based on PV system modeling have recently been suggested 

[14], [15], resulting in state-of-the-art outcomes in actual PV plants. On the other hand, the current models are 

primarily static, ignoring crucial dynamic modeling which leads to the difficulty in recognizing actions that 

occur in short time periods [16]. 

There are several ways to fault classification, including optical methods [17], mathematical 

techniques, and thermographic picture analysis techniques [13] by employing theoretical and virtual PV plant 

models [18]. Recently, various machine learning-based strategies are suggested to improve the classification 

accuracy in a collection of scenarios, namely shadowing and PV module deterioration [8], [19], [20]. Despite 

this, the majority of the approaches are based on simulated data, where the researchers do not provide a 

comprehensive examination of online fault classification methods. 

Moreover, the limitations of detection and classification methods are compounded by them not having 

the results of the solution included in a devoted system or hardware, combined with a monitoring model, and 

whenever that happens, there is a limited power output for the PV plant otherwise the detection could only be 

done by disrupting the system’s normal function. However, this study aims to overcome the mentioned 

limitation, where our contributions can be listed as: i) integrating a fault classification and detection technique 

to an embedded PV plant monitoring model, which allows identifying and classifying non-intrusively online 

the different PV defects, as well as offering an MS integrated to the plant; ii) providing a comprehensive 

comparison of dynamic models and ML algorithms for detecting and classifying actual fault situations in a 5 

kW PV plant; and iii) deducing the best system for classifying and detecting faults in PV models online. Such 

a suggestion has not yet been offered in the associated literature, to our knowledge. 
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2. THE COMPREHENSIVE THEORETICAL BASIS 

This section is divided into four primary subsections, each of which serves as the foundation for the 

proposed work study. First of all, defects in PV systems are examined, with a focus on the most important 

faults and descriptions of each problem. Then, a discussion of monitoring systems is done, followed by fault 

detection techniques, along with a fault classification discussion aligned with the key constraints identified in 

current work. Moreover, in the next section, the original components of this study, such as linked monitoring 

systems, defect detection, and identification algorithms, will be described in depth. 
 

2.1.  Faults in PV systems 

Examining some of the predominant faults in solar systems is imperative for the sake of evaluating 

fault incidences and effects. In this context, the reference [21] presents a comprehensive examination of such 

faults, classifying them into two categories: direct current (DC) faults and alternating current (AC) faults where 

the fault of this kind is caused by issues with the system’s inverter or the power grid. On the other hand, faults 

in the bypass diode, issues with the maximum power point tracking (MPPT) method, arc faults, ground faults, 

open circuit, cell or module mismatch (permanent or temporary), and short-circuit are among the most common 

DC defects. An open-circuit defect happens when there is a disconnect at some point in the system which has 

a big influence on power generation [22] where it may damage anything from one string of panels to reaching 

the whole system. Moreover, mismatching cells or modules happens if certain cells or panels in a photovoltaic 

model have electrical characteristics which are drastically altered from the rest, causing the system to 

malfunction [23]. 

On the other hand, whenever a low impedance route arises in the system, that results in a short-circuit 

problem occuring. This may happen at numerous locations in PV systems, such as between two terminals of 

the same module. The occurrence of short-circuit between two places on the same string will be considered in 

this study, especially between the negative pole of a panel and the positive pole of the next panel. 
 

2.2.  Monitoring systems 

Some of the measures are discussed in [20], [24] which are utilized in detecting and classifying faults 

in the grid-connected PV systems such as wind speed, output voltage, total irradiance, wind direction, current 

of every PV array, ambient temperature, energy, and output power of every PV array [25]. These variables 

provide the foundation for evaluating the performance of the plant in real-time and improving system 

dependability, as described in [24]. Several systems were presented with the goal of creating a sensor network 

that is low-cost to monitor huge PV plants while avoiding a heavy reliance on separate sensors. For example, 

a collection of temperature sensors that is low cost, as well as current and voltage sensors were used to identify 

key problems in a single PV panel, including dirtying, permanent and temporary shadowing, and abnormal 

aging. Short-circuits and other sorts of defects, on the other hand, are not addressed in said study [5]. 
 

2.3.  Fault detection 

Generally, detecting faults in PV systems depends on modeling the system to make the results of 

modeling comparable to the data that is actually acquired [15]. The modeling stage is usually separated into 

two categories: dynamic and static. Static systems don’t recognize time to be an independent variable, thus 

they are often called non-memory systems. Conversely, dynamic systems take into consideration the model’s 

temporal fluctuations. In the modeling method of [6], [26], [27], a static system relying on a single-diode model 

is used to identify flaws and anticipate energy production. It is possible to ignore individual features and the 

dynamics of distinct PV models by reducing the PV cell to a static and generic one, which affects how certain 

phenomena are modeled and accordingly it affects the detection of defects happening in short periods of time. 

The Hammerstein-wiener model, on the other hand, is used in [28] to simulate a system with 

nonlinearities. The input and output signals were irradiance and DC power, respectively. The selected sample 

duration was 15 minutes, which made it difficult to identify short-term occurrences like partial shadowing. An 

ARMAX model is suggested in [29] for predicting the produced power of a PV system one day ahead. 
 

2.4.  Fault classification 

Artificial intelligence models, particularly machine learning classifiers, are among the techniques used 

to conduct fault classification, where such models gained growing attention and acceptance in recent literature 

[8], [30] and are also the major approach in this study. For example [10] shows how artificial neural networks 

(ANN) may be used to categorize the performance of a solar system into four stages where this approach was 

examined and trained in a simulation and achieved approximately 88.89% accuracy. A two-stage system is 

mentioned in [31], with the first step being for defect detection and the second level being for categorization. 

A multilayer perceptron ANN is employed for fault classification, with a 90.3 percent total accuracy. Moreover, 

this model trains the network with solely simulated data and is examined with an actual plant depending on the 

model’s V×I graph. On the other hand, a technique is described for classifying PV faults in these instances: 
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short circuit, open-circuit, deterioration, and shadowing, utilizing a kernel extreme learning machine and 

information from V×I graphs [11]. Three case studies were conducted to assess the system’s performance. Due 

to the restricted quantity of data obtained in the actual plant, the last strategy utilizes simulated data for to train 

the model and real data to test it. Using the true data, the accuracy ranged from 97.9% to 99.0%, whereas for 

mixed data, the ultimate accuracy reached 98.9%. However, the PV model should be disconnected due to the 

fact that the method depends on V×I curve, in order to perform the proposed fault classification procedure. The 

PV system must first be disconnected in order to carry out the suggested fault classification technique since it 

depends on an external device that has to be connected to the plant in order to produce V-I graphs despite 

having a pretty good performance (>95.0%). Table 1 displays the outcomes of the various methods related with 

the current study that were used to assess the proposed study’s issues. 
 

 

Table 1. Similar systems comparison 
Section Approach Accuracy Reference 

Faults in PV systems Study on short circuit, module mismatch, and open-circuit faults. 94% [21] 

Fault detection In order to detect defects and predict energy output, a static model based on a 

single diode model is taken into account. 

98.5% [6] 

The system’s nonlinearities are emulated using the hammerstein-wiener model. 84.67% [32] 

ARMAX model for a day ahead prediction of the generated power. 95% [33] 

Fault classification Using ANN for classifying the operation of a PV model. 88.89% [11] 

A multilayer perceptron ANN is applied for fault classification. 90.3% [34] 
using a kernel extreme learning machine and information from V×I graphs to 

classify PV faults. 

98.9% [10] 

 

 

3. METHOD 

This section describes in detail the 5 sequential stages which the proposed algorithm passes through, 

where each stage considers the inputs from the previous stage. Figure 2 depicts the five sequential stages that 

the proposed system consisted of. The first stage is data gathering, in which the data from the PV plant is 

simulated. Next comes the second stage, which is the preprocessing stage, where the data is prepared and 

cleaned and defects and irregularities are inserted into the PV plant to cause maloperation and therefore separate 

the data set into five different classes that are shown in Table 2. On the other hand, even though solar panels 

contain cells that convert solar energy into electrical energy, sensitive sensors have been added to those solar 

panels to measure the electric field, power, and temperature. Furthermore, to classify the voltaic cell as a normal 

operation cell, open circuit cell, short circuit, degradation, or shadowing. The third stage in the proposed 

algorithm is “data classification,” in which we have used four machine learning algorithms, which are the naive 

bayes algorithm, the decision tree algorithm, LDA, and K nearest neighbor to classify the data into different 

categories. The fourth stage is the evaluation process where F1 score, precision score, accuracy score, and 

recall scores are used to test the classification accuracy using the four different machine learning algorithms. 

Finally, the last stage is the benchmarking stage that validates and checks the numbers calculated in stage 4. 
 

 

 
 

Figure 2. The five sequential stages that the proposed system consisted of 

 

 

Table 2. The five different classes of the dataset 
Value Description 

0 Normal operation (no faults) 
1 Short-circuit (short circuit between 2 modules of a string) 

2 Degradation (there is a resistance between 2 modules of a string) 

3 Open circuit (one string disconnected from the power inverter) 
4 Shadowing (shadow in one or more modules) 

 

 

3.1.  Dataset 

The suggested systems for detecting and classifying faults use system identification and ML 

approaches, that need a huge dataset of historical operational data for training them, especially when using the 

machine learning techniques. The variety of the training dataset, containing operating data under all the 

considered faults over the whole range of environmental circumstances, is critical to the correctness of these 
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algorithms in various scenarios. The proposed paper developed a simulator for PV plant which is capable of 

quickly producing the requisite dataset, since waiting for all of these environmental combinations to naturally 

occur in order to produce the required faults is unfeasible for most PV systems. The created model, on the other 

hand, must precisely capture the behavior of an actual system. The process for introducing operational failures 

in an actual installation is first presented. The suggested electrical simulator that replicates the actual 

installation behavior is provided in the sequence. 

 

3.2.  Fault classification 

The faults can occur naturally such as shadowing which is produced by nearby buildings, or they can 

be artificial like open circuit, degradation, and short-circuit. Degradation was induced by introducing a resistive 

load bank between two modules. Opening one of the string’s main circuit breaker induced the open circuit, 

while cable connected between the positive connection of a module and the negative connection of the adjacent 

module was used to induce a short circuit. 

If a fault is discovered at a certain time (f(k)=1), the user is alerted to it through a fault classification 

block which identifies the most probable reason for the abnormal operation. We tested the accuracy of the four 

most prevalent supervised ML approaches for this assignment which are (decision tree, linear discriminant 

analysis for machine learning, k-nearest neighbors (KNN), and Naive Bayes algorithm). The variables used as 

input for these methods are those which represent the behavior of the DC side of the PV plant, which is 

wherever the faults happen, and creating a feature vector as in (1). 
 

FV(k) = [g(k)      t(k)     Vdc,1(k)      Vdc,2(k)      idc,1(k)      Vidc,2(k) ]  (1) 

 

 

4. RESULTS AND DISCUSSION 

All the findings are presented and discussed in this section. First, individual defect detection findings 

are shown, with recursive techniques compared and the best applicable model developed in this study indicated. 

The simulated data are emphasized such that the simulated data’s validation of for classification is shown in 

the sequence. Following that, the outcomes of individual fault categorization for several ML models are 

provided. 

The evaluation of classification algorithms began with deciding the most suitable algorithm for this 

step. The acquired results, accuracy, loss, F1 score, precision, and recall are shown in Table 3. The 

categorization of the actual dataset was used to determine test accuracy. The discriminant algorithm and the 

nave bayes method have the least accuracy for our use case, as well as being the ones that suffer the biggest 

performance loss when actual data is used. Remarkabley, the classification tree and KNN classifiers 

outperformed the validation data using actual data. The fact that there are extreme temperature values in the 

training set that are not recorded in actual data may justify these results. Those circumstances caused 

dissatisfying classification outcomes in the training set, but fortunately, they are not present in the test set as 

the actual data requires a temperature between five and 32 degrees Celsius. 

Some criteria are usually used to evaluate the model’s performance whatever it was. Often, F1 score, 

recall, precision, as well as accuracy are used for evaluating the model’s performance. The majority class is 

often named the negative outcome (e.g., such as “no change” or “negative test result”), and the minority class 

is often named the positive outcome (e.g., “change” or “positive test result”). Precision measures the fraction 

of the data points that our model says are relevant actually and are in fact relevant. The following formula can 

be used to calculate precision (2). 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
true positive

true positive+false positive
 (2) 

 

Recall is the measurement of the total relevant results correctly classified by our model in percentage. The 

following formula can calculate recall (3) [32]. 
 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
=

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (3) 

 

F1 score is explained as being the weighted average of the precision and recall. The best value for F1 score is 

1 while the worst is 0 [32]. The following formula calculates F1 score (4) [32]. 
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (4) 

 

The overall results of our proposed model are gathered in Table 3, such that the accuracy is 99.0% 

and the F1 score is 0.98. Figure 3 shows the training and validation (Figure 3(a) for accuracy and Figure 3(b) 
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for loss). Figure 4 shows comparison of the four algorithms based on recall, precision, F1 score, loss, and 

accuracy. 

 

 

  
(a) (b) 

 

Figure 3. Training and validation (a) accuracy and (b) loss 

 

 

 
 

Figure 4. Comparison of the four algorithms based on recall, precision, F1 score, loss, and accuracy 

 

 

Table 3. Results for machine learning algorithms in terms of accuracy, loss, F1 score, precision, and recall 
Algorithm Accuracy Loss F1 Precision Recall 

Naïve bias 0.76779 0.23221 0.70954 0.70098 0.90459 

Decision tree 0.98045 0.01955 0.97690 0.98017 0.97379 

LDA 0.91551 0.08449 0.65109 0.65668 0.69515 

KNN 0.99698 0.00302 0.99416 0.99295 0.99537 

 

 

Detection accuracy (DA) refers to the ratio between the number of fault nodes that have been correctly 

identified and the total number of actual fault nodes, whereas loss represent the ratio between the number of 

fault nodes that have been not identified or missed and the total number of actual fault nodes. Figure 5 shows 

the data retrieved form the solar panels. However, this data might indicate the presence or absence of errors. 

The values of errors and their classification are shown above. The retrieved data include the normal operation, 

in addition to: shadowing, open circuit, degradation and short circuit. From Figure 5, the bar plot resembles 

the output of the model and the frequency of each possible output. Thus, it is clear that the most frequent output 

is normal operation, whereas shadowing occurs significantly less times that normal shadowing, and rarely any 

degradation is shown alongside short and open circuits. In Figure 6, we illustrate a box plot showing the outliers 

in the data. The data in our study are continuous, thus it becomes clear when outliers are existing. This figure 

shows a lack of outliers which positively influences the obtained results and it signifies the good quality of our 

model’s result. 
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Figure 5. Histogram of the received data reveling normal operations, shadowing, open circuit, degradation, 

and short circuit frequencies 

 

 

 
 

Figure 6. The outliers of data 

 

 

Figure 7 shows the relation between error occurrences as an output with respect to the input 

parameters. The figure contains four sub-figures, each for a specific input parameter: vdc1 (Figure 7(a)), vdc2 

(Figure 7(b)), idc1 (Figure 7(c)), and idc2 (Figure 7(d)). For instance, in Figure 7(a) it is evident that normal 

operations are happening between 0 and 250 volts, whereas shadowing is mainly taking place between 250 and 

300 volts. Similarly, in Figure 7(b), normal operations, and shadowing occur at the same levels as vdc1. Yet, 

the difference between vdc1 and vdc2 is evident when it comes to short circuit, such that the short circuit occurs 
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beyond 250 volts in vdc1 but at 200 volts in vdc2. Figure 7(c) and Figure 7(d) show the relationship between 

the occurrence of errors and the current parameters. Similar to the voltage parameters, normal operations occur 

at lower current levels, while shadowing mainly occurs at higher current levels. Moreover, the short circuit 

occurs at high current levels in idc1 and idc2. 
 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 7. The relationship between error occurrences (a) vdc1, (b) vdc2, (c) idc1, and (d) idc2  

 

 

5. CONCLUSION 

Machine learning has shown a promising result in classifying the nature of the PV panel along with 

its defects. However, the classification algorithm should be selected based on the nature of the data present. 

Moreover, based on the different criterion measured in section four such as F1 score, precision, and recall 

measures, we can infer that the absence of extreme temperature values in the training set causes a skyrocketing 

performance of the KNN and decision trees compared to the LDA and Naïve bayes algorithm. As a result, 

choosing the optimal algorithm for performing the classification is based on the data characteristics such as its 

variance along with-it containing data from all the different circumstances and conditions. 
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