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 The article deals with issues related to solid wave gyroscopes, which are 

used as a sensor in inertial navigation systems. The article considers a 

variant of solving problem, when oscillations of the resonator are excited in 

directions that coincide with their own axes, oriented a priori is unknown. 

The main contribution this article is the method is proposed for measuring 

signal amplitudes in virtual main and quadrature channels, the orientation of 

which does not coincide with the orientation of the signal pickup electrodes. 

This is achieved by modeling algorithms for measuring the slope of the 

resonator's own axes and signal amplitudes in virtual channels are 

evaluation. In order to verify the adequacy of the proposed models 

simplified calculation formulas for programming microcontrollers are 

presented. An estimate of the error due to the use of simplified formulas is 

made. It is assumed that the use of this method will reduce the requirements 

for the quality of balancing the resonators of gyroscopes. The findings will 

be useful for mass production of navigation systems with gyroscopes, which 

have a small drift and are capable of experiencing large shock linear 

accelerations, for example, in underground inclined drilling, and in 

meteorological rockets. 
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1. INTRODUCTION  

One of the important promising directions in the development of civilian navigation systems is the 

use of gyroscopic angle sensors and angular velocity sensors based on solid-state wave gyroscopes, also 

called hemispherical resonator gyroscope (HRG). Such sensors can be used, for example, to measure the 

angular coordinates of a drill in inclined underground drilling. Currently, the production of HRG requires 

labor-intensive and complex balancing of a hemispherical resonator using equipment that costs more than $1 

million. This significantly limits the possibility of mass production of navigation systems at HRG [1], [2]. To 

date, to ensure high-quality operation of the HRG, it is necessary to balance the resonator and then precisely 

match the spatial position of the reading electrodes with the resonator's own axes [3].  

The theory of construction of solid-state wave gyroscopes is based on the application of the well-

known Bryan effect [4], [5], discovered in 1890. The effect consists in the precession of a standing wave in the 
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resonator as it rotates around an axis perpendicular to the plane of the ring. There are known solutions to general 

problems of the theory of HRG for an elastic inextensible ring, for an elastic tensile ring [6]-[8] the equations of 

oscillations of an elastic spherically symmetric body are known with an analysis of the precession of standing 

waves in it and with an analysis of the precession of standing waves in a hemispherical shell [9]-[11]. 

With the widespread positional electrostatic method of resonator excitation [12]-[15], when several 

excitation electrodes are used, the generated standing wave, as a rule, turns out to be tied to the position of 

the resonator electrodes. The working wave process of the HRG is created at the second harmonic (m=2) 

[16]-[18], which is the lowest harmonic of natural elastic oscillations of the hemispherical shell. To measure 

the position of the precessing wave, capacitive or optical sensors are used [19]-[21], which form two 

channels for picking up signals. The reading of signals both with a constant polarization voltage U0 of the 

partial reading electrodes and with high-frequency polarization was carried out in the study of a metal 

resonator. The usual simplified circuit for reading signals with a constant voltage, which was used in the 

experiments, is shown in Figure 1. In the future, regardless of the purpose of the HRG or as an angle sensor 

[22], or an angular velocity sensor, and regardless of the algorithm for further signal processing in the digital 

part of the equipment, the magnitude of the resonator oscillations is measured at the location of the signal 

pickup electrodes. 

 

 

 
 

Figure 1. Simplified block diagram of the electrostatic read-out of signals 

 

 

However, due to a violation in the manufacture of the axial symmetry of the resonator, own axes of 

the resonator are created with their own different frequencies. The position of two proper axes rotated 

between themselves by π/4. such that the natural oscillation frequencies of the resonator along each of these 

axes reach the largest and smallest values. Solving the problem of resonator balancing is a rather complicated 

and expensive [23]-[26] problem. Therefore, in some cases it may be of interest to use inaccurately balanced 

resonators. The main task of the work was to develop a method for measuring signals from the readout 

electrodes in HRG using unbalanced resonators with significant (several hertz or more) differences in natural 

frequencies. The novelty of the study lies in solving the problem of calculating readout signals for an 

arbitrary orientation of the readout electrodes relative to the own axes of an unbalanced resonator. 

 

 

2. METHOD 

The task was to recalculate the measured signals into signals of virtual main and buffer channels, 

coinciding with the own axes of the resonator. We assume that the resonator is excited in the second mode; 

we will approximately assume that the shape of the resonator is elliptical. Signal pickup electrodes form two 
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channels for measuring voltages (Figure 2). The Figure 2 shows the measured mechanical vibrations in red. 

Vibrations in virtual channels are shown in blue, in which the corresponding signals need to be calculated. 

We use the well-known ellipse equation in polar coordinates: 

 

𝜌 =
𝑎𝑏

√𝑎2 𝑠𝑖𝑛2𝜙+𝑏2 𝑐𝑜𝑠2𝜙
 (1) 

 

where a, b is the major and minor semiaxes of an ellipse; φ is the angle between the radius and the major 

semiaxis, this is the current polar coordinate; ρ is the radius length, distance from the center of the ellipse to 

the current point. 

 

 

 
 

Figure 2. Standing wave orientation and measured signals 

 

 

It is also known [1]-[8] that the magnitude of the signal taken in an oscillating resonator is 

proportional to the amplitude of mechanical oscillations Δ (Table 1).  

Denote the resonator radius R. According to the results of measurements for a metal resonator, for 

example, given in [16], it is possible to estimate the value of the modulation coefficient 𝑚 =
Δ

𝑅
, which can be 

observed in practice.  

As shown in (2) for the amplitude the output signal [16]: 

 

𝑈1𝑚 =
𝑚𝜔𝐶0(𝑈0−𝑈10)

√
1

𝑅1
2+𝜔

2(𝐶0+𝐶1)
2
 (2) 

 

where C0=6 pF, the constant component of the sensor capacitance; m is the modulation coefficient; ω=2πf, 

f=1900 Hz is the own frequency of the resonator; C1=3 pF is the parasitic capacitance; R1=3…3,3 MΩ (R2, 

R4, R6, R7 on Figure 1); U0 = 100 V. 

 

 

Table 1. Mechanical oscillations amplitude 
Duration of excitation, ms 1 2 3 4 5 6 7 8 9 10 

Signal swing 1st channel U1m p-p, mV 0.92 1.76 2.88 3.70 4.46 4.96 5.92 6.78 7.72 8.50 

Amplitude in 1st channel, dm, µm 1.72 3.29 12.4 6.92 8.34 9.27 11.1 12.7 14.4 15.9 

 

 

For a metal resonator with a radius R=15 mm, the modulation coefficient was measured: 

 

𝑚 =
Δ

𝑅
=

(1.72...15.9)⋅10−6

15
= (0.11. . .1.06) ⋅ 10−6 (3) 

 

if the modulation coefficient is sufficiently small, then in this case expression (1) can be simplified by 

successively setting: 

 

𝑎 ≈ 𝑅 + Δ;  𝑏 ≈ 𝑅 − Δ;  Δ2 << 𝑅2;  (1 − 2
Δ

𝑅
𝑐𝑜𝑠 2𝜙)

−
1

2
≈ 1 +

Δ

𝑅
𝑐𝑜𝑠 2𝜙.  

 

then 𝜌(𝜙) ≈ 𝑅 − Δ 𝑐𝑜𝑠 2𝜙. 
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In case of rotation of the ellipse by an angle, the length of the radius at the current point with the 

coordinate 𝜙: 

 

𝜌(𝜙, 𝛼) ≈ 𝑅 − Δ 𝑐𝑜𝑠[2(𝜙 − 𝛼)] (4) 

 

we number the channels and voltages. In the first read-out channel at 𝜙 = 0, the measured amplitude of the 

signal voltage is proportional to: 

 

𝑈1 = Δ 𝑐𝑜𝑠(2𝛼) (5) 

 

in the second read-out channel at 𝜙 = 𝜋/4. 

 

𝑈2 = Δ 𝑠𝑖𝑛(2𝛼) (6) 

 

How can one calculate the orientation of the two own axes of the resonator: 

 

𝛼1 =
1

2
𝑎𝑟𝑐𝑡𝑔 (

𝑈2

𝑈1
), 𝛼2 =

1

2
𝑎𝑟𝑐𝑡𝑔 (

𝑈2

𝑈1
) +

𝜋

4
.  

 

from (3) and (4) we obtain the signal amplitude Δ = √
2𝑈1𝑈2

𝑠𝑖𝑛 4𝛼
. 

Thus, it is possible to calibrate and more accurately estimate the orientation of the resonator's own 

axis 𝛼. If the resonator is rotated, its own axis will be oriented to an unknown angle 𝛽. Voltages in signal 

pickup channels will be measured: 

 

𝑈1𝛽 = Δ𝛽 𝑐𝑜𝑠(2𝛽),  

𝑈2𝛽 = Δ𝛽 𝑠𝑖𝑛(2𝛽).  

 

in virtual channels oriented along the own axes of the resonator, the voltages: 

 

𝜙 = 𝛼 +
𝜋

4
,  𝑈2𝑉 = Δ𝛽 𝑠𝑖𝑛[2(𝛼 − 𝛽)].  

 

where 𝛽 =
1

2
𝑎𝑟𝑐𝑡𝑔 (

𝑈2𝛽

𝑈1𝛽
), Δ𝛽 = √

2𝑈1𝛽𝑈2𝛽

𝑠𝑖𝑛 4𝛽
,  

 

thus, according to the obtained formulas, it is possible to calculate the signal voltages in the virtual axes 

coinciding with the resonator's own axes, using the voltages taken from the arbitrarily oriented electrodes. 

 

 

3. RESULTS AND DISCUSSION 

In this section, it is explained the results of research and at the same time is given the 

comprehensive discussion experimental study of the influence of resonator nonideality on pickup signals. 

Investigations of oscillations that are excited in the main and quadrature channels are given. The process of 

energy transition from the main channel to the quadrature channel is estimated. 

 

3.1.  Experimental study of the influence of resonator nonideality on pickup signals 

Visually, the excitation of a stationary metal resonator with unbalanced axes manifested itself in the 

appearance of beats, as shown in Figures 3-5. The figures are distinguished by different divisions along the 

time axis 100 ms/div, 1 s/div, 1 ms/div) respectively. Oscillations are excited in the main channel (upper, 

blue). The quadrature channel is shown in green (bottom). The resonator remained motionless. The figures 

show that there is an increase in the oscillation amplitude in the quadrature channel (green) simultaneously 

with a decrease in the signal amplitude in the main channel (blue). 

Due to manufacturing errors of the resonator, the orientation of the excited standing wave does not 

coincide with the resonator's own axis. As a result, standing wave precession is observed. This is manifested 

in the amplitude modulation of voltages in the channels. The modulation frequency [27] is equal to the 

difference between the natural frequencies of the resonator axes, and for the studied metal resonator it was a 

few hertz. Figure 3 clearly shows the process of energy transition from the main channel to the quadrature 

one. 
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It is extremely difficult to analyze the rotation of the gyroscope under the observed voltage beats in 

the channels. Usually, the mismatch between the orientation of the natural axes of the resonator and the 

orientation of the standing wave is eliminated by expensive balancing. Consider a variant of signal 

processing from an insufficiently balanced resonator. 

 

 

 
 

Figure 3. Oscillations are excited in the main channel (upper, blue). The quadrature channel is shown in 

green (bottom). The standing wave does not coincide with the resonator's own axis. Time division value  

100 ms/div 
 

 

 
 

Figure 4. Voltage beats in the main and quadrature channels. Time division value 1 s/div 
 

 

 
 

Figure 5. Fine structure of voltage beats in the main channel. Time division value 1 ms/div 
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3.2.  Excitation of a standing wave coinciding with the orientation of the resonator own axes 

Let us denote the own resonator axes X’-Y’, and the axes of signal pickup X-Y. Previously, in some 

works [7]-[11], it was proposed to excite a standing wave in a non-ideal resonator, initially rotated and 

oriented along its own axes X'-Y', and not along the axis of the excitation or pickup electrodes X-Y, as shown 

in Figure 6. A minimum of eight excitation electrodes must be used to shift the standing wave excitation. 

They need to be supplied with excitation voltages, adjustable in magnitude, so that the total excitation force 

forms oscillations along its own axis X’, the position of which is a priori unknown. Next, the signals of two 

channels were studied with a change in the amplitude and phase of the excitation pulses. The mutual position 

in space of the electrodes for picking up signals and excitation and their designations are shown in Figure 7. 
 

 

  
  

Figure 6. In the general case, the own axes of 

the resonator X'-Y' are shifted relative to the 

axes of signal pickup X-Y 

Figure 7. The position of the signal pickup and excitation 

electrodes 

 

 

On Figures 8-17, the orientation of the standing wave generated in the direction of the excitation 

electrodes 2-10 and 6-14 is taken as zero. Accordingly, for the study, a complete rotation of the wave 

orientation by π/2, up to the direction of the electrodes 6-14 and 2-10, must be provided. It is obvious that a 

standing wave with orientation π/2 (Figure 16) is completely similar to a wave with orientation 0 (Figure 8). 

For the resonator under study, by more precise tuning near 6π/16, one can achieve the absence of observed 

beats in the channels (Figure 17). This indicates the coincidence of the intrinsic axis of the resonator and the 

orientation of the excited standing wave. We believe that in this case, virtual main (along its own axis) and 

quadrature (at an angle of 6π/16) channels are formed in the HRG, which coincide with the natural axes of 

the resonator. But in the general case, the orientation of these virtual channels does not coincide with the 

position of the signal pickup electrodes. Obviously, when the resonator is rotated, the voltages in the 

channels will change in accordance with the J. Bryan effect. For example, the picture shown in Figure 18 can 

be observed. 
 

 

  
  

Figure 8. Orientation 0 Figure 9. Orientation π/16 
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Figure 10. Orientation 2π/16 Figure 11. Orientation 3π/16 

 

 

  
  

Figure 12. Orientation 4π/16 Figure 13. Orientation 5π/16 
 

 

  
  

Figure 14. Orientation 6π/16 Figure 15. Orientation 7π/16 
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Figure 16. Orientation π/2 Figure 17. Excitation of a standing wave oriented 

along the own axes of the resonator 

 

 

 
 

Figure 18. Typical signals in the channels when the resonator turns 

 

 

4. CONCLUSION 

Approximate formulas for measuring signal amplitudes in virtual channels oriented along the own 

axes of the resonator of a solid-state wave gyroscope are obtained in this work. Using these formulas, it is 

possible to calculate the orientation of the standing wave in the HRG and the angle of rotation of the wave 

due to the rotation of the gyroscope. This method can be used in a situation where the position of the signal 

pickup electrodes does not coincide with the orientation of the excited standing wave, for the case of using 

poorly balanced metal gyroscopes. Further direction of research can be directed to the development of a 

method for measuring the in-phase and quadrature components of oscillations in a virtual quadrature channel. 

The obtained novelty of the presented results consists in the proposed solution the problem of calculating 

reading signals for an arbitrary orientation of the HRG electrodes relative to the own axes an unbalanced 

resonator. 
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