
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 28, No. 3, December 2022, pp. 1621~1632

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v28.i3.pp1621-1632  1621

Journal homepage: http://ijeecs.iaescore.com

A new logic circuits optimization algorithm using bipartite

graph

Oday Ahmed Al-Ghanimi1, Hussein K. Khafaji2
1Department of Computer Science, Informatics Institute for Postgraduate Studies, Baghdad, Iraq

2Department of Communication Engineering, Al-Rafidain University College, Baghdad, Iraq

Article Info ABSTRACT

Article history:

Received Jun 10, 2022

Revised Aug 19, 2022

Accepted Sep 2, 2022

 Designing a logic circuit from the scratch requires its description in logical

expression, (e.g. sum of products), and then the expression should be

optimized to diminish the cost and complexity of the circuit by reducing the

number of literals, the number of logical terms, and/or logical operations.

Karnaugh map, K-Map, is the most popular method in the optimization

process, but it suffers from many drawbacks such as its inefficiency or the

inability to be used in minimizing logical expression containing more than

four literals, in addition to the complexity of implementing it as a program.

In this paper, we propose a new algorithm to optimize the logic circuits

depending on the bipartite graph and some of the suggested mathematical

operations. The proposed algorithm is simple for programming

implementation, literal-unlimited number, and is easy to be visualized and

understandable. Many of the logic circuits of 3, 4, 5, and 6 literals were

optimized and the results were correctly matched with the results of the

Karnaugh map. Also, tens of logic circuits of more than 6 literals are

optimized and the results were correctly checked with their truth tables and

Logic-Friday tool.

Keywords:

Bipartite graph

Espresso

Karnaugh map

Logic circuit optimization

Logic expression

This is an open access article under the CC BY-SA license.

Corresponding Author:

Oday Ahmed Al-Ghanimi

Department of Computer Science, Informatics Institute for Postgraduate Studies

Baghdad, Iraq

Email: ms202030612@iips.icci.edu.iq

1. INTRODUCTION

The cost of logic circuits is growing according to its complexity resulted from the number of literals,

number of terms, and number of logical operations that initially involved in their logical expressions.

Therefore, the logic expression should be optimized as a pre-step of implementation of the circuits. The

optimization here means how to transform the expression to the simplest but correspondent one. This process

is not frank such that the connections of the expression/circuit components may form a challenge for

engineers in the design and/or reengineering phases. Originally the description of the circuit and what should

do is extracted from what so-called truth table. The design task is largely to determine what type of circuit

will perform the function described in the truth table [1].

A truth table is a mathematical way of representing the logical relationship between the inputs, i.e.

the influencing and active factors in a problem, and the logical influence of those factors, i.e. the outcomes. It

shows the information of three entities; The Boolean function, which may be in the form of a Boolean

expression, the inputs and their diversity of values, and the outputs that change according to the input

probabilities [2]. In particular, truth tables can be utilized to present the truthiness or falseness of a

propositional expression for all input value combinations, that is, logically valid. For a given problem of n

binary input, the truth table will include 2n entries corresponding to possible combinations of the input

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 28, No. 3, December 2022: 1621-1632

1622

variation values. A Boolean function results in true or false according to the input combination therefore the

number of given function may produce true or false for each combination so the number of Boolean

functions of n variables is the double exponential 22n
 [3].

The Karnaugh map or K-map was invented to optimize the digital logic circuit depending on the

truth table. K-map is not without flaws; it is difficult to be implemented as software and difficult to use

according to many researches [4]. Also, it is very unclear when a problem contains more than four

parameters. Four literals produce 24=16 combinations. The designer deals with the combinations that result

in 1/true as a result of the circuit. The selection of these combinations and the configuration of the optimized

circuit are tedious and error-prone [5]. Willard Quine and Edward McCluskey developed the first alternative

method for K-Map which is known as the tabular method. It is beginning with a truth table and ends with a

systematic procedure to determine the set of minimum prime implicants released by the output functions [6],

[7]. Quine McCluskey algorithm lends itself to be automated as a computer program, but it is inefficient in

terms of execution time and memory consumption such that adding an extra literal will almost double these

two ramifications of the minimization cost [8]. In a conclusion, the Quine McCluskey algorithm is efficient

for a restricted number of input literals and output functions in addition to its farness from understandability

and visualization [9], [10]. Brayton et al. [11] developed what so-called ESPRESSO algorithm that keeps a

very accepted level of computer resources usage and performance efficiency. ESPRESSO as a program

iterates to manipulate "cubes" representing the product terms, therefore its minimized output is not assured to

produce optimal minimization, in addition to its dependency on vectors optimization which makes it a loser

to the characteristic of visualization and easiness of understanding [12]. Many tools for logic circuit

minimization have been designed most of these tools depend on ESPRESSO algorithm [13]. One of these

tools is Logic Friday. it is free under Windows software that grants a GUI to Espresso. The function and the

input to Logic Friday can be in many forms such as gate diagrams, equations, or truth tables. In 2012, the

newer update of Logic Friday was released in version 1.1.4. This paper presents a new method for optimizing

digital circuits/logical expressions. It utilizes the bipartite graph properties and some of the suggested

operations on the graphs to eliminate the constraints of truth tables and the K-Map approach. Therefore, the

next part of the introduction is related to the bipartite graph.

In the graph theory field, a bipartite graph (or bigraph) is a graph whose nodes' set, N, can be

partitioned into two disjoint and independent sets; N0 and N1. Every edge e in the edge set E links a node in

N0 to one node in N1 [14], [15]. The node sets N0={n01, ... n0n} and N1={n11 ... n1m} are the mutually

exclusive vertices sets and they are called graph’s parts [14], [16]. 𝐸 ⊂ 𝑁0 × 𝑁1 is a set of edges that

connect vertices between two partitions [16], [17]. Figure 1 show two examples of bipartite graphs with their

biadjacency matrices. The graph includes the edges (A, 1), (B, 1), (C, 0), and (D, 0) has been illustrated in

Figure 1(a) and the graph involves the edges (A, 0), (B, 1), (C, 0), and (D, 0) has been illustrated in Figure

1(b).

A

C

D

B 0

1

0 1

A 0 1

B 0 1

C 1 0

D 1 0

A

C

D

B 0

1

0 1

A 1 0

B 0 1

C 1 0

D 1 0

(a) (b)

Figure 1. An example of bipartite graphs with their biadjacency matrices such that the graph in (a) includes

the edges (A,1), (B, 1), (C,0), and (D, 0), while (b) involves the edges (A,0), (B, 1), (C,0), and (D, 0).

The discrepancy between the size of N1 and N2 and the direction of the relationships, edges, between

the nodes of the two sets only, approximate the execution time of matching and traversing a bipartite graph

closer to the linear time in most circumstances [17]. There are unlimited number of applications for bipartite

graph such as search engines, social networks [18], and recommendation systems [19], data and networks

classification [20], [21], cloud computing [22], health care, biology and medicine [23]. Other applications

relevant to bipartite graphs are related to x-ray crystallography, metabolic pathways, chemical reaction

networks, missile guidance, routing and wavelength assignment problem, and metabolic pathways [24], [25],

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

A new logic circuits optimization algorithm using bipartite graph (Oday Ahmed Al-Ghanimi)

1623

and the list of applications is rapidly growing. In this paper, a novel method is presented for logic

circuit/expression optimization which mainly depends on bipartite graph.

2. THE PROPOSED METHOD FOR LOGIC CIRCUIT OPTIMIZATION (LCOA)

The proposed method depends mainly on using bipartite graphs to represent entries of the truth

table. It applies suggested operations on biadjacency matrices of these graphs. So, we will introduce the

concept of product bipartite graph (PBG) to simplify the understanding of the proposed method.

2.1. Product bipartite graph

Each literal in the logical problem can have one of two values true/1 or false/0. A truth table

presents all combinations of the literals that lead to 1 or 0 as an output for the digital circuit or logical

expression. The logical expression can be constructed by the sum of products (SOP), or product of sum

(POS). Initially in this paper, we’ll concentrate on SOP in which only the combinations that lead to logic 1

output will be considered. Consider the truth table presented in Table 1 and the logical expression obtained

from it using SOP.

Table 1. Truth table
Seq. A B C D Output

0 0 0 0 0 1

1 0 0 0 1 1

2 0 0 1 0 0

3 0 0 1 1 0

4 0 1 0 0 1

5 0 1 0 1 1

6 0 1 1 0 1

7 0 1 1 1 0

8 1 0 0 0 0

9 1 0 0 1 0

10 1 0 1 0 0

11 1 0 1 1 0

12 1 1 0 0 1

13 1 1 0 1 0

14 1 1 1 0 0

15 1 1 1 1 0

𝑂𝑢𝑡𝑝𝑢𝑡

= A' B' C' D' + A' B' C' D + A' B C' D' + A' B C' D + A'BCD' +ABC'D'

In this paper, we introduce the concept of PBG. PBG is a bipartite graph with two sets of nodes; N1

is the set of literals of the logical problem and N2 consists of binary values 0 and 1. Recall Figure 1 includes

the biadjacency matrix of the PBG. Also, Figure 1(a), represents the PBG of the combination ABC’D’ which

corresponds to 1, 1, 0, and 0 as values for the literal A, B, C, and D respectively. This PBG represents the

12th entry of the truth table, i.e., 1100.

2.2. Suggested operations on PBG

The ORing operation of two bipartite graph results in a graph with all the edges of the two graphs.

The ANDing operation keeps the common edges of the two bipartite graph. XORing keeps the different

edges of the two bipartite graphs in the resultant bipartite graph, (see Figure 2).

Table 2 summarizes the suggested operations depending on the PBGs presented in Figure 1(a) and

1(b). Figure 1(b) represents another PBG for another entry of the truth table presented in Table 1. This entry

is 0110 i.e., the 6th entry A’BCD’.

From Table 2, it is possible to conclude that the ORing operation of two bipartite graphs results in a

bipartite graph that represents their union. The ANDing operation of two bipartite graphs results in an

intersection bipartite graph. The XORing operation of two bipartite graphs keeps the different edges of the two

bipartite graphs. These suggested operations can be utilized in many applications in addition to their utilization

to achieve the goal of this research. Some modifications will be done to reach the aim of the research. These

modifications are done because the resultant graphs may contain an entry that indicates that a literal is

connected with node 0 and node 1 and this case is logically impossible in this research context, but it is very

useful because it indicates important information related to the minimization process. For example, the output

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 28, No. 3, December 2022: 1621-1632

1624

related to literal A of XOR operation in Table 2 is [1,1]. This indicates that the PBG1 includes A’ and PBG2

includes A or vice versa. Let’s call this case, [1, 1], conflict edge. When we eliminate the conflict edge of the

XOR operation of Table 2 from PBG1 or PBG2, we obtain the bipartite graph presented in Figure 2.

Table 2. Summarization of the proposed operations on the PBGs
Seq. PBG1 Graph#1 Op. PBG2 Graph#1 Result PBG Result G Comment

1

 0 1

A 0 1

B 0 1

C 1 0

D 1 0

OR

 0 1

A 1 0

B 0 1

C 1 0

D 1 0

 0 1

A 1 1

B 0 1

C 1 0

D 1 0

Union of

The graphs'

Edges

2

 0 1

A 0 1

B 0 1

C 1 0

D 1 0

AND

 0 1

A 1 0

B 0 1

C 1 0

D 1 0

 0 1

A 0 0

B 0 1

C 1 0

D 1 0

Intersection

of the graphs'

edges

3

 0 1

A 0 1

B 0 1

C 1 0

D 1 0

XOR

 0 1

A 1 0

B 0 1

C 1 0

D 1 0

 0 1

A 1 1

B 0 0

C 0 0

D 0 0

Difference

 of the graphs'

edges

A

C

D

B 0

1

0 1

A 0 0

B 0 1

C 1 0

D 1 0

Figure 2. Elimination of different edge of two PBGs

This process is similar to the elimination of unstable literal in K-map. Its leads to the minimization

of literals and/or logical operators that control the circuit complexity. The XOR operation will play a crucial

role in the proposed method of digital circuit optimization because it depends mainly on the gradual

elimination of different edges in the PBGs. Now, Let's define a property named "inclusion" for two bipartite

graphs which has two cases; named "equality-inclusion" and "partial-inclusion". Table 3 summarizes the

inclusion property. We define the "Equality-inclusion" case, for the purposes of this research, as the case

when the two bipartite graphs have the same number of vertices and the same number of edges such that the

vertices that are having edges are the same in each one but there exists one different edge between them. The

"partial-inclusion" is defined as the case when the two bipartite graphs have the same number of vertices and

the difference between the numbers of edges equals 1 with one edge differs.

A

D

B

C

0

1

A

D

B

C

0

1

A

D

B

C

0

1

A

D

B

C

0

1

A

D

B

C

0

1

A

D

B

C

0

1

A

D

B

C

0

1

A

D

B

C

0

1

A

D

B

C

0

1

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

A new logic circuits optimization algorithm using bipartite graph (Oday Ahmed Al-Ghanimi)

1625

Table 3. Summarization of the inclusion property of the PBGs
Seq. PBG1 Graph#1 Op. PBG2 Graph#1 Result PBG Result G Comment

1

ABC'D'

 0 1

A 0 1

B 0 1

C 1 0

D 1 0

ABC'D'

(E

Q

U

A

L

I

T

Y)

and

AND

A'BC'D'

 0 1

A 1 0

B 0 1

C 1 0

D 1 0

A'BC'D'

BC'D'

 0 1

A 0 0

B 0 1

C 1 0

D 1 0

BC'D'

The "equality-

inclusion" property

and "AND" operation

will be used for logic

circuit optimization.

The result of the

optimization is BC'D'

with ignoring PBG1

and PBG2.

2

BC'D'

 0 1

A 0 0

B 0 1

C 1 0

D 1 0

BC'D'

(P

A

R

T

I

A

L)

and

AND

 0 1

A 0 0

B 0 0

C 1 0

D 0 1

C'D

BC'

 0 1

A 0 0

B 0 1

C 1 0

D 0 0

BC'

The "partial-inclusion"

property and "AND"

operation will be used

for the logic circuit to

optimize the larger

PBG. The result is

BC' + C'D

2.3. The algorithms of the proposed method

The proposed digital circuits optimization Algorithm consists of the following general steps and its

pseudo code is presented in Algorithm 1:

Algorithm 1. Logic circuit optimization
Algorithm, LCOA

Global variable biadjacency matrix B1, B2;

Global variable B1_literals , B2_literals;

Algorithm: Logic Circuit Optimization

Input:

 Truth table T;

Output:

 Optimized Logic Circuit OLC; // OLC is global var.

 { OLC= { };

Construct the SOP terms list L;

//it is better to implement L as a queue.

Construct the PBG of each term l ∈ L;
//i.e. construct the biadjacency matrix

While (L<>{}) do

{ If (picking_ two_One-edge-Differes(L)==true)

// Fetch 2 bipartite graphs B1 and B2 from L

// having inclusion property.

 {

optimized_Graph= anding (B1, B2);

//add optimized_Graph to L

enqueue (optimized_Graph, L);

// if (length(B1_literals)== length(B2_literals))

// do nothing; just

// ignore B1 and B2; they are already de-queued

if (length(B1_literals) > length(B2_literals))

 enqueue (B2, L); //and ignore B1

else if (length(B1_literals) < length(B2_literals))

 enqueue (B1, L); //and ignore B2

 } // if

 } // while

 return OLC;

} // OLC

− Depending on the truth table or the number of true combinations construct the SOP expression.

− Construct the biadjacency matrices of each PBG in the SOP expression.

− Select two PBGs of the SOP expression PBGi and PBGj such that the number of edges of PBGi is less

than or equal to the number of edges of PBGj, (|E(PBGi)|≤|E(PBGj)|), (consider the inclusion algorithm-

A

D

B

C

0

1

A

D

B

C

0

1

A

D

B

C

0

1

A

D

B

C

0

1

A

D

B

C

0

1

A

D

B

C

0

1

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 28, No. 3, December 2022: 1621-1632

1626

Algorithm 2 and recall inclusion definition in section 3.1, and they have only one different edge,

consider XORing algorithm, Algorithm 3. The process of elimination occurs in the larger PBG with

keeping the resulting PBG and the smaller PBG, or that the elimination process occurs on both PBGs in

the case of equality and keeping the resulting PBG and neglecting the main PBGs. The elimination

process is accomplished by Algorithm 4, ANDing algorithm.

− Repeat step 3 until the SOP is optimized.

The pseudo-code of the algorithms of the proposed method is presented in Algorithm 1 which is

written in a self-documented manner.

Algorithm 2. Inclusion algorithm
// Returns true if G1⊆ G2 or G2⊆ G1
boolean inclusion(G1, G2)

{

 G1_literals={}; G1_literals={}; c1=c2=0;

 for (i=1; i<= No. of literals; i++)

 {

 if (rowi of G1<>[0, 0])

 { G1_literals= G1_literals ∪ i);
 c1++;

 }

 if (rowi of G2<>[0, 0])

 { G2_literals= G2_literals ∪ i);
 c2++;

 }

 } // for

 if (G1_literals == G2_literals)

 return true;

 else if (absolute (c1-c2)==1) and

 (G1_literals ⊆G2_literals) or

 (G2_literals ⊆ G1_literals))
 return true;

 else return false;

}// inclusion

Algorithm 3. XORing algorithm
boolean xoring(G1, G2)

{

 int c=0;

 for (i=1, i<= No.of literals; i++)

 {

 v=(rowi of G1) xor (rowi of G2);

 if(v== [1, 1])

 if (++c>1) //more than 1 difference

 { enqueue(G2, L);return false;}

 } //for

 return true;

}

Algorithm 4. Graph-ANDing algorithm
biadjacency anding (G1, G2)

{

 biadjacency tempBG;

 for (i=1, i<= No. of literals; i++)

 if (rowi of G1= =[0, 0])

 //Optimized row

 rowi of tempBG = rowi of G2;

 else

 rowi of tempBG= (rowi of G2) and

 (rowi of G1);

 return tempBG;

} // anding function

Algorithm 5 Boolean picking_two_0ne-edge-Differes(L) is responsible for finding two PBGs having

inclusion property.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

A new logic circuits optimization algorithm using bipartite graph (Oday Ahmed Al-Ghanimi)

1627

Algorithm 5. Boolean picking_two_0ne-edge-Differes(L)
{

 dequeue(G1, L);

 dequeue(G2, L);

 tempG=G2;

 for (i=1; i<=|L|-2; i++)

 {

 if (inclusion(G1, G2)= =true)

 if(xoring (G1,G2)= =true)

 return true;

 else

 { enqueue(G2, L);//re-insert G2 in L

 dequeue(G2,L);//Fetch new G from L

 if (G2==tempG)

 { OLC=OLC ∪ G1;//G1 is optimized
 G1=G2;

 continue;

 }

 }//else

 }// for

 if (I >|L|-2) return false;

}

2.4. LCOA and K-Map of three literals

Consider the truth table presented in Table 4 and its SOP, O=a'b'c'+a'b'c+a'bc'+a'bc+ab'c+abc. Also,

consider Table 5 and Table 6 which presented the optimization depending on K-map and LCOA respectively.

Consider Table 6, LCOA initially fetches two PBGs; AB’C and ABC, then the proposed ANDing will be

applied to obtain AC PBG. The AB’C and ABC PBGs will be neglected. Then LCOA will elite A’BC’ and

A’BC PBGs to obtain A’B. Finally, it manipulates A’B’C’ and A’B’C PBGs to obtain A’B’ PBG. The turn

now is for the partially optimized PBGS; A’B and A’B’ to obtain A’ PBG. A’ and AC PBGs will be

processed to obtain C PBG. The Final result is (A’+C). Note that in the final step A’ PBG is in inclusion

relation with AC PBG therefore the eliminated literal will be A of AC PBG to obtain C with keeping of PBG

of smallest number of edges, i.e., A’; consider inclusion function in Algorithm 2.

Table 4. Truth table example
Seq. A B C O

0 0 0 0 1

1 0 0 1 1

2 0 1 0 1

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 0

7 1 1 1 1

Table 5. K-Map
BC

A 00 01 11 10

0

1

1 1 1 1

0 1 1 0

2.5. LCOA and K-Map of four literal

Consider the truth table presented in Table 7 and its SOP,O=ab'c'd+ab'cd'+ab'cd+abc'd'+abc'd+abcd'

+abcd. Also, consider Table 8 and Table 9 which presented the optimization depending on K-map and LCOA

respectively. Table 9 includes abstracted bipartite graphs of PBGs to show the ability of LCOA to visualize

the solution steps.

According to Table 9, LCOA initially fetches two PBGs according to the inclusion property; ABCD

and ABCD', then the proposed ANDing will be applied to obtain ABC PBG. The ABCD and ABCD' PBGs

will be neglected. Then LCOA will elite ABC’D' and ABC'D PBGs to obtain ABC'. Then it manipulates

AB’CD’ and AB’CD PBGs to obtain AB’C PBG and it ignores AB’CD’ and AB’CD PBGs. The turn now is

for the partially optimized PBG ABC' and AB’C'D to obtain AC’D PBG with the elimination of AB’C'D. In

the next iteration, LCOA will manipulate AB and AB'C PBGs to obtain AC PBG with ignoring the AB'C

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 28, No. 3, December 2022: 1621-1632

1628

PBG. The Final iteration will manipulate AC and AC'D to obtain AD PBG and neglect the AC'D PBG. The

optimized result will be O=AB+AC+AD.

Table 6. LCOA example
Seq. PBG1 Op. PBG2 Result PBG Comment

1

 0 1

A 0 1

B 1 0

C 0 1

AND

 0 1

A 0 1

B 0 1

C 0 1

 0 1

A 0 1

B 0 0

C 0 1

AC

2

 0 1

A 1 0

B 0 1

C 1 0

AND

 0 1

A 1 0

B 0 1

C 0 1

 0 1

A 1 0

B 0 1

C 0 0

A’B

3

 0 1

A 1 0

B 1 0

C 1 0

AND

 0 1

A 1 0

B 1 0

C 0 1

 0 1

A 1 0

B 1 0

C 0 0

A’B’

4

0 1

A 1 0

B 1 0

C 0 0

AND

 0 1

A 1 0

B 0 1

C 0 0

 0 1

A 1 0

B 0 0

C 0 0

A’

5

 0 1

A 1 0

B 0 0

C 0 0

AND

0 1

A 0 1

B 0 0

C 0 1

 0 1

A 1 0

B 0 0

C 0 1

Final

Result

A’ + C

Table 7. Truth table example
Seq. A B C D O

0 0 0 0 0 0

1 0 0 0 1 0

2 0 0 1 0 0

3 0 0 1 1 0

4 0 1 0 0 0

5 0 1 0 1 0

6 0 1 1 0 0

7 0 1 1 1 0

8 1 0 0 0 0

9 1 0 0 1 1

10 1 0 1 0 1

11 1 0 1 1 1

12 1 1 0 0 1

13 1 1 0 1 1

14 1 1 1 0 1

15 1 1 1 1 1

Table 8. K-Map
CD

AB
00 01 11 10

00 0 0 0 0

01 0 0 0 0

11 1 1 1 1

10 0 1 1 1

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

A new logic circuits optimization algorithm using bipartite graph (Oday Ahmed Al-Ghanimi)

1629

Table 9. LCOA 4 literals example
Seq. PBG1 G1 Op. PBG2 G2 Result PBG Comment

1

0 1

A 0 1

B 0 1

C 0 1

D 0 1

A

N

D

0 1

A 0 1

B 0 1

C 0 1

D 1 0

 0 1

A 0 1

B 0 1

C 0 1

D 0 0

A

B

C

2

0 1

A 0 1

B 0 1

C 1 0

D 1 0

A

N

D

0 1

A 0 1

B 0 1

C 1 0

D 0 1

 0 1

A 0 1

B 0 1

C 1 0

D 0 0

A

B

C'

3

0 1

A 0 1

B 1 0

C 0 1

D 1 0

A

N

D

0 1

A 0 1

B 1 0

C 0 1

D 0 1

 0 1

A 0 1

B 1 0

C 0 1

D 0 0

A

B'

C

4

0 1

A 0 1

B 0 1

C 1 0

D 0 0

A

N

D

0 1

A 0 1

B 1 0

C 1 0

D 0 1

 0 1

A 0 1

B 0 0

C 1 0

D 0 1

A

C '

D

5

 0 1

A 0 1

B 0 1

C 0 1

D 0 0

A

N

D

 0 1

A 0 1

B 0 1

C 1 0

D 0 0

 0 1

A 0 1

B 0 1

C 0 0

D 0 0

AB

6

 0 1

A 0 1

B 0 1

C 0 0

D 0 0

A

N

D

 0 1

A 0 1

B 1 0

C 0 1

D 0 0

 0 1

A 0 1

B 0 0

C 0 1

D 0 0

AB+AC

7

 0 1

A 0 1

B 0 0

C 0 1

D 0 0

A

N

D

0 1

A 0 1

B 0 0

C 1 0

D 0 1

 0 1

A 0 1

B 0 0

C 0 0

D 0 1

AC+AD

2.6. LCOA and a function of eight literals
Consider the following SOP of eight literals. Also, consider Table 10 which includes the steps of

LCOA and abstracted graphs of PBGs. Presenting the abstracted bipartite graph aims to provide well

understandability for LCOA, and to illustrate the ability to visualize its steps. Each bipartite graph consists of

the set of literals {A, B, C, D, E, F, G and H}, and the set of binary values {0, 1}. The comment field in

Table 10 Contains the optimized PBG in each step.

2.7. LCOA's manipulation of don't care and logic 0 output

In LCOA, the don't-care cases can easily be utilized to optimize the logic circuits, this can be

accomplished by separating the list of truth PBGs from the list of don't care PBGs. A PBG from the first list

will be not checked with the PGGs of the don't-care list except in the situation that no inclusion for it in the

truth list. When the truth list becomes in the optimized situation, the don't-care list will be ignored. Let's

explain this issue in the following example. Consider the truth table of a segment of the 7-segments display

which is presented in Table 11.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 28, No. 3, December 2022: 1621-1632

1630

Table 10. LCOA 8 literals example
Seq. PBG1 G1 OP PBG2 G2 Result PBG RG Comment

1

 0 1

A 1 0

B 1 0

C 1 0

D 1 0

E 1 0

F 1 0

G 1 0

H 1 0

A

N

D

 0 1

A 1 0

B 0 1

C 1 0

D 1 0

E 1 0

F 1 0

G 1 0

H 1 0

 0 1

A 1 0

B 0 0

C 1 0

D 1 0

E 1 0

F 1 0

G 1 0

H 1 0

A'

C'

D'

E'

F'

G'

H'

2

 0 1

A 0 1

B 0 1

C 0 1

D 0 1

E 0 1

F 0 1

G 0 1

H 0 1

A

N

D

 0 1

A 0 1

B 0 1

C 0 1

D 0 1

E 0 1

F 0 1

G 0 1

H 1 0

 0 1

A 0 1

B 0 1

C 0 1

D 0 1

E 0 1

F 0 1

G 0 1

H 0 0

A

B

C

D

E

F

G

3

 0 1

A 1 0

B 0 0

C 1 0

D 1 0

E 1 0

F 1 0

G 1 0

H 1 0

A

N

D

 0 1

A 1 0

B 1 0

C 1 0

D 1 0

E 1 0

F 1 0

G 0 1

H 1 0

 0 1

A 1 0

B 1 0

C 1 0

D 1 0

E 1 0

F 1 0

G 0 0

H 1 0

A'

B'

C'

D'

E'

F'

H'

O=a'b'c'd'e'f'g'h'+a'bc'd'e'f'g'h'+abcdefgh+abcdefgh'+.a'b'c'd'e'f'gh'.

The optimized expression is O=a'c'd'e'f'g'h'+abcdefg+a'b'c'd'e'f'h'.

Table 11. A segment of BCD to SSD
Seq. BCD inputs Boolean Logic 1 Boolean Logic 0

Decimal A B C D a

0 0 0 0 0 1 A'B'C'D'

1 0 0 0 1 0 A'B'C'D

2 0 0 1 0 1 A'BC'D'

3 0 0 1 1 1 ABC'D'

4 0 1 0 0 0 A' BC'D'

5 0 1 0 1 1 AB'C D'

6 0 1 1 0 1 A'BCD'

7 0 1 1 1 1 ABCD'

8 1 0 0 0 1 A'B'C'D

9 1 0 0 1 1 AB'C'D

10 x x x x 0 AB'CD'

11 x x x x 0 AB'CD

12 x x x x 0 A B C' D'

13 x x x x 0 ABC'D

14 x x x x 0 ABCD'

15 x x x x 0 ABCD

The full Boolean expression for segment ‘a’ of the display that obtained from Table 11 is:

a=A'B'C'D'+A'BC'D'+ABC'D'+AB'CD'+A'BCD'+ABCD'+A'B'C'D+AB'C'D.

LCOA without caring to don't-care cases produces the following Boolean expression:

D
o

n
't

 C
a

re
 C

a
se

s

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

A new logic circuits optimization algorithm using bipartite graph (Oday Ahmed Al-Ghanimi)

1631

a=BD'+B'C'D+A'B'C'+ACD'.

This expression has been obtained in the same manner of the previous examples.

For simplicity, let's use another strategy provided by LCOA that is constructing PBGs that cause a

logic 0 output instead of a logic 1 output. However, this strategy gets logic 1 output where a should be at

logic zero for A'B'C'D and A'BC'D', therefore this output should be negated to provide correct output that

matches the truth table. To manipulate and utilize the don't-care cases, LCOA constructs two lists; list L

which contains the PBGs that provide logic 1 or logic 0 and the list of don't care PBGs, DCL. So,

L={A'B'C'D, A'BC'D'} and DCL={AB'CD', AB'CD, ABC'D', ABC'D, ABCD', ABCD}

The output of LCOA without considering the don't-care case will be: a=A'B'C'D+A'BC'D' because

there is no "equality" or "partial" inclusion between the PBGs of L. When it is required to LCOA to consider

the don't care case, it will fetch A'B'C'D and A'BC'D' but there is no inclusion property, then A'B'C'D will be

checked with DCL list for inclusion but there is no inclusion property too, therefore, A'B'C'D will be

involved in the output. A'BC'D' PBG is in an equality inclusion with ABC'D' in the DCL and after Anding

operation the resultant PBG is BC'D', i.e. a=A'B'C'D+BC'D' which is equivalent to K-map presented in Table

12. The LCOA minimization process is presented in Table 13.

Table 12. K-Map of logic 0
 CD

AB

00 01 11 10

00 1 0 1 1

01 0 1 x x

11 x x x x

10 1 1 x 1

Table 13. K-Map of logic

Seq.
PBG1

L
 Op.

PBG2

DC-List
 Result PBG Comment

1

0 1

A 1 0

B 0 1

C 1 0

D 1 0

A

N

D

0 1

A 0 1

B 0 1

C 1 0

D 1 0

 0 1

A 0 0

B 0 1

C 1 1

D 1 0

B

C'

D'

3. CONCLUSION

In this paper, a novel algorithm for logic circuit optimization has been produced based on bipartite

graph with proposed operations related to bipartite graph such as finding the intersection, union, and/or

difference of bipartite graphs. This algorithm excludes the truth table narrative and K-map limitations. Also,

it lends itself to programming and easiness of visualization and understanding because it depends on the

repetition of excluding the different edges among the bipartite graphs that represent the terms of SOP.

Additionally, its output minimization is guaranteed to be global minimum. LCOA can minimize logic circuits

using logic 0 output and logic 1 output in the same procedure and equivalent efficiency. This algorithm has

been implemented as a program its input is a truth table, terms of SOP, and/or minterms numbers with one or

more output.

REFERENCES
[1] D. S. Marakkalage, E. Testa, H. Riener, A. Mishchenko, M. Soeken, and G. De Micheli, “Three-Input gates for logic synthesis,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 40, no. 10, pp. 2184–2188, Oct. 2021, doi:

10.1109/TCAD.2020.3032625.

[2] K. Wick, Applied Digital Logic Exercises Using FPGAS, IOP Publishing, 2017.

[3] S. Bhattacharya, “Truth table analysis of logic circuits using reversible gates,” International Journal for Research in Applied

Science and Engineering Technology, vol. 8, no. 2, pp. 547–555, Feb. 2020, doi: 10.22214/ijraset.2020.2085.

[4] L. E. Frenzel Jr, Practical electronic design for experimenters, McGraw-Hill Education, 2020.

[5] N. Johnson‐Glauch, D. S. Choi, and G. Herman, “How engineering students use domain knowledge when problem‐solving using

different visual representations,” Journal of Engineering Education, vol. 109, no. 3, pp. 443–469, Jul. 2020, doi:

10.1002/jee.20348.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 28, No. 3, December 2022: 1621-1632

1632

[6] W. V. Quine, “The problem of simplifying truth functions,” The American Mathematical Monthly, vol. 59, no. 8, pp. 521-531,

Oct. 1952, doi: 10.2307/2308219.

[7] C. W. Kann, Digital circuit projects: an overview of digital circuits through implementing integrated circuits - second edition,

Gettysburg College Open Educational Resources, 2014.

[8] W. V. Quine, “A way to simplify truth functions,” The American Mathematical Monthly, vol. 62, no. 9, pp. 627–631, Nov. 1955,

doi: 10.1080/00029890.1955.11988710.

[9] H.-G. Vu, N.-D. Bui, A.-T. Nguyen, and ThanhBangLe, “Performance evaluation of Quine-McCluskey method on multi-core

CPU,” in 2021 8th NAFOSTED Conference on Information and Computer Science (NICS), Dec. 2021, pp. 60–64, doi:

10.1109/NICS54270.2021.9701506.

[10] E. D. Nugroho, “Development of applications for simplification of boolean functions using Quine-McCluskey method,”

Telematika, vol. 18, no. 1, pp. 27-36, Mar. 2021, doi: 10.31315/telematika.v18i1.3195.

[11] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli, Logic minimization algorithms for VLSI

synthesis, vol. 2, pp. 1-194, NY: Springer, 1984, 10.1007/978-1-4613-2821-6.

[12] M. Bolton, Digital systems design with programmable logic, Addison-Wesley Longman Publishing Co., Inc, 1990.

[13] R. L. Rudell, “Multiple-valued logic minimization for PLA synthesis,” Memorandum No. UCB/ERL M86-65, no. June, 1986.

[14] A. Frieze and M. Karoński, Introduction to Random Graphs, Cambridge University Press, 2015.

[15] A. Azaizeh, R. Hasni, F. Haddad, M. Alsmadi, R. Alkhasawneh, and A. Hamad, “4-total edge product cordial for some star

related graphs,” International Journal of Electrical and Computer Engineering (IJECE), vol. 12, no. 4, pp. 4007-4020, Aug.

2022, doi: 10.11591/ijece.v12i4.pp4007-4020.

[16] A. S. Asratian, T. M. J. Denley, and R. Häggkvist, Bipartite Graphs and their Applications, Cambridge University Press, 1998.

[17] J. van den Brand et al., “Bipartite matching in nearly-linear time on moderately dense graphs,” in 2020 IEEE 61st Annual

Symposium on Foundations of Computer Science (FOCS), Nov. 2020, pp. 919–930, doi: 10.1109/FOCS46700.2020.00090.

[18] A. A. Naem and N. I. Ghali, “Optimizing community detection in social networks using antlion and K-median,” Bulletin of

Electrical Engineering and Informatics (BEEI), vol. 8, no. 4, pp. 1433–1440, Dec. 2019, doi: 10.11591/eei.v8i4.1196.

[19] Z. Wu, C. Song, Y. Chen, and L. Li, “A review of recommendation system research based on bipartite graph,” 2020 2nd

International Conference on Computer Science Communication and Network Security (CSCNS2020), Feb. 2021, vol. 336, doi:

10.1051/matecconf/202133605010.

[20] X. Zhang, H. Wang, J. Yu, C. Chen, X. Wang, and W. Zhang, “Bipartite graph capsule network,” World Wide Web, 2022, doi:

10.1007/s11280-022-01009-2.

[21] S. A. Sadchikova and M. Abdujapparova, “Characteristic’s analysis of associative switching system,” TELKOMNIKA

(Telecommunication Computing Electronics and Control), vol. 20, no. 1, pp. 27-33, Feb. 2022, doi:

10.12928/telkomnika.v20i1.17640.

[22] B. R. Arunkumar and R. Komala, “Applications of bipartite graph in diverse fields including cloud computing,” International

Journal Of Modern Engineering Research (IJMER), vol. 5, no. 7, 1-7, 2015.

[23] G. A. Pavlopoulos, P. I. Kontou, A. Pavlopoulou, C. Bouyioukos, E. Markou, and P. G. Bagos, “Bipartite graphs in systems

biology and medicine: a survey of methods and applications,” GigaScience, vol. 7, no. 4, pp. 1–31, Apr. 2018, doi:

10.1093/gigascience/giy014.

[24] X. Zhang, M. Nadeem, S. Ahmad, and M. K. Siddiqui, “On applications of bipartite graph associated with algebraic structures,”

Open Mathematics, vol. 18, no. 1, pp. 57–66, Mar. 2020, doi: 10.1515/math-2020-0003.

[25] L. C. C. Bergamasco, K. R. P. S. Lima, C. E. Rochitte, and F. L. S. Nunes, “A bipartite graph approach to retrieve similar 3D

models with different resolution and types of cardiomyopathies,” Expert Systems with Applications, vol. 193, p. 116422, May

2022, doi: 10.1016/j.eswa.2021.116422.

BIOGRAPHIES OF AUTHORS

Oday Ahmed Al-Ghanimi received the B.Eng. degree in software engineering

from Al-Rafidain University College, Baghdad, Iraq, in 2004. He is currently a master's

student in computer science at the Institute of Informatics for Graduate Studies, Baghdad, Iraq.

He can be contacted at email: ms202030612@iips.icci.edu.iq.

Hussein K. Khafaji received the B.Sc., M.Sc., and Ph.D. degrees from the

University of Technology, Baghdad, Iraq, in 1989, 1992, and 2002, respectively. He has been

a professor of AI and data mining at Al-Rafidain University College since 2012. He is

currently the Head of the Computer Communications Engineering Dept. at Al-Rafidain

University College, Baghdad, Iraq. He is also a member of the advisory council of the Iraqi

Commission for Computers and Informatics in the Ministry of Higher Education and

Scientific Research in Iraq. He has published more than 70 refereed journal and conference

papers in the fields of AI and data mining and its applications. He can be reached at

hussain.ketan.elc@ruc.edu.iq.

https://orcid.org/0000-0002-8980-6240
https://scholar.google.com/citations?view_op=list_works&hl=ar&user=IDK_EogAAAAJ
https://orcid.org/0000-0002-1830-0568
https://scholar.google.com/citations?user=Jht384QAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57222295861

