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 In this research paper, space vector pulse width modulation (SVPWM)-

sensorless vector control of an induction motor using an extended Kalman 

filter is presented. The aim of the proposed sensorless control method is to 

design, implement, and test a sensorless vector control scheme by simulation 

and experimental implementation. An extended Kalman filter (EKF) 

simultaneously estimates the rotor speed, the stator stationary axis 

components (iαs, iβs), and the rotor fluxes (αs, βs). The measured stator 

voltages and currents are employed as inputs for a recursive filter. Simulation 

results under various operating conditions validate the performances and 

effectiveness of the proposed observer. The experimental system consists of a 

host computer with two subsystems: console (SC) and master (SM). The SM 

subsystem converts to real-time C code, and this code is uploaded into 

OP5600 real time digital simulation (RTDS) for real-time execution. The 

obtained experimental results prove that the EKF speed observer can replace 

the speed or position sensor. This has the benefits of reducing the drive 

system’s size and overall cost as well as high system reliability. 
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1. INTRODUCTION 

Modern industry frequently uses the squirrel cage induction machine because of its straightforward 

design, low cost, and robustness. Due to these advantages, this type of AC machine became a popular option 

for contemporary high-performance electric drives in areas where only DC motors were previously used [1]. 

However, the induction devices are difficult to control. This is owing to the fact that the stator current, which 

also contributes to the air-gap flux and is the source of the rotor current in an induction machine, which 

produces torque, resulting in a connection between the mechanisms that produce flux and torque [2].  

Induction machine control for high performance drive applications now adheres to the field oriented 

control (FOC) or vector control developed by Blaschke [3] and Hasse [4]. Induction motor control based on 

the field orientation concept provides good performance in variable speed applications [5]–[7], as well as 

control properties resembling a separately excited dc machine. Although the stator current space vector can be 

oriented along the mutual flux, stator flux, or rotor flux, doing so alone results in a natural decoupling between 

the torque and flux-producing components of the stator current space vector. By using a speed estimator in 

https://creativecommons.org/licenses/by-sa/4.0/
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place of the speed sensor in sensorless control approach, the costs associated with the speed sensor are 

eliminated. [8]–[11].  

Kalman filter is a prtical choice when model has uncertainties and measurement signal is affected by 

Gaussian noise [12]–[21]. On the other hand, the fundamental problem with the extended Kalman filter (EKF) 

is that the estimate performance of the EKF is significantly impacted by the system parameters and the 

associated covariance matrices Q and R of the measurement noises [13]–[15]. 

In this paper, a recursive EKF based space vector pulse width modulation (SVPWM)-sensorless 

vector control of induction motor is presented. The rotor speed and flux of induction motor are estimated by 

EKF using the discrete time model of induction motor. Simulation and experimental implementation to validate 

the effectiveness of this method, simulation was carried out in MATLAB/Simulink, while the real-time 

implementation consist of OP5600 OPAL-RT simulator to generate the control signals (getting pulses) with 

sampling frequency 20 kH, the graphical programming interfaces (MATLAB/RT-LAB). This research paper 

is organized as follows: section 2 presents the design and implementation of EKF speed observer, the 

development of space vector PWM and the anti-windup PI controller, the section 3 shows real-time platform 

using RT-LAB packages. The section 4 presents the results of the real-time implementation of EKF observers. 

At the last, the conclusion is presented in section 5.  

 

 

2. DESIGN OF KALMAN FILTER OBSERVER FOR SPACE VECTOR PWM 

The induction motor's time-discrete state space model can be expressed as follows [13], [22]: 
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The EKF algorithm primarily consists of two main stages: a filtering stage and a prediction stage. 

During the prediction stage, the subsequent predicted values of the states are derived by applying a 

mathematical model as well as the past values of estimated states. Prior to the new measurement, the predicted-

sate covariance matrix is also obtained [14]. The system covariance matrix 𝑄 and the time-discrete state space 

model of the induction motor are both employed. The subsequent estimated states �̂�(𝑘 + 1) are generated from 

the predicted estimates 𝑋(𝑘 + 1) by adding a correction term 𝐾𝑓(𝑦𝑘+1 − �̂�𝑘+1) to the expected value during 

the filtering step, where 𝑒 = (𝑦𝑘+1 − �̂�𝑘+1), the error term uses the measured stator currents. 

 
𝑑�̇̂�𝑘+1

𝑑𝑡
= 𝐴(�̂�𝑘)�̂�𝑘 + 𝐵𝑘𝑈𝑘 + 𝐾𝑓(𝑦𝑘+1 − �̂�𝑘+1) (4) 

 
Figure 1 depicts the EKF's structural layout. 
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Figure 1. Structure of the EKF 

 

 

Figure 2 shows the principle of SVPWM, in which a half-bridge three-phase inverter's �⃑� 1, �⃑� 2, �⃑� 3, �⃑� 4, �⃑� 5 

and �⃑� 6 consists of six sectors with a length of 60∘each and six basic voltage space vectors that are nonzero 

[17]. Space vector PWM is used to create the reference vector 𝑉𝑠, which represents three-phase sinusoidal 

voltage, by switching between the two nearest active vectors and zero vectors [15], [23]. Consider Figure 3, 

which shows the positions of several accessible space vectors and the reference vector in the first sector, to 

determine the duration of application for different vectors. 

 

 

  
  

Figure 2. Voltage space vectors and sector 

distribution 

Figure 3. Principle of time calculation for 

SVPWM in sector1 

 

 

The active space vector application's times are as: 
 

𝑇1 =
√3

2
𝑚𝑇𝑠 𝑠𝑖𝑛(60 − 𝛼)

 
(5) 

 

𝑇2 =
√3

2
𝑚𝑇𝑠 𝑠𝑖𝑛(𝛼)

  
(6) 

 
𝑇0 + 𝑇7 = 𝑇𝑠 − (𝑇1 + 𝑇2)  

(7) 

 
where m is the modulation index,𝛼is position of the reference vector or the angle and 𝑇0, 𝑇1, 𝑇2 are time of 

application of zero vectors, vector 𝑉1, vector 𝑉2 respectively. The main objective of induction motor vector 

control is the separate the control of flux and torque, which is accomplished by employing a d-q rotating 

reference frame synchronised with the rotor flux space vector. the (q) component of rotor flux will be zero 

when the field orientation law is applied [12], [24]. 

 

{
𝜙𝑑𝑟 = 𝜙𝑟

𝜙𝑞𝑟 = 0   (8) 
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The expression of the electromagnetic torque becomes (9). 

 

𝑇𝑒 =
3

2
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𝐿𝑟
𝑖𝑞𝑠 (9) 

 

The current components become (10). 
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The angular speed of the rotor flux s  becomes (11).  

 

𝜔𝑠 =
𝑅𝑟𝑖𝑞𝑠

∗

𝐿𝑟𝑖𝑑𝑠
∗ + 𝑃𝛺 = 𝜔𝑠𝑙 + 𝑃𝛺 (11) 

 

The scheme of the field-oriented control and the proposed EKF observer are shown in Figure 4. 

 

 

 
 

Figure 4. Global diagram of sensorless vector control of IM with SVPWM 

 

 

When there is a significant step change in the speed reference, the PI controller typically ignores the 

system's physical constraints, which causes the phenomena known as windup to provide subpar results. The 

saturation of the pure integrator causes the wind-up phenomenon is thus cancelled using an anti-windup 

approach in this case [18], [25]. The figure 5 shows synoptic scheme of the anti-windup PI controller of the 

motor speed. 

 

 

 
 

Figure 5. Diagram block of the anti-windup PI controller 
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3. REAL-TIME PLATFORM USING RT-LAB 

Figures 6 shows the photo of the test bench and its synoptic sheme is shown in figure 7. This platform 

uses OPAL-RT real-time simulator. One Drivelab OPAL-RT Board and one OP5600 OPAL-RT Simulator are 

now installed at the CAOSEE Laboratory at Bechar University [21], [26], [27]. RT-LAB is employed to build 

the SM subsystem wich is converted into C code by using the Real-Time-Works hop (RTW). The algorithm 

of the control and observer are validated in Matlab/Simulink of the host computer. And the code is upload by 

the OP5600 via target network connections and the TCP/IP Protocol [19], [25]. 

 
 

 
 

Figure 6. Photo of the realized test bench 

 

 

 
 

Figure 7. Synoptic scheme of the test bench 

 
 
4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

The sampling time has been set at 400 μs. The different given responses are obtained from digital 

oscilloscope with 4 channels. Figures 8 and 9 show actual speed and estimated speed run up to 350 rad/sec in 

the startup (1div=87 rad/sec ), the performance of EKF is very high (the real and estimated speed are in 

superposition) as seen in thesefigures even with load charge application at 2 sec, the anti-windup PI speed 

controller react very fast in term of load charge rejection, it’s seen also that the estimation error converge to 

zero in steady state. 
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For the diffrentes situations, transient speed tracking at starting and at steady state, the EKF speed 

observer performancesare quite acceptable. In addition, the direct current (1div=A) is stabilized at its reference 

value, while the quadratic current (1div=A) is an image of the electromagnetic torque evolution. These results 

in Figure 10, Figure 11, afforded a good decoupled vector control between torque and rotor flux. 

The zoom of measured and the observed currents of the motor in the reference frame (, ) are 

presented in Figure 12, it can be seen that the observed current is superposed on the measured one with 

sinusoidal waveforms. Figure 13 shows the flux axes (real and estimated) components (1div=Wb), the 

waveforms are identical to each other with reduced ripple due to space vector pulse width modulation 

(SVPWM). Figure 14 illustrated the rotor flux angle of the estimated one. 

It is shown in Figure 15 for various step changes in the reference, EKF speed observer sensorless 

control under high (400 rad/sec)/medium (250 rad/sec) speed applications respectively. The reference speed 

gradually increased and decreased (350,250,400,250,350 rad/sec) during 19 sec. In these tests the estimated 

speed is used as feedback signal for closed-loop sensorless control while reference variation, the estimation 

error between the estimated and measured speeds shown in Figure 16, this error equals to zero in steady state.  

In this final test, the induction motor is run at no load, it’s accelerated from 0 to 350 rad/sec at 0.8 sec, 

then the load is applied at 2sec and unloaded at 4sec, after that the speed is reversed at 6 sec, then also reversed 

again at 9 sec as shown in Figure 17, it’s obvious that the proposed EKF observer presents good performances 

in the term of sense reversing and zero speed crossing, The use of anti-windup PI controller improve the system 

performances, it’s clear that the speed follows rapidly the set reference without significant overshoot and static 

error. Figure 18, presents the estimation error between the two speeds approximately neglected. On the whole 

the experimental results were very positive, the proposed SVPWM-sensorless vector control of IM can achieve 

good performances for (direct, variable, and reverse) sense operations.  

 

 

  
  

Figure 8. Real speed and estimated speed using EKF Figure 9. Speed estimation error 

 

 

  
  

Figure 10. Direct current component Figure 11. Quadratic current component 
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Figure 12. Zoom of observed and the measured 

currents 

Figure 13. Zoom of estimated and real rotor fluxes 

 
 

 

  
  

Figure 14. Position of estimated rotor flux Figure 15. Speed variation test 
 

 

  
  
Figure 16. Estimation error for speed variation test 

 

Figure 17. Estimated rotor speed with double speed 

sense reversing test 
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Figure 18. Estimation error for double sense reversing test 

 

 

5. CONCLUSION 

Simulation and experimental validation of the SVPWM-Sensorless vector control of induction motor 

using an extended Kalman has been presented in this paper. Generally it is known that the mechanical sensors 

are costly, fragile and degrade the system reliability particularly in hostile environments, therefore sensorless 

control operating without speed sensor has the advantages of reduced hardware complexity, lower cost and 

high system reliability. In the design of the EKF speed observer we use the discrete model of induction motor 

and the covariance matrix of prediction error has been calculated for the deterministic equation, the rotor speed 

and rotor fluxes have been estimated. The simulation studies carried out in MATLAB/Simulink, have 

confirmed the efficacy of this approach, the real-time implementation was done on the OP5600 real time digital 

simulation (RTDS), using rapid control prototyping system, and the experimental waveforms show that the 

estimated speed matches the real speed closely in all mode of operation. In the addition anti-windup PI speed 

controller is introduced in our technique to have fast response and overshoot suppression. It’s concluded from 

the results presented in this research paper that the proposed algorithm based EKF speed observer performs 

well for operating regimes.  
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