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Abstract 
Since the large erecting mechanism has nonlinearities, parameter uncertainties and external 

disturbance, it is difficult to realize a model-based sliding mode control design. So a fuzzy adaptive sliding 
mode control scheme which combined fuzzy control with sliding mode control is proposed to achieve 
nonlinear control of the erecting mechanism. This control scheme is mainly use the fuzzy system to 
approximate the equivalent control of the sliding mode controller without knowing the system dynamic 
model. And it also releases the trial-and-error work of establishing the fuzzy inference rules. The update 
laws for the fuzzy tuning parameters and the switch control parameter are derived based on the 
Lyapunov stability analysis. The simulation results show that compared to the PID control and 
conventional sliding mode control, the fuzzy adaptive sliding mode control has nicer robustness and more 
accurate tracking ability, and the stability of the erecting process has improved. 

 
Keywords: sliding mode control, fuzzy control, adaptive control, nonlinearity 

 
Copyright © 2013 Universitas Ahmad Dahlan. All rights reserved. 

 
 

1. Introduction 
Large erecting mechanism is widely used in heavy engineering equipments and 

armaments. Its actuators are electro-hydraulic systems, because compared with motor 
actuators the hydraulic systems have many advantages such as high power capability, fast 
response and large output force. However, the erecting mechanism is a complicated system 
which is composed of mechanism, electrical equipments and hydraulic system. So it has 
strong nonlinearities and uncertainties. For example, the electro-hydraulic system has 
nonlinearities due to the flow-pressure relationship, oil leakage, dead zone of the valve, friction, 
volume flow unbalance of asymmetrical cylinder. Further, in the erecting process the external 
load act on the cylinder is always change and the erecting mechanisms are always subjected 
to many kinds of disturbance and various working environments. So the conventional linear 
control method cannot guarantee robustness and tracking accuracy. And it is hard to realize 
fast and steady erecting.  

Recent years many research efforts on erecting mechanism control have been made. 
For example, a nonlinear predictive controller based on BP neural network is proposed in 2008 
[1]. In the same year, an intelligent integration control method is used to tracking the erect 
velocity of the erecting mechanism [2]. These control methods provide satisfactory results from 
the simulations. But when the parameters or environments change, they cannot adaptively 
compensate these changes. 

Sliding Mode Control (SMC) has emerged as a powerful nonlinear control method for 
its robustness of parameter uncertainties and disturbances. So in recent years, it is appeared 
in electro-hydraulic servo system control. For example, it has been successfully implemented 
to compensate load variations [3], friction and internal leakage [4], and uncertain original 
volume [5]. Chen presented an adaptive sliding mode controller to overcome the effects of the 
time-varying loadings in 2005 [6], Hong-Bo Guo applied a cascade-control algorithm based on 
a sliding mode to realize the trajectory tracking control in 2008 [7]. However, the conventional 
sliding mode control needs to know the accurate dynamic model of the control object. Since it 
is difficult to establish the accurate model of the actual erecting mechanism, the model based 
controllers are not suitable. Further, high frequency chattering in the SMC may leads to bad 
control performance. Combining SMC with the other control methods has proved to be a good 
solution. Fuzzy control has no model based requirement, and it is widely used in a lot of 
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engineering applications. But the fuzzy controller design needs a time-consuming trial-and-
error process for establishing the fuzzy inference rules and it lacks a reasonable stability and 
robustness analysis theory. For the high-order or complicated system the inference rules are 
difficult to confirmed. So some researchers have combined the advantages of the SMC and 
fuzzy control to develop the fuzzy sliding mode control [8-11]. In this paper, an adaptive sliding 
mode control with a fuzzy compensator is developed to control a large erecting mechanism. It 
not only has the advantage of designing a SMC without knowing the dynamic model but also 
has the on-line learning ability and less computation burden.  

This paper is organized as follows. In section 2, the detailed nonlinear mathematic 
model of the erecting mechanism is established. In section 3, the proposed fuzzy adaptive 
sliding mode controller is given. In section 4, the simulation model is set up and simulation 
results are discussed. Finally, conclusions are exhibited in section 5. 
 
 
2. Erecting Mechanism Nonlinear Model 

Figure 1 presents the schematic diagram of the erecting mechanism which is mainly 
composed of a hydraulic pump, a frame, an electro-hydraulic proportional valve, an 
asymmetrical cylinder, a large erect arm and an angle sensor. The erect arm can rotate around 
the point O drove by the piston rod of the cylinder. Meanwhile, the cylinder can rotate around 
the point O1 and O2. The angle of the erect arm is controlled as follows: Once the reference 
angle d and the actual  are transmitted to the controller, the output current u is calculated 
from the control algorithm. Then, the valve spool position and direction are controlled 
according to the output current. Depending on the spool position, the flows as well as the 
direction supplied to each cylinder chamber are determined. The motion of the erect arm 
actuated by the cylinder is controlled by the flows.  

In Figure 1, building the reference frame XOY where O is the origin. Let OO1=l1, 
OO2=l2, O1O2=l3, OO3=l4, OO2O1=1, XOO3= where O3 is the erect arm center of gravity, 
and O1OO2=0 at zero second. The cylinder of the erecting mechanism is an asymmetrical 
cylinder, and its dynamic characteristics are different from the traditional symmetrical cylinder. 
The nonlinear model is composed of three equations: force balance equation, valve flow 
equation, and flow continuity equation of the cylinder. 

 
 

 
 

Figure 1. Schematic Diagram of the Erecting Mechanism 
 
 
2.1. Force Balance Equation 

Applying Newton’s second law to the piston, the force balance equation of the cylinder 
can be obtained as follows: 

 

1 1 2 2 P c P P LA P A P mX B X KX F                                                 (1) 

 
Where A1, A2 are the effective area of the both sides of the piston, m is the equivalent mass of 
the cylinder, Bc is the equivalent viscous damping coefficient, K is the load spring gradient, FL 
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is the output force from the cylinder, P1 and P2 denote the supply and return pressure, 
respectively.  

Based on the rotation differential equation of the erect arm and the law of sines, we 
can receive the following equation: 

  

4

1 0 3

cos( )

sin( ) / ( )
L

P

J Gl
F

l l X

  
 
 


 


                                                      (2) 

 
Where J is the erect arm moment of inertia,  is the erect angle, and G is the gravity of the 
erect arm. 

If the piston is in the steady state, the Equation (1) can be reduced to: 
  

1 1 2 0( ) LA P nP F                                                           (3) 

 
Where n=A2/A1, and FL0 represent the steady load force act on the piston. So the load pressure 
can be defined as: 
  

1 2LP P nP                                                                 (4) 
 
2.2. Valve Flow Equation 

Suppose that the spool valve is a symmetric valve, and the flow areas of the valve be 
proportional to the spool displacement xv. Then the flow of oil across the spool valve can be 
written as: 

 

1
1

1

2( ) / 0

02 /

d v s v
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C wx P P x
Q
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

    
                                             (5) 
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2
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



   
                                             (6) 

 
Where Q1 and Q2 represent the flow of the two ports, Ps is the supply pressure, Cd is the 
discharge coefficient, w is the spool valve area gradient, and  is the oil mass density. The 
spool displacement xv is proportional to the control signal u that is xv=kpu, where kp is the 
proportional coefficient.  

Velocity of the piston rod is v=Q1/A1=Q2/A2, so Q2/Q1=n. And from the Equation (4), (5) 
and (6), we have: 

  
3 3
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                                             (7) 
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Defining the load flux QL=Q1, so: 
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2.3. Flow Continuity Equation of the Cylinder 
Assume that the pressure in each piston chamber is the same everywhere and the 

temperature and density are constant. The flow continuity equation of the piston chambers can 
be expressed as: 

 

0
1 1 1 2 1( )P in

e

V
Q A X C P P P


                                                      (10) 

 

0
2 2 1 2 2 2( )P in out

e

V
Q A X C P P C P P


                                               (11) 

 
Where Cin is the internal leakage coefficient of the cylinder, Cout is the external leakage 
coefficient of the cylinder, e is the fluid bulk modulus, and V0 is the initial volume of the 
chamber.  

Equation (7), (8), (10) and (11) can be combined to simplify as: 
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,  

So the load flux can be written as: 
  

2
1 2 1 1
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L

Q nQ Q n Q
Q Q

n n

 
  

 
                                                (13) 

 
That is we defined in the previous section 2 and the Equation (12) is converted into: 
 

0
1 1 2(1 )
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e
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Define the state variables as x=[x1 x2 x3]=[ ]P P PX X X  , where x1, x2, x3 represent 

displacement, velocity, and acceleration of the piston rod, respectively. The system model 
including Equation (1), (9) and (13) can be expressed in a state-space form as: 
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3. Fuzzy Adaptive Sliding Mode Controller 
In this section, a fuzzy adaptive sliding mode controller is proposed to realize the 

nonlinear control of the erecting mechanism. 



TELKOMNIKA  e-ISSN: 2087-278X  
 

Fuzzy Adaptive Sliding Mode Control of Large Erecting Mechanism (Liang Li) 
 

7263

3.1. Model-based Sliding Mode Controller Design 
In the Figure 1, the erect angle  and the displacement XP of the piston rod have the 

following relationship: 
 

 
2 2

1 2 1 2 0 32 cos( )PX l l l l l                                               (16) 

 
Set the desired angle is d and from the Equation (16) the reference displacement of 

the cylinder is XPd. Define the tracking error 1 Pde x X   and the sliding surface. 
  

2 2s c e ce e                                                             (17) 
 

Where c>0 and x1 is the actual displacement of the piston rod.  
The time derivative of s is: 
  

2
32 PdXs c e ce x                                                        (18) 

 
Let 0s  , and substituting (14) into the (18), the equivalent control of the SMC is: 
  

1 2 1 2 2 3 4 3[ ] / ( ( ))eq Pd vu x c e c e a x a x d a a g x                                 (19) 

 
Based on the SMC theory, the system stability can be guaranteed at the condition

0ss  . So the control law can be chosen as: 
 

1 2 1 2 2 3 4 3[ ] / ( ( ))Pd s vu x c e c e a x a x d a a g xu                               (20) 

 
Where us is switch control, and us=ηsgn(s), η>max(d). The control law can guarantee the 
system output error convergence. 
 
3.2. Fuzzy Adaptive Sliding Mode Control 

The large erecting mechanism has nonlinear time-varying dynamics and parameters 
uncertainties. So it is difficult to estimate an accurate dynamic model. And the control law 
presented in section 3.1 is hard to derive. The fuzzy system has high approximate ability, so 
we can realize the equivalent control approximate by the fuzzy system. Here, an adaptive 
fuzzy strategy is introduced to realize nonlinear control. And the adaptive rules of the fuzzy 
sliding controller can be derived from Lyapunov stability theorem. 

s and s  are denote the relative distance and velocity to the sliding surface 0s  , 
respectively. So we can use the s and s  to evaluate the equivalent control uf. And using the s
and s  as the input and uf as the output of the fuzzy approximate system. The generalized 
fuzzy logic system consists of a set of linguistic rules as follows: 

 

Rj: IF S is A1j and S  is A2j, then Uf is j 

 

Where S, S and Uf are the fuzzy variables of the s , s  and uf, respectively. A1j, A2j, and j are the 
corresponding fuzzy sets, respectively.  

The center of gravity method is employed to defuzzify the fuzzy output variable for 
obtaining the control voltage of the valve. The equivalent control voltage is derived from the 
fuzzy inference and defuzzification operation as: 
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Where uA1 and uA2 are the Gauss membership function, m is the number of rules, and 

1 2( , ) [ , , , ]ms s   ξ   , 1 2

1 2
1

[ ( ) ( )]

[ ( ) ( )]

j j

j j

A A
i m

A A
j

u s u s

u s u s










. 

j is the consequent unknown parameter which can be adjusted by an adaptive rule. 
So we needn’t the trial-and-error process for finding appropriate fuzzy rules. Based on the 
fuzzy approximate theory, it has a best fuzzy system ( , , )f fu u s s     to approximate the 

equivalent control, and it can be expressed as ueq=uf
+, where  is the approximate error, 

||<E.  
Applying the fuzzy system to approximate uf*, we set: 
  

ˆ ˆˆ ( , , ) T
fu s s   θ ξ                                                             (22) 

 
And the approximate error: 

  
ˆ ˆeqf f f fu u u u u                                                       (23) 

 

Define *ˆ θ θ θ , and the Equation (22) can be written as: 
  

T
fu  θ ξ                                                             (24) 

 
The Equation (19) can be simplified as: 
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 
            (25) 

 
From the Equation (19) and (25), we can obtain: 

 

3 ( )( )v eqs a g x u u                                                      (26) 

 
Define the Lyapunov function: 
  

32
1

1

1 ( )
, 0

2 2
v Ta g x

V s 


  θ θ                                                 (27) 

 
The time derivative of V1 can be derived as: 
  

3 3
1
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To make sure 1 0V  , the update law and switch control can be chosen as: 
  

1 sgn( )ˆ , su E ss    θ θ ξ
 ,                                                   (29) 

 
Substituting Equation (29) into (28), obtain: 
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Parameter E of the switch control is difficult to evaluate, and its value effects the 

stability of the control system. So we use the estimate Ê  to instead of the E, and the estimate 

error is ˆE E E  . Hence, the switch control can be written as: 
  

ˆ sgn( )su E s                                                                  (31) 

 
Define the Lyapunov function as: 
  

3 32 2

1 2

1 ( ) ( )
2 2 2

v vTa g x a g x
V s E

 
  θ θ                                                (32) 

 
Where the parameter η2>0.  

By taking the time derivative of the Lyapunov function V, we obtain: 
 

3
3 3
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v v

a g x
V Ea g x s sa g x E E E


                                           (33) 

 

The update law for Ê  can be chosen as: 
 

2Ê s                                                                     (34) 

 
Substituting Equation (34) into (33), obtain: 
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That means this control system stability can be guaranteed by using the update laws 

shown in Equation (29) and (34). Based on Barbarlet’s lemma, the convergence of the output 
error can be guaranteed by using the adaptive fuzzy sliding mode control. 
 
 
4. Simulation Results 

In order to investigate the effectiveness of the proposed fuzzy adaptive sliding mode 
controller, the compared simulations are presented is this section. From the Equation (16), we 
can obtain the desired displacement curve of the piston rod XPd(t). For the actual erecting 
mechanism, the main original parameters are presented in Table 1. In practice, some 
parameters have uncertainties or hard to confirm because of the external disturbances and 
environment changes. 
 

Table 1. Characteristic Parameter Values of the Erecting Mechanism 
Parameters Symbols Values Units 
Supply pressure PS 18 MPa 
Discharge coefficient of the spool valve Cd 0.62 — 
Area gradient of the spool valve w 2.5110-2 m 
Bulk modulus of the oil e0 7.5108 Pa 
Length of the piston rod l 1.5935 m 
Equivalent viscous damping coefficient Bc0 800 N/m/s 
Mass density of the oil  868 Kg/m3 
Equivalent mass of the cylinder m 178.31 Kg 
Inwards leakage coefficient of the cylinder Cin 2.4110-11 m3/s*Pa 
Outwards leakage coefficient of the cylinder Cout 7.110-13 m3/s*Pa 
Equivalent mass of the erect arm M0 1155.98 Kg 
Moment of inertia of the erect arm J 10023 Kg*m2 

Section area of piston-side/rod-side A1/A2 0.0175/0.0133 m2 
Internal volume of the chamber V0 1.510-5 m3 
Length of OO1/OO2/O1O2/OO3 l1/l2/l3/l4 1.132/1.62/1.032/3.5 m 
Angle of O1OO2/ XOO3 at 0s 0/ 0.6816/0.1047 rad 
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In order to show the influence of the uncertain parameters, and to test the performance 
of the proposed control scheme. In this paper, we suppose the damping coefficient Bc, bulk 
modulus e, mass of the erect arm M and the external disturbance d have change as the 
following expression: 

 

0 0 0 0 0 00.04 sin(0.1 ), 0.01 sin(0.1 ), 0.09 sin(0.1 )c c c e e eB B B t t M M M t           ,

2000sin(0.1 )d t .  

 
The proposed controller parameters are designed as c=100, η1=5, η2=0.5. In order to 

reduce the chattering of the control signal, the saturation function is select to replace sign 
function of the switch control us. We obtain: 

 
ˆ ( )su Esat s                                                                (36) 

 

Where
1

( ) /
1

s

sat s s s

s

 
   
  

, and ∆=0.5 is the thickness of the boundary of the sliding 

surface.  
Here, two control methods that PID control and conventional SMC are used and 

compared. The control law of the PID control can be expressed as: 
  

1( ) ( ) ( ) ( )p i du t k e t k e t dt k e t                                                  (37) 

 
Where kp is the proportional coefficient, ki is the integral coefficient, kd is derivative coefficient, 
and kp=8, ki=4, and kd=0.005, respectively.  

The control law of the conventional SMC can be expressed as: 
 

2 1 2 2 3 1 1 2 2 3 4 3( ) [ sgn( )] / ( ( ))d vu t k e k e x a x a x a ks s a g x                      (38) 

 
Where =3000, k=2.2, k1=1106, k2=2000, 1 1 2 2 3s k e k e e   , 1 1 1de x x  , 2 1 2de x x  , 

3 1 3de x x  . 

The simulation model is established in the software Matlab/Simulink environment. 
Using the above three controllers to track the desired angle curve in the condition that the 
system has parameters uncertainties and external disturbance. The simulation results are 
shown in Figure 3-7. The lines in these figures are defined as follows: 

Red line: the reference curve, Blue line: PID controller,  
Black line: fuzzy adaptive SMC, Green line: conventional SMC 
 
 

 
 

 

Figure 2. Position Tracking Angle Curves Figure 3. Position Tracking Errors 
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Figure 2 exhibits the position tracking angle curves of the three controllers in tracking 
the reference trajectory. And Figure 3 presents the tracking error. It can be observed that the 
proposed fuzzy adaptive sliding mode controller has the best tracking performance, and the 
other two controllers have distinct vibration effected from the parameters uncertainties and 
external disturbance. The max tracking error of the proposed control method is 0.298 degree at 
about 47.5 second, but 0.5663 degree for the PID control, 0.5122 degree for the conventional 
SMC. 
 
 

  
 

Figure 4. Position Tracking Velocity Curves Figure 5. Velocity Tracking Errors 
 
 

Figure 4 and Figure 5 present the velocity tracking curves and tracking errors, 
respectively. We can see that the tracking performance of the fuzzy adaptive sliding mode 
control is steadier and more accurate compared to the other two controllers. And the 
conventional SMC has high frequency vibration, so it is difficult to realize precise control and 
actual engineering applying. 
 

                 

 
 

Figure 6. Control Signals 
 
 

Figure 6 shows the control signal of the three controllers. As seen, the curve of the 
proposed controller is smoother than that of the other two controllers, since the adaption laws 
can compensate the parameters uncertainties. However, the other two curves have vibration 
under the influence of the parameters uncertainties and external disturbances. Furthermore, in 
order to realize good performance, it must be increased the value of the parameter  for the 
conventional SMC. This leads to the control signal chattering with high frequency and make 
the erecting process unstable. 

 
 

5. Conclusion 
The erecting mechanism is a complicated system and it has strong nonlinearities, 

parameter uncertainties and external disturbances. It is difficult to realize the model-based 
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sliding mode control. So a fuzzy adaptive sliding mode control method is introduced to achieve 
model free control. The stability of the proposed controller is guaranteed by means of 
Lyapunov theorem. Simulation results show that the proposed controller can compensate the 
parameters uncertainties and external disturbance. Compared to the PID control and the 
conventional SMC, the proposed control method and adaptive schemes can obtain excellent 
position tracking performance robust control.  
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