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Abstract 
This paper presents a multi-agent framework for the control of distributed energy resources 

organized in Microgrids，which consists of integrated microgrids and lumped loads. Multiple objectives 
are considered for load balancing among the feeders, minimization of the operating cost, minimizing the 
emission, minimizing voltage profiles, minimizing active power losses. The agent represents message of 
microGrid unit and constitutes an autonomic unit. The network is achieved by the evolution of the agent 
based on the semantic negotiation. Based on the objectives is evaluated by membership functions. We 
propose a new Immune Co-Evolutionary Algorithm with Preference to solve it. Simulation results 
demonstrated that the proposed method is effective in improving performance and management of micro-
sources. 
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1. Introduction 

As the backbone of the power network, the electricity grid is now at the focal point of 
technological innovations [1]. The intelligent grid achieves operational efficiency through 
distributed control, monitoring and energy management. The need for more flexible electric 
systems, changing regulatory and economic scenarios, energy savings and environmental 
impact are providing impetus to the development of MicroGrids (MG), which are predicted to 
play an increasing role of the future power systems. The MG units can meet to the customers 
load demand at compromise cost and emissions all the time. MG can contain various clean 
and efficient energy resources, such as solar photovoltaic (PV) modules, small wind turbines, 
battery storages, controllable loads and other small renewable, and it has an energy 
management system to regulate power flow in it and provide considerable control over it. It can 
not only be operated efficiently in its own distribution network, but also be  capable to operate 
in islanding mode when it is required or some faults happen in upstream network [2].   

Concurrently, the power system researchers focus on the potential value of multi-
agent system (MAS) technology to the power industry [3]. These recent research works have 
shown that MAS is one of the best technologies for introducing distributed intelligence in power 
systems. Coordinating behavior of autonomous agents is a key issue in agent-oriented 
technique, which leads the MAS towards the system goal. MAS is becoming a significant and 
growing interest in power engineering problems [4-5]. Energy resource scheduling is an 
important optimization task in the daily operation planning of any power system, which is 
typically handled by power system managers. Typically, the problem is to minimize the costs 
associated with energy production, and start-up and shut-down costs. It is a large scale 
nonlinear optimization problem for which, there is no exact solution technique [6]. Most of the 
research work on unit commitment has been done in centralized approach [7-9], whereas very 
little work has been done in distributed approach [10-11]. A rational method of building MGs 
optimized for cost and subject to reliability constraints have been presented in [12] the problem 
of management of MG solved as single objective and without considering the balancing with 
the upper grid. In this paper, the agent approach is presented to handle these challenges. The 
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formulation of the MG control model and fuzzy preferences co-evolutionary algorithm is 
proposed to resolve the problem. The simulation results show that the approach can 
significantly improve performance and adapt well to the changes of dynamic environments. 
 
 
2.   MG Agent Negotiation and Communication Mechanism 

As an atomic unit of MG control system, the MG agent includes three modules. 
Attributes describe the characteristic of an agent itself. Function is designed to evaluate the 
matching ability of the message to the other MG mobile agents. Behavior contains interface 
operation, information issue, and energy transmission. MG agent is an atomic unit of MG 
control platform (MGCP), MGCP is composed of functional modules developed by java. 
Inspired by systemic network, in the environment, different agents may contribute to different 
services. MG optimization control result is achieved by service composition of MG agent. It is a 
novel computing and problem-solving environment where an application service is created out 
of the interaction of multiple aware agents and the interaction between aware agents and their 
environment. The ideal model would place the platform on every MG unit as a network node, 
and functional merits refer to our previous work [13]. 

In order to collaborate among agents, a set of communication mechanism is needed. 
The MG agents use RMI-IIOP as transport protocol for communication language (BNCL) 
messages. RMI-IIOP provides the robustness of CORBA and the simplicity of Java RMI. We 
present the method of MG agent message discovery based on the message matching. A 
matching message is exchanged among agents to achieve MG agent message matching for 
control model. Based on the method of  message discovery in workflow, Semantic discovery of 
atomic processes, delivers a set of MG agent that provide atomic processes which are 
semantically matching with those of the agent message, the optimization of MG is achieved 
based on the use of ontology to describe tasks and agent message. 
 
 
3.   Problem Definition for MG Control Optimization Model 

The MG consists of a group of radial feeders, which could be part of a distribution 
system. The feeders also have the micro sources consisting of a photovoltaic, a wind turbine, a 
fuel cell, a micro turbine, a diesel generator, and battery storage. To serve the load demand 
and charge the battery, electrical power can be produced either directly by PV, WT, DG, MT, or 
FC. Each component of the MG system is modeled separately based on its characteristics and 
constraints. The MG agents interact as to utilize the maximum quantity of available generation 
possible. This is considered a maximum power utilization strategy.  

The major concern in the design of an electrical system that utilizes MG sources is 
the accurate selection of output power that can economically satisfy the load demand, 
Minimization of the Cost (the Operating Cost, active power losses) minimizing the emission. 
Minimizing, hence the system components are found subject to: The network reconfiguration 
problem in a distribution system is to find a configuration with minimum loss and minimum 
deviation of the nodes voltage while satisfying the operating constraints under a certain load 
pattern. The operating constraints are current capacity and radial operating structure of the 
system. The mathematical formulation reconfiguration problem is presented in the literature in 
different ways. In this paper, the problem formulation is presented as: 
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lossF  is the membership function for active power losses, ir  represents the resistance 

of the branch i. 
iP  , 

iQ  represent active power and reactive power that flowing the terminal of 

the branch i. 
iV represents the node voltage of the terminal of branch i. iL represents the 

number of branches. Voltage variation may be caused by the Distributed Generation output 
changing.  

The objective function is developed according to the above mentioned assumptions to 
minimize the operating cost in $/h of the MG in the following form: 
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Where F(Pi) The operating cost of the generating unit i in $/h, Ci Fuel costs of the 

generating unit i in $/l for the DG, and in $/kWh for FC and MT, Fi Fuel consumption rate of a 
generator unit i, OMi Operation and maintenance cost of a generating unit i in $/h. )( _ noniPF is 

operating cost without DG, 
ibiCF is distribution network cost. 

The Cost is calculated based on the Operating Cost and active power losses. coAF  is 

define as: 
 

lossco FFAF  )1(cos                                                                     (3) 
 
Where ]1,0[  is a weight to

coAF . 

The atmospheric pollutants such as sulphur oxides SO2, carbon oxides CO2, and 
nitrogen oxides NOx caused by fossilfueled thermal units can be modeled separately. The total 
emission of these pollutants can be expressed as:  
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Where α, β , γ, ζ, and λ are nonnegative coefficients of the ith generator emission 

characteristics. In the emission model introduced, we propose to evaluate the parameters α, β, 
γ, ζ, and λ using the data available. Thus, the emission per day for the DG, FC, and MT is 
estimated, and the characteristics of each generator will be detached accordingly. 

Based on the fuzzy evaluation functions, the multi-objective optimization model is 
constructed to maximize the satisfactions of different objectives by adjusting transformer tap-
changers and shunt capacitors. The multi-objective optimization model is represented as: 
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Where Power balance constraints are that it meets the active power balance, an 

equality constraint is imposed.  
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PL The total power demanded in kW, PPV The output power of the photovoltaic cell in 

kW, PWT The output power of the wind turbine in kw. Pbatt The output power of the battery 
storage kw. 

Generation capacity constraints is restricted by lower and upper limits for stable 
operation,real power output of each generator,  as follows: 
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min

iP Minimum operating power of unit i, max
iP  Maximum operating power of unit i, 

iP  , 

max,iP  represent the real running power and the maximum permitted power of the transformer.  

ia  is penalty function parameter. 
poF  is the membership function for power. 
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4.  Fuzzy Preferences Co-Evolutionary Algorithm 

There are many MO solution algorithms allowing the attainment of these results, like 
PESA-II [14], NSGA-II [15]. An important issue in multiple objective optimizations is the 
handling of human preferences. Finding all Pareto-optimal solutions is not the final goal. Such 
preferences can usually be represented with the help of fuzzy logic. Based on preference 
relations [16-17] and induced orders, these linguistic categories were transformed into real 
weights and a weighted Pareto dominance relation was introduced. 

In this paper, the novel fuzzy preferences evolutionary algorithm (FP-EA) is 
proposed. Suppose that the size of evolutionary population P is n, and Pt is t-th generation of 
the population. Qt is a new evolutionary population from Pt that is updated by the selection, 
crossover and mutation operators, and the size of Q, is also n. Let Rt=Pt∪Qt, and the size of 
Rt is 2n. The non-dominated set P1 is generated from Rt, with the quick sort procedure. 
If|P1|>n, the clustering procedure is used to reduce the size of P1, and to keep the diversity of 
P1 at the same time. The size of P1 will be n after the clustering process.  is equally 

important,  is less important,  is much less important,  is not important, !is important. 

Definition1:(Weighted dominance relation) For a given weights–vector  )....1 kwww 
summing to 1 and a real number 10  , a real  vector  ),)(....1 wxxx k –  dominates  a real 

vector  )....1 kyyy   written as yx w
  if and only if: 
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The standard definition of dominance could be obtained by setting 1  and

kww n /1...1  . Note that in the standard definition of dominance it is required that at least 

one of the ii yx   inequalities is strict. However this is not a problem since these two orders 

are definable in terms of each other. 
Definition 2: (Weighted score). The number nine is used here for the grades of relative 

importance between objectives because we take the well-known technique of analytic 

hierarchy process (AHP) for reference. For each Xxi  compute weight as normalized 

leaving score. 
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Definition 3: (Fitness evaluation). Suppose there are N individuals in the current 

population pop. The positive strength )( kxS  of each individual popxk  . 
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),2,1( Nk  is calculated. Suppose  ))((min ,,2,1min kNk xSS 
 , )(max ,,2,1max kNk dd  . The fitness 

of each individual ),,2,1( Nkpopxk   is calculated according to the following formulation: 
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Algorithm : FP-EA Algorithm 
 

Pt , t = 0 ;// Set t = 0. Generate an initial population P[t], for each Xxi  compute 

weight as normalized leaving score: 
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While ( t ≤T)  do  //T is maximum number of generations 

{ 2
maxmin )/()1)(()( ddSxSxfit kkk    //Calculate  the fitness value of each individual in   

Pt, ),,2,1( NkPx tk   

Qt = make-new-pop (Pt ) // Use selection, crossover and mutation to create a new 
population Qt  

Rt = Pt ∪Qt // Combine parent and children population 
If (| Pt + 1 | < = N)  Then { Pt + 1 = Pt + 1 ∪ select - by - random ( Rt - Pt + 1, N - | Pt + 

1 | ) } // randomly selected N - | Pt + 1 | elements and joined into Pt + 1 
Else if (| Pt + 1 | > N) 

Then {crowding - distance - assignment (Pt + 1) 
// Calculate crowding distance. 

Sort (Pt + 1 , ≥n) // Sort in descending order using ≥n 
Pt + 1 = Pt + 1 [1: N]} // Choose the first N elements 
t = t + 1} 

It can be proved that the time complexity of Algorithm (FP-EA) is less than O (nlogn). It 
is better than O (n2) in the NSGA II.     

 
 

5.  Results and Analysis 
This sample system is used to simulate the transformer loadings, line flow profiles, 

and system losses of the microgrid. Besides, the parameters of the distribution transformer, 
conductor, generation, and load are described in the following subsections. The related 
parameters for simulation of the MV/LV distribution transformer are listed in Table 1. This 
transformer is 400kVA, 20kV/0.4kV, and its leakage impedance is 0.01+j0.04pu. The locations 
and capacities of the DGs interconnected to the network are as follows: �A 10kW photovoltaic 
generation systems and a 10kW wind turbine generator are connected. A 10kW fuel cell 
generation system is connected to system with three-phase inverter. A 30 kW microturbine 
generator is connected to system with three-phase inverter. 

 

 
Figure 1. Daily Load Curves for the Three Load Types of the Microgrid 
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Table 1 .The MV/LV Distribution Transformer 
Capacity 

(kVA)  
Primary 

Side (kV)  
Secondary 
Side (kV)  

R(pu)  X(pu)  

400 20 0.4 0.01 0.04  

 
 

Table 2. The Real Power Output Curves for Four Types 

 
 

The power generations of the PV and WT are calculated by the proposed formulas 
with insulation, temperature, and wind speed-related parameters. Additionally, the power 
generated by the fuel-cell generation system and microturbine generator is calculated under 
the minimization of total fuel cost in the microgrid by direct search method. These curves are 
used as the power generation data for a full day's analysis. 

Based on the evaluation functions, the multi-objective optimization model is 
constructed to maximize the satisfactions of different objectives by adjusting transformer tap-
changers and shunt capacitors. The coordination control strategies were discussed above, it 
can be used to reach the target of maximizing the efficiency of Microgrid. In this paper, the 
novel fuzzy preferences evolutionary algorithm (FP-EA) is proposed. 

Figure 3 and 4 shows the relationship of the cost and emission objectives of non-
dominated solutions obtained by multi-objective optimization. The cost of the non-dominated 
solutions thus appears to be inversely proportional to their emissions. It can see that the 
Pareto optimal set has a number of non-dominated solutions. It can be concluded that the 
proposed approach is capable of exploring more efficient and non-inferior solutions of 
optimization problems. 

As can be seen in Figure 3 and 4, the distribution characteristics of the approximate 
weighted Pareto optimal layer are different in different preferences circumstances. Figure 3 is 

)()( poco EMepAFMep   Pareto curve, the curve reflects the features of left sparse and right dense 

based on )( poEMep  preference. Figure 5(c) is )()( poco EMepAFMep   Pareto curve, it showed 

more obvious feature of left sparse and right dense, when it is more preferred objective 

function )( poEMep . Weighted Pareto method can obtain approximate Pareto optimal solution in 
different preferences to meet the needs of decision maker. 

 
 

 
 

 

Figure 2. The Pareto Optimal Front in Multi-
objective Optimization(A) 

Figure 3. The Pareto Optimal Front in Multi-
objective Optimization(B) 

 
 
These graphs show very clear separation of Pareto fronts obtained using different 

preferences. It performs well on the convergence and the diversity. The traditional methods 
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solve the multi-objective a problem is to translate the vector of objectives into one objective by 
averaging the objectives with a weight vector. The most profound drawback of traditional 
algorithms is their sensitivity towards weights or demand levels. This discussion suggests that 
the classical methods to the problems of MG control optimization model are inadequate and 
inconvenient to use. 

 

 
 

Figure 4. The Pareto Optimal Front in Multi-objective Optimization(C) 
 
 

Table 3 Compare and analysis of different preferences approximate weighted Pareto 
optimal layer. The programs of low carbon dispatch are designed as LCDP1 (40%, 60%), 
LCDP2 (25%, 75%), LCDP3 (0, 100%), EWD (equal weights dispatch). 

 
                                                                                                  

Table 3. The Three Programs Of Low Carbon Dispatch 
 EWD LCDP1 LCDP2 LCDP3 

Mep (AFCo ) 5.7% 5.6% 5.8% 5.7% 
Mep(Epo) 85% 81% 79% 73% 

     
 

It shows that Low-carbon power scheduling strategy can also reduce the line loss, 
reducing emissions from four indicators in Table 3. Compared with equal weight strategy, 
carbon power scheduling policy reduces greater extent to reduce emissions, but the cost of 
power generation increases slightly. The results obtained using our proposed technique to 
minimize the total cost and total emissions were compared with some conventional strategies 
of settings.  

 
 

6.  Conclusion 
This paper presents a general framework for the control of distributed energy 

resources organized in Microgrids. A agent is in communication with other agents by passing a 
message. Message received are handled by the message interpreter of an agent, the agents 
have the ability to dynamically model community based on negotiation in the organizational 
model of computation with observe its environment and exchange message among the agents.  
The formulation of the MG control model and fuzzy preferences evolutionary algorithm is 
proposed to resolve the problem. The simulation results show that the approach can 
significantly improve performance and adapt well to the changes of dynamic environments. 
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