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Abstract 
For the mobile robot Simultaneous Localization and Mapping (SLAM)，a new algorithm is 

proposed, and named Adaptive Iterated Square-Root Cubature Kalman Filter based SLAM algorithm 
(AISRCKF-SLAM). The main contribution of the algorithm is that the numerical integration method based 
on cubature rule is directly used to calculate the SLAM posterior probability density. To improve 
innovation covariance and cross-covariance, the latest measurements are iteratively used in the 
measurement updating. The algorithm can reduce linearization error and improve the accuracy of the 
SLAM algorithm. The algorithm also used adaptive iterating estimation restricted by the iterative 
sentencing guideline to adjust the proportion of the observation and dynamic model, to make the 
estimated square root of the error covariance more accurate and reasonable. In experiments, the 
proposed algorithm is compared with Extended Kalman Filter based SLAM algorithm (EKF-SLAM), 
Unscented Kalman Filter based SLAM algorithm (UKF-SLAM) and Square-Root Cubature Kalman Filter 
based SLAM algorithm (SRCKF-SLAM. The results indicate that the proposed algorithm having with the 
higher accuracy of the state estimation is obtained to compare with the EKF-SLAM algorithm, the UKF-
SLAM algorithm and the SRCKF-SLAM algorithm. 
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1. Introduction 

The SLAM is that the mobile robot builds map in the unknown environment and 
localization by using built map under the condition of itself position uncertainty [1]. During the 
process of the SLAM, it has a lot of uncertain factors. Firstly, the robot is of uncertainty 
because of the noise data of the senor. Secondly, the detective environment of the robot is 
also unpredicted. These uncertain factors make the SLAM more difficult. So, recently, the 
probability theory is used in the SLAM algorithm by the increasing researchers. For this 
problem, the EKF algorithm is used to estimate it in the early days [2]. Then the method is 
extensively used, and the EKF-SLAM algorithm is proposed in different environments. But the 
EKF algorithm has two main shortcomings. Foremost, the bottleneck of the EKF algorithm is 
that it is of bigger computational complexity. So the mapping is difficult to satisfy the 
requirement of real time in the big environment [3]. Then, the EKF algorithm will go against 
local linear hypothesis when being the strongly nonlinear [4]. The EKF algorithm may be 
divergented when neglecting the bigger error of the higher order term [5].  

To avoid these limitations of the mentioned factors above, in recent years, many 
researchers propose some new algorithms for the SLAM. Juan Andrade-Cetto etc propose the 
SLAM algorithm based on Unscented Kalman Filter [6]. The nonlinear system model is directly 
used in the UKF algorithm. It can avoid errors which are created becsuse of higher order term 
truncation. However, it can improve the systerm accuracy. The square-root Unscented Kalman 
Filter(SR-UKF) based on cholesky decompose is proposed to apply to the SLAM algorithm in 
the paper [7]. The algorithm is iteratively calculated by using the square root of the covariance 
to substitute the covariance. It can ensure the nonnegative definiteness of the covariance 
matrix and the numerical stability of the filter. But, with the observation and the update 
proceed, the sigma point which used to the predicted value for center and used to the 
predicted variance for covariance generate will gradually deviate the estimated value of the 
real state when the SR-UKF algorithm is applied to the SLAM. Montermerlo etc proposed the 
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FastSLAM algorithm based on particle filter has the same disadvantages as the EKF algorithm 
[8]. The FastSLAM algorithm estimates the trajectory of the robot by using particle filter and the 
landmark position by using the EKF algorithm. It can reduce computational complexity. But the 
FastSLAM algorithm may create the particle subset degradation, and particle subset 
diversification is decreased. So, it reduces the accuracy of the SLAM algorithm [9]. 

Recently, a new SLAM algorithm based on square-root cubature kalman filter 
(SRCKF) is proposed in the paper [10]. The SRCKF-SLAM algorithm solves the integral 
problem of the Recursive Bayesian Filters by using the cubature point subset of the equal 
weighting. It can obtain the better linear approximation property, the numerical value precision 
and the stability of the filter. But the pose estimation of the mobile robot is a problem of the 
highly nonlinear state estimation. It has bigger initial error, and the measurement equation of 
the SRCKF-SLAM algorithm is of highly nonlinear properties. So, those reduce precision of the 
SRCKF-SLAM algorithm state estimation. To solve the problems above, a new AISRCKF-
SLAM algorithm will be proposed in this paper. The algorithm absorbs advantages of the 
SRCKF -SLAM algorithm and it makes full use of the latest measurement information. It can 
effectively reduce error of state estimation. The algorithm also used adaptive iterating 
estimation restricted by the iterative sentencing guideline to adjust the proportion of the 
observation and dynamic model, to make the estimated square root of the error covariance 
more accurate and reasonable. 

 
 

2. SLAM Algorithm based on Adaptive Iterated Square-root Cubature Kalman Filter 
2.1. Selection of the Iteration Strategy  

In the paper [12], the proposed Gauss-Newtow iteration strategy has global 
convergence properties. But it can not ensure the increase of the quasi-likelihood and the 
judgment threshold of the proposed Gauss-Newtow iteration impact seriously also the 
performance of the algorithm. In the paper [12], the decision threshold as following is adopted.  
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Here,   is the predetermined threshold. For improving the performance of the 
algorithm, the decision threshold as following is adopted in the paper. 
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2.2. Selection of the Adaptive Factor 

By adaptive factors, robust adaptive filter adjusts the state of information for the 
filtering estimation function, making the state covariance parameters predicted value more 
reasonable, improving the filtering accuracy obviously [13]. So, the idea of robust adaptive filter 
is applied to SRCKF in this paper. The square root of covariance matrix of state parameter 
predicted value is adjusted by using adaptive factor, and then improving the filtering stability 

and estimated accuracy. Predicted residual is used as discriminant statistics in this paper.  k  

is defined as: 
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Where q is experience value constant. It is usually 1.5—2.5． 
 
2.3. Adaptive Iterated Square-Root Cubature Kalman Filter 

(a) The standard SRCKF algorithm is used to initialize, computing cubature point and 
Measurement updating. Mu Jin and Cai Yuanli propose the square root cubature Kalman filter 
[11].  

 
2.2.1. Time Adapting 

a. The cubature point can be obtained by: 
 

 Xj, k-1/k-1=Sk-1/k-1 j+ 1/1  kkx                                                   (6) 

 
b. The transmission cubature point can be obtained by: 
 
X*

j, k-1/k-1=f(Xj,k-1/k-1)                                                          (7) 
 
c. The state prediction and the variance prediction can be given by Equation (8) and 

(9), respectively.      
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T
Q, k-1, and Qk-1 is system noise the k-1th time. Tf( ) is that the 

square matrices of the matrices is obtained by using diagonalization of  the matrices. kS  is the 

Cholesky factor of the variance prediction. Xk/k-1
* is defined as: 
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2.2.2. Measurement Updating  

a. The cubature point can be obtained by: 
 

Xj, k、= 1/ kkS  j+ 1/ kkx                                                      (12) 

 
b. The transmission cubature point can be obtained by: 
 
Zj, k=h(Xj,k/k-1)                                                               (13) 
 
c. The factor and the covariance of the Cholesky division of the measurement 

prediction and the new information variance can are given by Equation (14), (15) and (17), 
respectively.  
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Rk=SR, kS
T

kR,                                                               (16) 

 
Here, Rk is the observation noise. 
 

Pxz/x= k/k-1 
T
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Here, the matrix  k  and  k are given by Equation (18) and (19), respectively. 
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(b) The Equation (3)-(5) are use to select the adaptive factor. 
(c) The estimation value of the Cholesky division factor of the gain, the kth time state 

and covariance can be obtained by the following equations. 
 

S kzz ,
 =[S kzz , -chol(Rk)]/ k +chol(Rk)                                     (20) 
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(d) According to the state estimation vector 

^

x and covariance Sk of the kth iteration, 
produce the cubature point and complete the calculation of the new cubature point and the 
measurement update. The concrete method is the same standard SRCKF algorithm. 

(e) The procedure (b), (c) are used again to select the adaptive factors and to renew 
the Corresponding equation. 

(f) The iteration is terminated when satisfy the inequality (2), or it will return the 
procedure (c). 
 
2.4. Design and Realization of AISRCKF based SLAM Algorithm for Mobile Mobots 
(a) State prediction 

According to Equation (6)~(10), estimate the square root factor of the state prediction 
and the prediction error covariance of the robot at kth time.  
(b) Observation   

The observation data is obtained by the observation model of the robot. That is, it 
obtains the landmark feature of the robot detected in the detecting range of the sensors, and 

computes the range ri of each detected landmark feature to the robot and angle i of each 
detected landmark feature relative to the forward direction of the robot. 
(c) Data association 

According to the observation data of the sensor, take the new feature observation 
value and the existing feature in the map to the data association. The correct data association 
is a sufficient condition of the obtaining consistent map. The traditional ICNN algorithm is 
relatively simple. But it can’t solve the problem which robot exist unknown motion, because the 
prediction equation will produce errors. The nearest-neighbor algorithm becomes invalid. The 
Feature Matching Algorithm (FMA) [15] is used to achieve the data association in this paper. 
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(d) Update 
During the data association, if new measure value corresponds to existing feature in 

the map, then use observation formation to update existed state based on the AISRCKF 
algorithm. That is to say, according to (20)~(23),update the state vector and the square root 
factor of the prediction error covariance. If new measure value does not corresponds to 
existing feature in the map, and then it obtains a new feature. So, it needs to initialize the 
feature in the map, and augment state. 
(e) Mapping 

The observations S are decomposed into the association observation Sk and the 
observation of the new feature Snk.. It is defined as the following [16]: 

 
S = [Sk Snk]

T                                                               (24) 
 
It achieves map by using the augment state, and the method as the following [16]: 
 
xk

new = f (Snk, xk)                                                           (25) 
 
Xk = [Xk-1, xk

new]T                                                           (26) 
 
Where Snk and xk

new are observation value of the new feature and feature point of the 
new observation, respectively. 
 
 
3. Experiment Modeling and Analysis 
3.1. Experiment Modeling 

Before the SLAM simulation experiment, we need build a system model for the 
mobile robot. The established model mainly includes system model, robot location model, 
control command model, environment map model, robot motion model, sensor measurement 
model and system noise model. In this paper, the Bailey SLAM model is used [17]. 

(1) The motion model can be obtained by: 
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Input: x kV ,  specifies the pose of the robot at time k.  T specifies the sampling time 

of the dead recking sensors. Vk specifies the velocity of the robot. k is rudder angle. B is two 

interaxial wheelbases. Output: x kV 1,  specifies the pose of the robot at time k+1. 
(2) Observation model can be obtained by: 
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Iuput: ( yx ii

, ) specifies the position coordinates of detected the ith landmark 

features. Output: ri
 and i  respectively specify the range of the ith landmark feature relative 

to the robot and angle of the ith landmark feature relative to the robot direction. 
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3.2. Experimental Environments 
The 300m*250m outdoor environment area is used in the experiment. The 10 waypoint 

and the 34 landmark are preestablished in experiment environment area. Robot start moving at 
(0,0) counterclockwise with waypoint. From the coordinates (0,0), the robot starts moving 
counterclockwise along the trace ensured by the waypoint The simulation parameters are 
shown in Table 1. In this experiment environment, we make simulation experiment through 
MATLAB/Simulink simulations. 
 
 

Table 1. The Simulation Parameters 
The simulation parameters Value 
velocity 1.5m/s 
Maximum steering angle  400 

Maximum steering angular velocity  200/s 

L wheel distance 1.5m 
The sensor scanned Maximum distance 45m 
laser scanner range 00-1200 
control frequency 100Hz 
observing frequency 10Hz 

Feature points 34 

 

 
3.3. Experimental Results and Analysis 

In this paper, under the same experiment condition, we make simulation experiment by 
using the EKF, UKF, SRCKF and AISRCKF algorithm, respectively. Randomly taken the one 
time experiment results and taken the average result of the 50 time repeated the experiment 
as final result were comparing analyzed. 

Figure 1 and Figure 2 are corresponding to the simulation experimental results of the 
SRCKF-SLAM algorithm and the AISRCKF-SLAM algorithm, respectively. From Figure 1 and 
Figure 2 shown, in terms of the robot navigation and positioning estimation, the obtained 
Integrating degree of the estimating path with the actual path of the robot moving by using the 
AISRCKF-SLAM algorithm is higher than that by using the SRCKF-SLAM algorithm. This 
means that the AISRCKF-SLAM algorithm estimation precision is higher. In terms of map 
accuracy, the AISRCKF-SLAM algorithm building map accuracy is higher. 

For Figure 3 and Figure 4 experimental results, they have the following analysis 
results. From the algorithm estimation stability analysis, the stability of the AISRCKF algorithm 
is the best among the four algorithms on the X-axis. The error value variation of the AISRCKF 
algorithm is within 3m. The stability of the UKF algorithm is next to the stability of the AISRCKF 
algorithm. The error value variation of the UKF algorithm is within 4m. We can see from Figure 
3(a), the UKF algorithm appeared two time larger deviation. The maximum deviation of the 
UKF algorithm is more than 40m. The stability of the SRCKF algorithm is poorer. The stability 
of the SRCKF algorithm is only better than that of the EKF algorithm. The error value variation 
of the SRCKF algorithm is within 6m. We can see from Figure 3(a), the SRCKF algorithm 
appeared three time larger deviation. The maximum deviation of the SRCKF algorithm is more 
than 40m. And the stability of the EKF algorithm is the worst. The error value variation of the 
EKF algorithm is within 8m. And we can see from Figure 3(a), the EKF algorithm appeared 
three time larger deviation. The maximum deviation of the EKF algorithm is more than 80m. 
The stability of the AISRCKF algorithm is the best among the four algorithms on the Y-axis. 
The error value variation of the AISRCKF algorithm is within 4m.  

The stability of the SRCKF algorithm is next to the stability of the AISRCKF algorithm. 
The error value variation of the SRCKF algorithm is within 5m. We can see from Figure 4(a), 
the SRCKF algorithm appeared three time larger deviation. The maximum deviation of the 
SRCKF algorithm is more than 30m. The stability of the UKF algorithm is poorer. The stability 
of the UKF algorithm is only better than that of the EKF algorithm. The error value variation of 
the UKF algorithm is within 6m. We can see from Figure 4(a), the UKF algorithm appeared 
three time larger deviation. The maximum deviation of the UKF algorithm is more than 50m. 
And the stability of the EKF algorithm is the worst. The error value variation of the EKF 
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algorithm is within 8m. And we can see from Figure 4(a), the EKF algorithm appeared three 
time larger deviation. The maximum deviation of the EKF algorithm is more than 90m.  

From the algorithm estimation precision analysis, the estimation precision of the 
AISRCKF algorithm, the SRCKF algorithm and the UKF algorithm has increased significantly 
on the second half X-axis. The estimation precision of the EKF algorithm is the worst and 
Shows a trend of decreasing. The estimation precision of the UKF algorithm has increased on 
the second half X-axis. The estimation precision of the UKF algorithm is slightly better than that 
of the SRCKF algorithm. But the estimation precision of the UKF algorithm is poorer than that 
of the SRCKF algorithm on the Y-axis. The estimation precision of the SRCKF algorithm has 
obvious advantages on the Y-axis. But the estimation precision of the SRCKF algorithm is 
poorer on the X-axis.  

The estimation precision of the SRCKF algorithm is only better than that of the EKF 
algorithm. The estimation precision of the AISRCKF algorithm is basically the same as the 
estimation precision of the SRCKF algorithm on the Y-axis. The estimation precision of the 
method has obvious advantages on the X-axis. Under the same time, the estimation precision 
of the AISRCKF algorithm most increase 2m. To sum up, the error of the EKF-SLAM is largest. 
The estimation precision of the UKF-SLAM algorithm is basically the same as the estimation 
precision of the SRCKF-SLAM algorithm. During the whole exploring process of the robot, the 
localization estimation precision of the AISRCKF-SLAM algorithm is the highest. The error of 
the AISRCKF-SLAM algorithm is lesser and the numerical stability of the AISRCKF-SLAM 
algorithm is also better. So, the effective and superior of the AISRCKF-SLAM algorithm is 
verified. 

 
 

 
Figure 1. Results of SRCKF-SLAM (the green 

line is the true path, the red line is SLAM 
path, the black point is the real position of the 

landmark, the yellow point is the estimated 
position of the landmark) 

 
Figure 2. Results of AISRCKF-SLAM (the 
green line is the true path, the red line is 

SLAM path, the black point is the real position 
of the landmark, the yellow point is the 

estimated position of the landmark) 
 

 
(a) the single experimental results 

 
(b) the mean value of the 60 times repeated 

experiment results 
 

Figure 3. The SLAM Algorithm Error Comparison on the X-axis under the Gaussian Noise 
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(a) the single experimental results (b) the mean value of the 60 times repeated 
experiment results 

 
Figure 4. The SLAM Algorithm Error Comparison on the Y-axis under the Gaussian Noise 
 
 
The data contrast of the system noise and the observation noise under the gaussian 

white noise condition is shown in the table2. From the complexity contrast, the complexities of 
four kinds of algorithms all are the same. But from the running time contrast, the time 
consumption of the EKF, UKF and SRCKF algorithm are basically the same. Because joined 
the iterative algorithm in the AISRCKF algorithm, the time consumption of the AISRCKF 
algorithm is a little longer than those other algorithms. The estimation precision contrast is from 
theoretical derivation. The experiment result verifies it. The accuracy of the map estimation are 
compared. The results show that the map estimation error is smaller than the path estimation 
error. During the process of the estimation error contrast, the error of the EKF algorithm is the 
biggest. The error of the SRCKF algorithm is smaller than that of the UKF algorithm. The error 
of the AISRCKF algorithm is smaller than that of the UKF algorithm and the SRCKF algorithm. 
So, the validity of the AISRCKF-SLAM algorithm is verified. 
 
 

Table 2. The Data Contrast of System Noise and Observation Noise under the Condition of 
Gaussian White Noise 

SLAM complexity Run time precision  Gm/t 
EKF O(n2) 4.51s First-Order Accurate  5.2541 
UKF O(n2) 4.97s Second-Order Accurate  3.6352 
SRKF O(n2) 4.43s Second-Order Accurate  4.1425 
AISRKF O(n2) 5.47s Second-Order Accurate  3.3256 

 
 

Here, Gm/t is the root mean square error of the map estimation respectively. 
 
 
4. Conclusion 

A strategy which improves the state estimation accuracy of the SRCKF-SLAM 
algorithm is proposed in this paper. For the problem which the state estimation error range of 
the SRCKF algorithm is bigger, to improve the innovation covariance and the cross-
covariance, the latest measurement is iteratively used in the measurement update. It 
effectively improves the accuracy of the system state estimation. The algorithm also used 
adaptive iterating estimation restricted by the iterative sentencing guideline to adjust the 
proportion of the observation and dynamic model, to make the estimated square root of the 
error covariance more accurate and reasonable. By the demonstrating of simulation 
experiment, it shows that compared with the current several kinds of SLAM algorithm, the 
paper proposed the AISRCKF-SLAM algorithm to make the state estimation of the system to 
better converge to near the real value, at the same time satisfying the requirement of real time. 
The proposed method provides a new train of thought for the mobile robot SLAM in unknown 
environment. 
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