
TELKOMNIKA, Vol. 11, No. 12, December 2013, pp. 7138~7145 
e-ISSN: 2087-278X 
      7138 

  

Received June 27, 2013; Revised August 17, 2013; Accepted August 27, 2013 

Simplified Gauss Hermite Filter Based on Sparse Grid 
Gauss Hermite Quadrature 

 
 

Gao Fuquan*, Chen Lirong, Ding Chuanhong, Liu Jianfeng 
The Inst. Of Beijing Computer Technology and Application, Beijing, China 

*Corresponding author, e-mail: gaozk789@gmail.com  
 
 

Abstract 
In order to improve estimation accuracy of nonliear system with linear measurement model, 

simplified gauss hermite filter based on sparse grid gauss hermite quadrature (SGHF) is proposed. 
Comparing to conventional Gauss-Hermite filter (GHF) based on tensor product gauss quadrature rule, 
simplified SGHF not only maintains GHF’s advantage of precission controllable, high estimation 
accuracy, but also relieves the curse of dimension problem by reduce the number of gaussian intrgration 
points to the number of sigma points that scaled unscented transform uses. Theoretical analysis and 
experimental results show that estimation base on new filter performs significantly beter than extended 
kalman filter (EKF), and slightly better than unscented kalman filter (UKF) on estimation accuracy and 
convergence speed, and computational burden is significantly reduced comparing with traditional GHKF. 
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1. Introduction 
In bayesian estimation problem, integration of nonlinear function is intractable usually. 

Under the assumption that the state is of Gaussian distribution, the filter density may be 
approximated by Gaussian distribution parameteried by the conditional mean and covariance. 
Expectation values occurring in the time and measurement updates can be computed or 
estimated numerically. Expectations treated by truncated Taylor expansion, leading to the well 
known EKF. It can be shown that Gaussian filter (GF) is equivalent to an infinite Taylor 
expansion [3]. Another numerical integration method for computing expectations is the third 
degree spherical radical rule leading to the cubture kalman (CKF) filter of Arasaratnam I and 
Haykin S [1-2]. Closely related is the UKF [5] of Julier and Uhlmann which uses the unscented 
transform (UT) to estimate the expectation, difference filter (DF) of Nørgaard that uses strling 
interpolation, particle filter (PF) of Arulampalam m s, Maskell s, Gordon N that use mote-carlo 
Integration, gauss hermite filter (GHF) of Ito K and Xiong K  that use gauss hermite quadrature 
(GHQ) [3-7]. Of all these digital filters, gauss hermite filter is simple in principle, gauss 
integration accuracy is esay to set according to the demand of filtering accuracy. However, 
gauss hermite filter based on tensor product has the problem of “curse of dimension” in high 
dimension state estimation. In order to break the curse of dimension of gauss hermite 
quadrature, Russia methematician Smolyak in the last 60s of the last century proposed sparse 
grid based gauss hermite quadrature (SGHQ). Heiss F, Winschel V incorporate SGHQ into 
Gaussian filter [2], B Jia and M Xin named the new filter SGHF [4]. SGHF not only maintained 
the superior characteristics of GHF, but also avoid the problem of “curse of dimension”. 

In this paper, we propose a simplified SGHF algorithm that shows comparable 
performance to the UKF and computational cost much less than GHF for the estimation 
problem of nonlinear system with linear measurement model. The performance of the new filter 
is tested in the problem of strapdown inertial navgaiton system (SINS) nonlinear initial 
alignment, and the superiority of new filter is comparared with several other conventional 
algorithms [6-8]. 

The rest of this paper is organized as follows. Section 2 introduced the simplified 
SGHF. The navigation error propagation equation with big initial mis-alignment angles of SINS 
are briefly reviewed in Section 3. Section 4 gives the simulation results, illustrating the 
performance of simplified SGHF for the problem of SINS mis-alignment angles’ estimation, and 
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the perofrmance of simplified SGHF is comparied with the EKF and UKF. Some concluding 
remarks are given in section 5. 
 
 
2. Simplified Sparse Gauss Hermite Quadrature Filter 

Consider a nonlinear distrete system with additive process noise and measurement 
noise: 
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Where kx  is the 1n  state vector and ky  is the 1ym  measurement vector; 1kv  and kn  

are independent zero mean white gaussian process noise and measurement noise with 

covariance 1kQ  and kR , respectively. Bayesian filter is only a conceptual solution, in the 

sense that (in most situations) it cannot be determined analytically. Thus one has to use 
approximations. Under the assumption of Gaussian distribution, bayesian filter can be 
simplified as Gaussian filter. 
 
2.1. Gauss Hermite Quadrature Rule 
             Gauss hermite quadrature rule is used to solve the following gaussian integral: 
 

     , ,
nn R

I f f N d  x x 0 I x                                              (2) 

 

Where x is the integral vector,  f x  is nonlinear function,  , ,N x 0 I  is the pdf of 

multidimension normal distribution, nR  is n-dimensional Euclidean space, and  nI f  is 

integral to be solved. 
 
2.1.1. One Dimensional Gauss Hermite Quadrature 
             For the integral problem of formula (2), when the integration variable is one dimension. 
The gauss-hermite quadrature rule is given by: 
 

         11 1 ,
1

, 0 ,1
L

L i iR
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I f f N x d x I f f 
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    x                              (3) 

 
Where the equality holds for all polynomials of degree up to 2L-1, the quadrature points 

 =1,2, ,i i L   and the weights  =1,2, ,i i L   are determined as follows. Let J be the 

symmetric tridiagonal matrix with zero diagonals and , 1 / 2, 1 1i iJ i i L     . Then  i  

are the eigenvalues of J and i  equals to   2

1iv  where  1iv  is the first element of the ith 

normalize eigenvector of J. 
 
2.1.2. Tensor based Multi Dimensional Gauss Hermite Quadrature 

Multi-dimensional gaussian numerical integration can be solved by multiple one 
dimension gaussian numerical integration, also known as tensor based gauss quadrature. 

Suppose n dimensional integral vector  T1: 1n nx x x x  , tensor based multi-

dimensional gauss hermite quadrature rue is given by: 
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Where the equality holds for all polynomials 1 2
1 2( ) nii i

nf x x xx  ,

11 2 1, ,1 2 1ni L i L      , the multi-dimensional quadrature point
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ni i ni L i L          are determined astensor product of one dimensional 

quadrature point, and the corresponding weight for each quadrature point is 
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ji

 is one 

dimension quadrature weight for jth dimension. As can be seen from Equation(4), the number 

of multi-dimension quadrature points is Ln , for each quadrature point, calculate 

1 2
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
  once. The number of gauss quadrature points and computation cost 

grow exponentially with integral dimension which is the so called ‘curse of dimensionality’. In 
order to reduce the number of multidimensional gaussian quadrature points, Russian 
mathematician first proposed sparse grid based multi-dimensional gaussian quadrature. 
 
2.1.3. Sparse Grid based Multi-Dimension Gauss Hermite Quadrature 

Suppose n dimensional integral vector  T1: 1n nx x x x  , multi-dimensional 

SGHQ rule is given by: 
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Where the equality holds for all polynomials 1 2
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set of natural numbers) is the accuracy level of multidimensional integral, n is the number of 
dimensions of multidimensional integral, q is auxiliary parameter which is an natural number 

and ranging from -L n  to -1L , p  is one dimensional quadrature point and 
pi

  is 

corresponding one dimensional weight for p ,  1 ni i �   is an acuracy level sequence 

of n natural numbers, - -
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n L q
nC  is the binomial coefficient, n

qN  is a set of accuracy lecel 

sequences definded by: 
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Where   is empty set, the set of sparse grid points, ,n LX  is given by: 
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Where   denotes tensor product.  , 1

jiX j n  , 
jiX  is the univariate point set with 

accuracy level ji . 

Comparing with tensor based gauss hermite integral, the number of integrate points of 
SGHQ is much less. For convenience, we give the general formaula for calculating the number 
of SGHQ points with level 2 and level 3. For level 2, when n=1, the SGHQ is not necessary, 
when 2n  , q=0 or 1, the set of sparse grid points  
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      1 2,1, ,1 , 1, 2, ,1 , 1,1, , 2nN       generates 2n points (excluding the oringin 

point). Hense, for level 2, the total number of points is 2 1n  . Fro level 3, when n=1, the 

SGHQ is not nessary. When 3n  , q=0, 1 or 2, the set of sparse grid points
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the total number of points is 22 2 1n n  . When accuracy level 3L  , the method for counting 
quadrature point is similar. Based on the above discussion, the number of quadrature for 
SGHQ points and tensor product based GHQ points with accuracy levels 2 and 3 when 3n 
is summarized in Table 1. 

 
 

Table 1.  The Number of Quadrature Points for SGHQ and Tensor Product based GHQ 
L Tensor product based GHQ SGHQ

2 2n
 2 1n  

3 3n
 

22 2 1n n   

 
 
As can be see from  
 
Table 1 the number of quadrature points for SGHQ is much less than quadrature points of 
tensor product based GHQ and equals to the sigma points of unscented transform [6]. For 
SGHQ, when accuracy level is 3, the number of quadrature points is a slight increase than 
accuracy level 2 of quadrature points’ number. 
 
2.2. Simplified Sparse Grid Gauss Hermite Filter 

For system described in(1), Using SGHQ to solve gauss integral in gauss filter, we 
arrive at SGHF. For systems of linear measurement model, update of SGHF can be replaced 
by kalman filter update. The simplified sparse grid gauss filtering includes recursive prediction 
and update procedures. 
Prediction: 
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Table 1. Compute the factorization of  T

-1| -1 -1| -1 -1| -1k k k k k kP P P  using singular 

value decomposition and set |, -1 -1
ˆi k ki k k  η Sξ x , where i ( 1, , ni   ) is the point index, 1ξ  is 

the origin point;  1 ,,i i n ξ are the SGHQ points,  i are the corresponding weights. 

Table 2. Caluclate the value of system function at sparse grid , -1 -1, 1, , ni k k i η  . 

 
*
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Table 3. The corresponding propagated state vector value and covariance are given 

by the SGHQ algorithm, 
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Update: 
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3. SINS Nonlinear Initial Alignment Model 

Initial alignment is one of the most critical technology of SINS, because the 
performance of a SINS is largely determined by the accuracy of accuracy and rapidness of the 
alignment process [1, 8]. For simplicity resasons, nonlinear model for SINS is given directly as 
follows: 

(1) State model 
The inertial navigation error model derived above will be used in this paper for 

nonlinear alignment of SINS. The dynamic model can be writen as: 
 

        , ,t f t g t t x x x ω         (17) 

 
Where the state vector x  consists of attitude errors and velocity errors, process noise vector 
  consists of sensor errors include the gyro noise and acclerometer noise. Then the state 

variable can be written as  T

N E N E Dv v    x  and
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T

x y z x y      ω . Moreover, the subscripts N, E, and D denote the north, east, 

and down in the N-frame, and subscripts x, y, z denote the front, right, down components in the 

B frame. Moreover,  ,f tx  and disturbance matrix  ,g tx  is defined as follows: 
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 tω  is the white noise of the inertial sensors with zero mean and covariance  tQ . 

(2) Measurement model 
The velocity errors are taken as observations for the filter. It can be obtained from the 

velocity errors between the SINS and the GPS. That is: 
 

SINS

SINS GPS
N N

GPS
E

N

E Ev v v

v v v 
  
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                           (20) 

 
Therefore, the measurement model is linear and can be written as: 
 

      t t t y Hx η          (21) 

 

Where  2 82 20I  H  is the observation matrix and  tη  is white noise with zero 

mean and covariance  tR . 

 
 
4. Simulation and Analysis 

To evaluate the performance of the proposed simplified SGHF algorithm against other 
nonlinear filter techniques, a numerical simulation of alignment of SINS is performed. 

 
4.1. Simulation Parameter 
             Simulated SINS parameter are listed in Table 2. 
 

Table 2. Simulation Parameters 
parameter value 

Initial horizontal mis-alignment angel 45  
Initial azimuth mis-alignment angel 60 

Gyroscope bias 0.1 /cx cy cz h       

Accelerometer bias 0.2rx ry mg    

Gyroscope drift 0.01 /rx ry rz h       

Accelerometer drift 0.05rx ry mg    

Local latitude North latitude 45
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Gyroscope and accelerometer sampling period 10ms 
Navigation solver cycle 10ms

Filtering cycle 0.5s 

 

The initial values of the filter are follows: 
 
  0 0 0 0 0 0

Tx   

                     2 2 2 2 2 22 2 2 2
0 diag 0.1 / 0.1 / 45 45 60 0.02 0.02 0.1 0.1 0.1

T

m s m s mg mg h h h    
P      

          
T2 2 22 2

d iag 0 .0 5 0 .0 5 0 .0 1 0 .0 1 0 .0 1m g m g h h h    
Q      

   
T2 2

d iag 0 .1 0 .1m s m s   R  

 
4.2. Simulation Results Analysis 
             According to parameters in Table 2, initial alignment of SINS based on EKF, UKF and 
simplified SGHF of level 2 and level 4 are simulated 100 times, total alignment time is 600 
seconds. Average estimation error of misalignment angles are shown in Figure 1~Figure 3. 
 
 

 
 

 

Figure 1.  Estimation Error of North Angle Figure 2.  Estimation Error of East Angle 
 

 

 
 

Figure 3.  Estimation Error of Azimuth Angle 
 
 

Table 3.  Estimation Errors after 10 minutes 
 EKF UKF SGHF-2 SGHF-4 

( )x   1.54 1.30 1.30 1.21 

( )y   -1.37 -1.21 -1.20 -1.14 

( )z   10.57 10.19 10.18 10.03 
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Estimation errors after ten minutes’ alignment are summarized in Table 3. 
It can be clearly seen from Figure 1 to Figure 3 and Table 3, in the estimation of mis-

alignment angles, comparing with EKF, UKF and SGHF with accuracy level 2, SGHF with 
accuracy level 4 not only has property of fast convergence, but also has highest estimation 
accuracy. 
5. Conclusion 

In this paper, simplified gauss filter based on sparse grid gauss hermite quadrature is 
proposed. Comparing with conventional multidimensional tensor product based GHF, the 
simplified SGHF requires significantly fewer quadrature points while maintaining the 
performance of GHF. 

The performance of simplified SGHF is demonstrated in a numerical simulation 
experiment of SINS initial alignment. The experiment results show that, comparing with other 
nonlinear filters such as EKF and UKF, simplified SGHF is easy to implement, especially 
simplified SGHF’s filtering accuracy level is easy to tune according to demand, while EKF and 
UKF is difficult. 
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