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 Additive white Gaussian noise level estimation has found its application in 

many fields such as biomedical signal processing, communication system, 

and image processing. Many methods have been proposed with different 

output accuracy, system complexity, power consumption, and speed. In this 

paper, three of the most well-known and largely used algorithms (median 

based, root mean square (RMS) based, and P84 based methods) have been 

implemented and investigated in a full comparison between them to find 

their advantage and disadvantage, and the suitability of each method for a 

specific application. The three designs are created using Xilinx system 

generator (XSG) and implemented on Xilinx field programmable gate arrays 

(FPGA) development board with Zynq series "XC7Z020-1CLG484", to 

evaluate the design's performance and the results are discussed in the paper.  
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1. INTRODUCTION  

Additive white Gaussian noise level estimation is a fundamental process in many fields, such as 

biomedical signal processing [1], [2], communication system [3], [4] and image processing [5], [6]. 

Removing this unavoidable noise is an essential step prior to any farther processing in these systems. 

Additive Gaussian noise is so named since it characterized as zero-mean Gaussian random variables 

distribution, which is continuous with a probability density function (pdf) given by (1): 

 

f(x) = 𝒩(x; μ, σ) =
1

√2πσ
exp {−

(x−μ)2

2σ2 } , −∞ < x < ∞ (1) 

 

where μ is the mean of Gaussian distribution and σ2 is its variance.  

In the old systems, a fixed noise level was employed as a threshold in a variety of applications that 

needed to eliminate noise, but since noise levels are not constant and vary over time [7], [8], this technique 

becomes inapplicable. So, researchers concentrate on calculating an appropriate value for the threshold, with 

the aim of real-time estimate, acceptable power consumption, area occupancy, and accuracy. 

Many algorithms and systems have been developed to perform real time standard deviation (SD) 

estimation. Donoho et al. [9] and Mallat et al. [10] showed that the SD of background noise can be estimated 

by dividing the median absolute deviation (MAD) by the 75th percentile of the standard normal distribution. 

Guillory and Norman [11] utilizing the traditional root mean square (RMS) based method to estimate the SD 

of background noises that is directly employing a programmable digital signal processing (DSP) chip for 

calculating the RMS value, the cost of employing such (DSP) units, limited a little bit the use of this 
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algorithm. Harrison and Charles [12] presented an analogue-based technique for estimating the SD of noise 

level adaptively. The circuit uses the output of the low-pass filter, which acts as an integrator, to calculate the 

duty cycle, or the time period the signal is above the threshold level over a specific time period, and compare 

it with the 15.9% of the initial threshold set at SD (so, it is also called P84). Then the SD value is 

continuously updated with a proportional-integrator (PI) control loop to meet the theoretical value. The 

simplicity of this method and its ability to be constructed using simple analog components give it an 

advantage over many of the other noise estimation methods. In contrast, the performance of this method 

decreases with the increase in signal-to-noise ratio (SNR). Despite that, this approach remains the most 

effective method in terms of circuit simplicity, power consumption, and area accupied [13]. Gagnon et al. 

[14] used sigma-delta in control loop to adjust the estimated value. 

Other methods depending on first-order statistics have also been suggested for estimating noise 

level, such as [15] who proposed an algorithm known as cap-fitting, that considers only the cap, "the middle 

portion of the amplitude distribution", to estimate the noise level, and [16] which uses minimax spread 

(MMS) to calculate the noise SD. The main problem with these methods is the massive and complicated 

calculations required to produce a statistically meaningful characterization. 

Recently, several of these algorithms have been used in conjunction with the wavelet transform to 

determine the SD of the noise, taking advantage of the capability of the wavelet transform in separating the 

energy of the signal into two components, the main signal energy is concentrated in the first band, while the 

second one includes the residual of the signal with the noise uniformly contributed over all the coefficients 

[9]. This technique can give better results, especially with higher SNR, with the help of the multiresolution 

decomposition property of the wavelet [17], [18]. The only problem with this method is the complex 

computation required for the wavelet algorithm to be implemented. 

In this paper, the architectural design of three most commonly used techniques (RMS, median, and 

P84) based for noise level estimation are suggested and implemented in real time with the aid of Xilinx 

FPGA platform, and an extensive comparison is made in term of accuracy, die area, latency, and circuit 

complexity, to show the advantages and disadvantages of each method over the other and to enable the user 

to select the most suitable method for each specific application. 

The rest of the paper is organized as shown in; section 2 gives a detailed description of the three 

tested algorithms with the background theory of each method, while in section 3, these methods are evaluated 

in terms of accuracy of the estimated noise, hardware resource utilization, power consumption, and system 

speed. Discussion and comparison of results are detailed in section 4. Finally, the conclusion of the research 

is given in section 5. 

 

 

2. HARDWARE DESIGN 

2.1.  Median based standard deviation estimation 

The idea behind this method is that the standard deviation σ cam be estimated by [9], [10]:  
 

𝜎 =  
𝑚𝑒𝑑𝑖𝑎𝑛 (|𝑥𝑛|)

0.6745
 , 𝑛 = 1, 2, … 𝑁 (2) 

 

where 𝑥𝑛 is the data input, then the median value of an N data sample is calculated by first sorting the data in 

ascendingly then choosing the middle datum if N is odd, or determining the mean of the two middle data if N 

is even. Figure 1 shows the basic block diagram of the median based estimator. The main block of the 

algorithm is the sorting block, where the size of the sorting network decides the latency, size, and accuracy of 

the system. 
 

 

Serial to 

parallel 

register

|xn|
Sorting 

network
Adder ½ 

1.48

xn σ 

 
 

Figure 1. The median based block diagram for standard deviation estimation 
 

 

An 8-sample parallel sorting network is shown in Figure 2. The sorting circuit could be scaled up to 

any size at the cost of increasing the complexity of the design [19], [20]. In this approach, a moving window 

is used for computing the median value; the window size determines the size of the sorting circuit; thus, for 
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each new sample, the window moves one sample ahead. As a result, the first accurate median value is 

calculated after the number of samples equals the size of the window. 

 

 

 
 

Figure 2. The parallel sorting network of eight samples 

 

 

2.2.  RMS based standard deviation estimation 

Traditionally, the RMS based technique is employed to calculate the SD of the noise [11], where: 

 

𝜎 =  √
1

𝑁
∑ (𝑥𝑛)2𝑁

1  , 𝑛 = 1, 2, … 𝑁 (3) 

 

where 𝑥𝑛 is the data input, and N is the total number of input data samples. Figure 3 shows the basic block 

diagram for the RMS based estimator. It seems to be simpler than the median based construction, as shown 

below, accept its containing of the square root block (Sqrt block), which represents the stumbling block in the 

design that consumes the most power, limits speed, and occupies the most design area.  

The concept behind this approach is to compute the RMS value for a moving window, where its size 

is given by N in Figure 3. The window moves each time a new sample enters the system. As in the previous 

method, the first accurate SD value is determined after N data samples are entered. while the window size 

may be easily modified by adjusting the N value in both the delay and gain blocks.  

 

 

X
Adder 1/N 

xn σ 

Subtra.

Z–1

Z–N

Sqrt

 
 

Figure 3. The RMS based structure for standard deviation estimation 

 

 

2.3.  P84 based standard deviation estimation 

It is first proposed by Harrison and Charles [12] and since then, it has been used in a different 

applications [21]–[23] utilizing its capability to be implemented with analog components. Figure 4 shows the 

basic block diagram of this algorithm. 

This method needs a bit more explanation to understand its principles. that the input Gaussian noise 

𝑥(𝑡), 𝒩(𝑥; 0, 𝜎) is first compared to a threshold voltage 𝑇ℎ𝑟 instantaneously using a comparator. The binary 

output waveform of the comparator, 𝑥𝑐(𝑡) is set high (A volt) any time the input Gaussian noise surpasses the 

threshold voltage 𝑇ℎ𝑟 otherwise, it set low (0 volt). Adding up the time duration, the output of the 
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comparator is set to high (𝑡𝑘) of 𝑥𝑐(𝑡) and dividing by the length of measuring time 𝑇𝑚 is identical of 

calculating the probability of the input 𝑥(𝑡) exceeding the threshold value, which, in turn, represents the 

average or DC value of the input signal; 

 

𝑝(𝑥 > 𝑇ℎ𝑟) =
1

𝑇𝑚
 ∫ 𝑥𝑐(𝑡)𝑑𝑡

𝑇𝑚

0
= 𝐴

∑ 𝑡𝑘𝑘

𝑇𝑚
  (4) 

 

where A is comparator pulse amplitude. 

Then, with the aid of a simple first order low pass filter (one pole filter) of transfer function 𝐻(𝑠) =
1

1+𝑇𝐿𝑠
 and time constant 𝑇𝐿 = 𝑅𝑐 very larger than the time required for the input signal 𝑥𝐶(𝑡) to make an 

appreciable change, the circuit acts as an integrator and the output 𝑦(𝑡) will pass only the DC component of 

𝑥𝑐(𝑡). 

The time diagram for the comparator and leontief production function (LPF) output is shown in  

Figure 5, with the following parameter, 𝑇ℎ𝑟 = 𝜎 = 1, 𝐴 = 5, LPF cutoff frequency 𝑓𝐿 = 1 and bandwidth of 

the input signal 𝑥𝑐(𝑡) equal 𝑓𝐶 = 18 𝐾𝐻𝑧. 

As indicated perviously, one property of random Gaussian distribution is that the probability of a 

signal sample being above 𝜎 level in Gaussian noise during a predetermined period is 15.9 %, or 𝑝(𝑥 > 𝜎) =
0.159. So, if the LPF output 𝑦(𝑡) = 𝐴 𝑝(𝑥 > 𝑇ℎ𝑟) is subtracted from theoretical probability reference of 

0.159𝐴, the error signal or the amount of difference between the current threshold from the real SD is 

obtained. The error signal at any instantons is  

 

𝑒(𝑡) =  𝑝(𝑥 > 𝑇ℎ𝑟)𝐴 − 0.159𝐴 (5) 
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Figure 4. The P84 based circuit diagram for standard deviation estimation 

 

 

The error signal 𝑒(𝑡) provides an appearance of the probability to be corrected by the feedback 

controller C(s). The estimated value by the closed loop controller 𝑇ℎ𝑟 equal the input Gaussian noise 𝜎 when 

𝑒(𝑡) ≈ 0, (i.e. 𝑇ℎ𝑟. = 𝜎). The digital implementation of this method is shown in Figure 6. The design can be 

summarized as follows: 

− Counter 1 count up to 𝑀 which represent the width of the window size. This means that standard 

deviation is measured and changed every 𝑀 sample and it stays constant along this period. 

− The comparator block compares the data stream with estimated standard deviation. Wherever the input 

data is greater than the estimated value, the output is logic 1, otherwise, it is logic 0. 
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Figure 5. The comparator and LPF output waveform 

 

 

 
(a) 

 

  
(b) (c) 

 

Figure 6. The P86 based block diagram (a) overall system, (b) integrator part and (c) differentiator part 

 

 

− Counter 2 replace the LPF filter in the analog implementation of the design, this counter, count the 

number of samples that are greater than the estimated SD or the number of logic 1.  

− The number of 1’s (the output of Counter 2) is then compared with a constant percentage (0.159 × 𝑀) 

to calculate the error. The resulted error value reflects the convergence or divergence from the exact 

value, where, as small as the resulted value, as near as the exact value. 

− The feedback proportional–integral–derivative (PID) controller  is used to continuously adjust the 

estimated value of SD. Figure 6(a), shows the series PID used, while Figure 6(b) shows the 
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implementation of the integral part of the controller, which is implemented by a simple cumulative 

addition, while the differential part is implemented by a difference between the previous value and the 

new value as shown in Figure 6(c). The proportional is implemented as a simple gain circuit with gain 

constant 𝐾, a small gain constant result a small output response or more time to reach the steady state, 

while high proportional gain results in a large change in the output and the system can become unstable. 

Accordingly, there are many parameters that affect the accuracy of the estimated value like the 𝑀 

value, and the 𝐶(𝑠) parameters, which should be tuned for optimal performance of the system, in which the 

accuracy and the speed are the most important criteria. 

 

 

3. PERFORMANCE EVALUATION 

There are several criteria that could be used to assess the performance of the implemented structures. 

One of these criteria is to find the accuracy of the estimated value and the hardware resources needed to 

accomplish the structure, in addition to the consumed power and the speed of each structure. Studying these 

parameters helps one to select the most suitable structure.  

 

3.1.  Estimated value accuracy 

For the purpose of accuracy evaluation, the three algorithms are used to estimate the noise level in 

four well-known benchmark signals shown in Figure 7(a)-(d), named, Blocks as in Figure 7(a), Bumps as in 

Figure 7(b), heavy sine as in Figure 7(c), and Doppler as in Figure 7(d), after corrupted with additive white 

Gaussian noise (AWGN) of various levels of standard deviation σ. These signals are first transformed to 

wavelet domain using Haar wavelet for the purpose of simplicity, and its details is then used as the input for 

these algorithms as described in [21]. This test is carried out to show the adaptivity of these algorithms to 

work with different signals and with different noise levels. The length of these signals is set to be (4069) 

samples. Two criteria are used to evaluate the output of these systems, the mean of the output SD, and mean 

square error (MSE) between the estimated SD and the likely SD values which can expressed as [24]: 

 

𝑀𝑆𝐸 =
∑ (𝑋(𝑘)−𝑆(𝑘))2𝑁

𝑘=1

𝑁
 (6) 

 

where 𝑁 is the length of input signal and 𝑆(𝑘) is the likely SD values. Tables 1 to 4 illustrate the results of 

these tests carried out by these test parameters, where the smaller value for MSE indicates best algorithm, 

and closer results of mean to the used SD is the more accurate results. 

 

 

(a) (b)

(c) (d)

 
(a) (b)

(c) (d)
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  (a) (b)
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Figure 7. The testied signals (a) blocks, (b) bumps, (c) heavy sine, and (d) Doppler 
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Table 1. The accuracy evaluation of the SD estimator for the three methods using the Blocks signal 

Method 

Blocks signal corrupted with AWGN 

 σ = 0.5 σ = 0.8 σ = 1.2 σ = 1.5 

Mean MSE Mean MSE Mean MSE Mean MSE 

Median based method  window size=16 0.5051 0.0185 0.8083 0.0474 1.2124 0.1067 1.5154 0.1664 

RMS based method 0.5378 0.0271 0.8154 0.0306 1.1955 0.0525 1.4843 0.0779 

P84 based method 0.4677 0.0080 0.7194 0.0304 1.0306 0.0974 1.2346 0.1882 

Median based method  window size = 32 0.5001 0.0114 0.8003 0.0291 1.2004 0.0655 1.5005 0.1023 

RMS based method  0.5439 0.0195 0.8195 0.0204 1.1999 0.0336 1.4895 0.0492 

P84 based method  0.4609 0.0102 0.7053 0.0349 1.0079 0.1071 1.2077 0.2087 

Median based method  window size=46 0.4926 0.0083 0.7876 0.0213 1.1817 0.0476 1.4774 0.0738 

RMS based method  0.5019 0.0055 0.7903 0.0123 1.1786 0.0265 1.4708 0.0410 

P84 based method  0.4513 0.0179 0.6937 0.0459 0.9908 0.1247 1.1839 0.2362 

Median based method  window size =128 0.4869 0.0075 0.7791 0.0193 1.1687 0.0434 1.4608 0.0678 

RMS based method  0.5370 0.0120 0.7998 0.0179 1.1679 0.0361 1.4490 0.0555 

P84 based method 0.4996 0.0967 0.7245 0.0972 1.0023 0.1725 1.1950 0.2857 

Median based method window size =256 0.4754 0.0108 0.7607 0.0276 1.1411 0.0621 1.4264 0.0970 

RMS based method 0.5184 0.0106 0.7696 0.0233 1.1227 0.0544 1.3926 0.0867 

P84 based method 0.9577 1.4982 0.9600 0.8647 1.0947 0.6343 1.2460 0.6686 

 

 

Table 2. The accuracy evaluation of the SD estimator for the three methods using the Bumps signal 

Method 

Bumps signal corrupted with AWGN 

σ = 0.5 σ = 0.8 σ = 1.2 σ = 1.5 

Mean MSE Mean MSE Mean MSE Mean MSE 

Median based method  window size = 16 0.5034 0.0187 0.8051 0.0477 1.2076 0.1071 1.5096 0.1670 

RMS based method 0.5034 0.0098 0.7931 0.0226 1.1831 0.0491 1.4766 0.0758 

P84 based method 0.4668 0.0086 0.7197 0.0303 1.0293 0.0968 1.2320 0.1920 

Median based method  window size = 32 0.4988 0.0117 0.7976 0.0293 1.1962 0.0653 1.4953 0.1017 

RMS based method  0.5052 0.0066 0.7959 0.0143 1.1873 0.0306 1.4818 0.0471 

P84 based method  0.4566 0.0107 0.7077 0.0350 1.0076 0.1075 1.2136 0.2070 

Median based method  window size = 46 0.4926 0.0083 0.7876 0.0213 1.1817 0.0476 1.4774 0.0738 

RMS based method  0.5019 0.0055 0.7903 0.0123 1.1786 0.0265 1.4708 0.0410 

P84 based method  0.4513 0.0179 0.6937 0.0459 0.9908 0.1247 1.1839 0.2362 

Median based method  window size =128 0.4849 0.0078 0.7755 0.0197 1.1626 0.0439 1.4531 0.0684 

RMS based method  0.4925 0.0064 0.7749 0.0157 1.1552 0.0351 1.4415 0.0548 

P84 based method 0.4997 0.0954 0.7217 0.0975 1.1964 0.2875 1.1964 0.2875 

Median based method window size =256 0.4728 0.0109 0.7552 0.0280 1.1333 0.0626 1.4171 0.0976 

RMS based method 0.4730 0.0094 0.7441 0.0248 1.1094 0.0566 1.3844 0.0890 

P84 based method 0.9568 1.4789 0.9502 0.8451 1.0966 0.6405 1.2460 0.6681 

 

 

Table 3. The accuracy evaluation of the SD estimator for the three methods using the Heavy sine signal 

Method 
Heavy sine signal corrupted with AWGN 

σ = 0.5 σ = 0.8 σ = 1.2 σ = 1.5 
Mean MSE Mean MSE Mean MSE Mean MSE 

Median based method  window size = 16 0.5044 0.0187 0.8071 0.0478 1.2106 0.1075 1.5130 0.1680 
RMS based method 0.5010 0.0093 0.7932 0.0216 1.1846 0.0475 1.4786 0.0739 
P84 based method 0.4669 0.0085 0.7175 0.0304 1.0246 0.0995 1.2279 0.1907 
Median based method  window size = 32 0.5000 0.0113 0.8000 0.0290 1.2000 0.0652 1.4999 0.1019 
RMS based method  0.5033 0.0055 0.7962 0.0130 1.1887 0.0290 1.4837 0.0452 
P84 based method  0.4584 0.0105 0.7067 0.0346 1.0025 0.1099 1.2028 0.2105 
Median based method  window size = 46 0.4950 0.0080 0.7917 0.0206 1.1872 0.0464 1.4835 0.0726 
RMS based method  0.5000 0.0044 0.7904 0.0111 1.1798 0.0252 1.4725 0.0396 
P84 based method  0.4496 0.0180 0.6932 0.0460 0.9903 0.1255 1.1829 0.2354 
Median based method  window size =128 0.4871 0.0074 0.7792 0.0189 1.1687 0.0426 1.4602 0.0667 
RMS based method  0.4900 0.0060 0.7744 0.0153 1.1559 0.0347 1.4427 0.0543 
P84 based method 0.4981 0.0951 0.7144 0.0963 0.9961 0.1740 1.1873 0.2875 
Median based method window size =256 0.4749 0.0107 0.7598 0.0274 1.1397 0.0617 1.4238 0.0967 
RMS based method 0.4708 0.0100 0.7441 0.0255 1.1106 0.0576 1.3861 0.0901 
P84 based method 0.9531 1.4984 0.9560 0.8680 1.0932 0.6346 1.241 0.6705 
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Table 4. The accuracy evaluation of the SD estimator for the three methods using the Doppler signal 

Method 

Doppler signal corrupted with AWGN 

 σ = 0.5 σ = 0.8 σ = 1.2 σ = 1.5 

Mean MSE Mean MSE Mean MSE Mean MSE 

Median based method  window size = 16 0.5032 0.0184 0.8051 0.0471 1.2075 0.1061 1.5094 0.1659 

RMS based method 0.4911 0.0082 0.7855 0.0209 1.1782 0.0470 1.4728 0.0735 

P84 based method 0.4630 0.0084 0.7181 0.0301 1.0218 0.0990 1.2287 0.1908 

Median based method  window size = 32 0.4986 0.0112 0.7976 0.0287 1.1962 0.0644 1.4952 0.1007 

RMS based method  0.4927 0.0051 0.7881 0.0130 1.1822 0.0291 1.4777 0.0455 

P84 based method  0.4560 0.0105 0.7011 0.0352 1.0007 0.1104 1.2027 0.2118 

Median based method  window size = 46 0.4933 0.0080 0.7891 0.0206 1.1836 0.0464 1.4793 0.0725 

RMS based method  0.4889 0.0046 0.7820 0.0116 1.1731 0.0260 1.4664 0.0406 

P84 based method  0.4519 0.0179 0.6957 0.0463 0.9908 0.1238 1.1800 0.2382 

Median based method  window size =128 0.4858 0.0075 0.7770 0.0191 1.1654 0.0430 1.4566 0.0671 

RMS based method  0.4789 0.0063 0.7661 0.0159 1.1492 0.0355 1.4366 0.0554 

P84 based method 0.4998 0.1001 0.7201 0.0974 0.9932 0.1749 1.1885 0.2879 

Median based method window size= 256 0.4735 0.0107 0.7576 0.0275 1.1367 0.0618 1.4210 0.0966 

RMS based method 0.46 0.0103 0.7358 0.0261 1.1037 0.0586 1.3798 0.0913 

P84 based method 0.9576 1.4970 0.9584 0.8665 1.0946 0.6364 1.2460 0.6699 

 

 

3.2.  Utilized hardware resources 

The hardware resources needed for the implementation of each algorithm with different size of the 

window also compared. The Zynq series "XC7Z020-1CLG484" FPGA development board is used to 

implement these systems. Table 5 illustrates the Vivado® Design Suite's estimation for the hardware 

resources. All design input is set to a fixed point of 15/8. 

 

 

Table 5. Utilization of FPGA hardware resources for the three algorithms with different window size 

Method 
Slice LUTs Slice Registers DSPs Block RAM Tile 

Used Utilize% Used Utilize% Used Utilize% Used Utilize% 

Median based method window 

size = 16 

2074 3.09 240 0.23 0 0 0 0 

RMS based method 461 0.87 296 0.28 1 0.45 0 0 

P84 based method 75 0.14 61 0.06 0 0 0 0 

Median based method window 

size = 32 

6146 11.55 496 0.47 0 0 0 0 

RMS based method 468 0.88 296 0.28  1 0.45 0 0 

P84 based method 72 0.14 61 0.06 0 0 0 0 

Median based method window 

size = 46 

20097 37.78 1008 0.95 0 0 0 0 

RMS based method 485 0.91 314 0.30 1 0.45 0 0 

P84 based method 72 0.14 61 0.06 0 0 0 0 

Median based method window 

size =128 

43201 81.20 2079 1.95 0 0 0 0 

RMS based method 517 0.97 350 0.33 1 0.45 0 0 

P84 based method 73 0.14 61 0.06 0 0 0 0 

Median based method window 

size =256 

Synthesis and implementation failed: This design requires more Slice LUTs cells than are 

available in the target device. 

RMS based method 570 1.07 418 0.39 1 0.45 0 0 

P84 based method 75 0.14 62 0.06 0 0 0 0 

 

 

3.3.  Consumed power 

The consumed power for each system is affected by many aspects, including system frequency, 

density of resources, connection topology, and the level of supply voltage [25]. As in all embedded systems, 

the power consumption is made up of two parts, the dynamic power and static power. The dynamic power is 

entirely related to the implemented architecture and is calculated by adding the power of logic gates, signals, 

and the system clock. While the static power is practically unrelated to the architecture used and is mostly 

caused by the leakage current of the transistors when the system is powered on but not configured. Figures 8 

shows the amount of the static and dynamic power consumed for the median based architecture, where 

Figure 8(a) shows the consumed power for the case of window size of 16 sample, Figure 8(b) for the window 

size of 32 sample, Figure 8(c) for the window size of 64, and Figure 8(d) for window size of 128, while the 

data for the design with 256 is not available because it couldn’t be implemented with selected FPGA kit, 

Figure 9 shows the amount of the static and dynamic power consumed for the RMS based architecture, where 

Figure 9(a) shows the consumed power for the case of window size of 16 sample, Figure 9(b) for the window 

size of 32 sample, Figure 9(c) for the window size of 64, Figure 9(d) for window size of 128 and Figure 9(e) 
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for the window size of 64, also the consumed power for the P84 based architecture is shown in Figure 10, 

with widow size of 16 in Figure 10(a), window size of 32 in Figure 10(b), window size of 64 in Figure 10(c), 

window size of 128 in Figure 10(d), and window size of 256 in Figure 10(e). Table 6, summarize the 

consumed power for the three studied algorithms. 

 

 

Table 6. The consumed power of the three tested algorthim with different window size 
Window size  Power type Median based architecture RMS based architecture P84 based architecture 

16 Dynamic  0.110 W 0.017 W 0.001 W 

Static  0.121 W 0.118 W 0.118 W 

32 Dynamic  0.324 W 0.017 W 0.001 W 

Static  0.122 W 0.118 W 0.118 W 

64 Dynamic  1.182 W 0.018 W 0.001 W 

Static  0.137 W 0.118 W 0.118 W 

128 Dynamic  2.905 W 0.019 W 0.001 W 

Static  0.187 W 0.118 W 0.118 W 

256 Dynamic  Data unavailable  0.023 W 0.001 W 

Static  0.118 W 0.118 W 

 

 

(a) (b) (c)

(d) (e)

Diagram unavailable 

 

(a) (b) (c)

(d) (e)

Diagram unavailable 

 
(a) (b) 

(a) (b) (c)

(d) (e)

Diagram unavailable 

 

(a) (b) (c)

(d) (e)

Diagram unavailable 

 
(c) (d) 

 

Figure 8. The consumed power by the architecture of median based method, (a) window size of 16, (b) 

window size of 32, (c) window size of 64, and (d) with window size of 128. 

 

 

3.4.  System speed  

The other aspect to be considered in the comparison is the maximum system speed at which it can 

operate. The maximum speed is decided by the time of the longer (critical) path of the system. That is, 

samples from the shorter path arrived at a node first and couldn't propagate forward until the samples from 

the longer path arrived, limiting the system's speed. 

The system clock is set to 100 MHz, in the development board used for the tests, (10 ns clock time 

(𝑇𝑠)). The Vivado design suite used to synthesis and analysis the tested system didn’t generate the maximum 

frequency directly, but it can be determined from the “Worst Negative Slack” (WNS) given in the timing 

report, as shown in (7) [26], [27]: 

 

𝑓𝑚 =
1

𝑇𝑠−𝑊𝑁𝑆
 (7) 
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where 𝑓𝑚 is the maximum frequency and 𝑇𝑠 is the system clock time. 

𝑊𝑁𝑆: is the worst negative slack or worst path slack. 

The 𝑊𝑁𝑆 can be any value (positive or negative). if the value of 𝑊𝑁𝑆 is positive, it indicates that 

the implemented system satisfies timing constraints. If 𝑊𝑁𝑆 value is negative, it indicates the system cannot 

be synthesised. Table 7 stated the speed of all the three architects with the different window size. 

 

 

(a) (b) (c)

(d) (e)

 

(a) (b) (c)

(d) (e)

 

(a) (b) 

 

(a) (b) (c)

(d) (e)

 

(a) (b) (c)

(d) (e)
 

(c) (d) 

 

(a) (b) (c)

(d) (e)
 

(e) 

 
Figure 9. The consumed power by the architecture of RMS based method, (a) window size of 16, (b) window 

size of 32, (c) window size of 64, (d) with window size of 128, and (e) with window size of 256. 

 

 

Table 7. System speed for the three assessed method with different window size 
Window size  Parameter  Median based architecture RMS based architecture P84 based architecture 

16 𝑊𝑆𝑁 7.662 ns 0.267 ns 2.197 ns 

Max. freq.  427 MHz 102 MHz 128 MHz 

32 𝑊𝑆𝑁 7.193 ns 0.518 ns 2.707 ns 

Max. freq.  356 MHz 105 MHz 137 MHz 

64 𝑊𝑆𝑁 7.424 ns 0.068 ns 2.343 ns 

Max. freq.  388 MHz 100 MHz 130 MHz 

128 𝑊𝑆𝑁 4.154 ns 0.484 ns 2.343 ns 

Max. freq.  171 MHz 105 MHz 130 MHz 

256 𝑊𝑆𝑁 Data unavailable 0.573 ns 2.484 ns 

Max. freq.  106 MHz 133 MHz 
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(a) (b) (c)

(d) (e)

 

(a) (b) (c)

(d) (e)

 

(a) (b) 

  

(a) (b) (c)

(d) (e)

 

(a) (b) (c)

(d) (e)

 
(c) (d) 

 

(a) (b) (c)

(d) (e)

 
(e) 

 

Figure 10. The consumed power by the architecture of P84 based method, (a) window size of 16, (b) window 

size of 32, (c) window size of 64, (d) with window size of 128 and (e) with window size of 256 

 

 

4. COMPARISON AND DISCUSSION 

In the previous section, a full comparison is made between these three techniques for different 

criteria. From that comparison, the following points can be noticed; 

− For output accuracy, both Median based and RMS based methods show comparative results and 

outperform the P84 methods.  

− Median based method shows better results with windows size of 32 for all signals tested with different 

noise levels, while in RMS based method the best performance fluctuates between window size 32 and 

64 in most cases. So, it is clear that there is no much benefit in going for larger windows size. While in 

P84 based method, windows or frame size of 16 sample get the larger score, and that clear since the 

window or frame size should be changed more frequently to catch the changes in noise levels.  

− The utilized hardware is lower in the P84 based method, while, median based method utilized the most 

resources to some extent, that couldn't be synthzed. 

− It should be noticed that increase in window size for median based, caused the amount of hardware 

resources to increase exponentially, unlike the other two systems in which there is no noticeable 

increase in the hardware resources used. 
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− For the speed criteria, the median based is the fastest in speed among the other, since its structure 

containing only simple operation (comparator only). 

− Even though a lot of advancement has been made in the design of FPGA chips in the last few decades, 

the process of multiplication remains difficult to implement and requires specific DSP units that fill a 

large silicon chip area. In the new FPGA devices, there are only a few of these DSP units, e.g., DSP48. 

Because the RMS based algorithm needs to figure out the square and square root of the input data, this 

method needs to utilize the DSP unit, which makes it the slowest of the systems we tried. 

− In both RMS based and P84 techniques, the consumed power approximately independent on the size of 

the window, while in median based method, the power consumption increases exponentially as the size 

of the window increase, giving P84 a clear edge over the other two methods. Indeed, it is clear that P84 

outperforms the other two methods in term of the consumed power.  
− Another significant factor to consider is the ease with which the size of the window can be changed. 

Regarding the architectures of the three implemented algorithms, it is clear that the window size can 

easily be changed in the P84-based technique by varying the counter limit, while the entire sorting 

network needs to be changed in the median-based algorithm to change the window size, making it very 

difficult to change the size of the window. That gives an advantage to the P84 algorithm over the two 

other methods. 

 

 

5. CONCLUSION 

In this paper, we investigate the design and implementation of three methods that are most widely 

used in estimating the standard deviation in noisy signals. The comparison shows the advantage and 

disadvantage of each method, without deciding the favorability of method over other, because it is assumed 

that the application needs are the best decider for the most suitable, such as speed, low power or low 

resources is wanted. For example, the medical applications need low power device without concerning the 

speed, while in applications such as digital communication it desired speed over consuming power and 

resources used. 
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