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 Hyperspectral image classification (HSIC) on remote sensing imaging has 

brought immersive achievement using artificial intelligence technology. In 

deep learning convolution neural networks (CNN), 2D-CNN, and 3D-CNN 

methods are widely used to classify the spectral-spatial bands of hyperspectral 

images (HSI). The proposed Hybrid 3D-CNN (H3D-CNN) model framework 

for deeper features extraction predicts classification accuracy in supervised 

learning. The model reduces the narrow gap between supervised and 

unsupervised learning and the complexity and cost of the previous models. 

The HSI classification analysis is carried out on real-world data sets of Indian 

pines Salinas datasets captured by Airborne visible, infrared imaging 

spectrometer (AVIRIS) sensors that performed superior classification 

accuracy results. 
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1. INTRODUCTION  

Hyperspectral imaging (HSI) research has exploded in recent years due to its wide range of 

applications. Remote sensing takes digital images with hundreds and thousands of tiny spectral bands with 

spectral fingerprints ranging from visible to near-visible wavelengths [1]. Remote sensors produce 

spectrometers images that are rich in spectral and spatial information, and also images are in the form of data 

cubes with multi-resolution spectral-spatial information of hyperspectral cubes Figure 1 [2], the HSI has been 

widely applied in agriculture, environmental studies, biological, fraud detection, astronomy, and mineral 

exploration [3] over the recent decades. Instead of characteristics directly connected to the pixels, each pixel 

in HSI relies on features from a tiny area surrounding the pixels. In the context of supervised training and 

classification [4], a variety of methods have been used for HSI data classification multinomial logistic 

regression [5], support vector machine (SVM), distance measures, K-nearest neighbor, and maximum 

likelihood [6]. 

Methods of spectral-spatial categorization can be into two categories spectral and spatial contextual 

information. Advanced spatial extraction is achieved using morphological profiles [7], entropy [8], attribute 

profiles [9], and low-rank representation [10]. Then, using dimensionality reduction (DR), these altered spatial 

data are coupled with spectral features to conduct pixes-wise classification. Furthermore, the Hopfield neural 

network in [11] has collected hyperspectral data in remote sensing images. The presentation of HSI data in 3D 

cubes leads to many feature cubes carrying crucial information on signal space [12], spectrum, and combined 

spatial/spectrum correlation, all of which are necessary for improved perforation. 

According to the existing literature, the convolution neural network has gained popularity due to 2D-

CNN and 3D-CNN in HSI [13]. Previous models are used for spectral learning, while subsequent models learn 
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local spatial features at each strip [14]. These models exhibit a weakness in feature extraction when applied to 

multi-dimensional data cubes. The 3D-CNN approach was overly complex due to the calculation and 

classification accuracy. Non-linear problems can use kernel-based methods as well. By mapping the original 

data onto a higher-dimensional Hilbert space, kernel techniques convert non-linear problems to linear 

problems. 

In this work, I propose a novel deep learning method for providing a relatively general and 

comprehensive overview of the existing methods. The motivation of our work is the classification of a 

hyperspectral image called a hybrid 3D-CNN with enhanced features, which considers both spectral and spatial 

information. The silent feature of the proposed H3D-CNN model is efficient in hyperspectral image computing 

and accurate in classification.2D-CNN and 3D-CNN alone are not able to extract accuracy features from the 

HSI [15], volumetric data with multi-dimensional features [16], [17]. So, this motivates me to propose the 

Hybrid 3D-CNN. The resulting deep classifier model is trained in an end-to-end. At the same time, the Hybrid 

3D-CNN parameters are supervised learning based with a limited number of training samples to increase the 

accuracy with large testing samples. We compared our model with different real-world HSI datasets. 

 

 

 
 

Figure 1. Hyperspectral data cube and spectral-spatial feature 

 

 

2. PROPOSED METHOD 

2.1.  Novelty of the method 

Convolution neural network is popular for machine learning methods in supervised learning used for 

the classification of hyperspectral images for feature extraction inspired the hybrid model for classification 

accuracy. We go over the publically available datasets compared with different methods of the Hybrid 3D 

convolution neural network (H3D-CNN), based classification technique in-depth in this part and how to 

educate and evaluate this system on hyperspectral images. The model inspired the state-of-the-art machine 

learning models for classification of the real-world datasets. Deep learning (DL) techniques are quite capable 

to represent the extraction of feature information automatically. 

 

2.2.  Architecture model evolution 

The most accessible approach to retrieve data from an input image is to use a convolution neural 

network (CNN). When using a 2D-CNN on a hyperspectral image containing hundreds of spectral dimensions, 

the convolution of each input using kernels might increase the computation cost. As a result, dimensional 

suppression is used to lower dimensionality before using 2D-CNN to extract features and classification [18]. 

The principal component analysis (PCA) extracts features from the hyperspectral image to reduce the 

dimension before 2D-CNN for in-depth features of each pixel with labels [19]. The high-level features are first 

extracted with the PCA algorithm retaining the spatial information for further classification and loss of spectral 

information in the 2D-CNN [20]. The PCA reduces the spectral band of the data cube with C € QWxHxD where 

‘C’ abide the load, ‘W’s the measurement (width),’ H’ is the height and ‘D’ is the dept out of the spectrum/band, 

after the reduction of the input data it is X € QWxHxD where ‘X’ is the new modified data input to the convolution 

neural network with reduced dimensions without losing the spatial information [21]. The data cube is defined 

as little overlapping patches of the scene, and the truth marks determine the electromagnetic frequency reflected 

in class labels.  

In 2D-CNN, the activation function of the values (x, y) at the jth spatial location at facet maps 

consisting of ithply is described as (1) in [22].  

 

𝜈𝑖,𝑗
𝑥,𝑦

= 𝜑(𝑏𝑖,𝑗 + ∑ ∑ ∑ 𝜔𝑖,𝑗,𝜏
𝜎,𝜌𝛿

𝜎=−𝛿
𝛾
𝜌=−𝛾

𝑑𝑙−1
𝜏=1 ∗ 𝜈𝑖−1,𝜏

𝑥+𝜎,𝑦+𝜌
) (1) 
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Where ‘bi,j’ bias at ‘jth’ feature map of the ‘ith ‘layer, ‘ϕ’ is the activation function,dl-1 endures the 

feature map for the (l-1)th layer, and the intensity of the kernel is wi,j along with the jth feature maps for the ith 

layer ᵞ+1 is the width of the kernel δ+1 the height of the kernel and wi,j is the weight parameters of ith layer and 

jth feature map. 

As a result, 3D kernels are employed in 3D convolution procedures to concurrently extract spectral 

and spatial information for hyperspectral picture categorization [23]. The required information is convolved 

using learnable 3D kernels 3x3 for each layer in hybrid 3D-CNN [24]. The proposed model with two 

convolution layers yields the best result. The output of the linear classified layers activated at the activation 

function is fed to SoftMax [25] to generate the classification image maps. 

The 3D-CNN patches split the segments with the filters one in layer-I with a 2x2x9 complex neural 

network with the stride of ’2’ and reduce the dimensionality, In layer-II, III in Figure 2. the filters are 3,5 with 

the stride of ‘1’’2’, respectively. In spatial feature mapping, it is convoluted in the fully connected layer, and 

SoftMax generates the feature maps with reduced predicted output. 

 

𝜈𝑖,𝑗
𝑥,𝑦,𝑧

= 𝜑(𝑏𝑖,𝑗 + ∑ ∑ ∑ ∑ 𝜔𝑖,𝑗,𝜏
𝜎,𝜌,𝜆𝛿

𝜎=−𝛿
𝛾
𝜌=−𝛾

𝜂
𝜆=−𝜂

𝑑𝑙−1
𝜏=1 ∗ 𝜈𝑖−1,𝜏

𝑥+𝜎,𝑦+𝜌,𝑧+𝜆
) (2) 

 

3D-CNN activation function and the spatial value position at x, y, z in the jth feature map of the ith 

layer noted as vi,j
x,y,z in (2), the parameters of CNN: such as bias ‘b’ weights ‘w’ are trained using the supervised 

approach [26]. The 3D Convolution Neural Network extracts the spatial and spectral, but it increases the 

computation and complexity [27], also acquiring the advantage of the involuntary element knowledge of 2D 

and 3D convolutional neural networks. We proposed the fusion spectral convolutions. The 3D-CNN kernel 

derives spatial and spectral information continuously from HIS datasets in Figure 2.  

HSI is volumetric data that has spectral and spatial data with deep, complex dimensions in 3D- 

CNN [28]. So, we propose the Hybrid 3D-CNN model for deep dimensional spectral analysis and spatial 

information. The data cube is segmented into the spectral-spatial, applying the PCA to reduce the 

dimensionality redundancy.  

 

 

 
 

Figure 2. Hybrid 3D-CNN model 

 

 

2.3.  Training model 

In convolution neural network HSI samples for ‘N’ linear different training sample [(Xi, Yi)]i-1
N, where 

Xi=[xi1……xid]T∈ ℝd is the spectral feature of the training samples and Yi=[yi1……yid]T∈ ℝd label information 

corresponding to samples Xi, hidden nodes represented as ‘L.’ 

 

𝑓(𝑥) =  ∑𝐿𝛽𝑔(𝑤𝑖. 𝑥𝑗 + 𝑏𝑖) = Yj (I)  

 

Where j=1, wi=[wi1…..wid]T weight vector linking the ith hidden layer ‘bi’bias of the ith hidden layer,β= [βi1…. 

βim]T hidden output layer of the neural. There exist realization of the activation function such as sigmoid and 

radial basis function. 

 

𝑔(𝑤, 𝑏, 𝑥) = 1/(1 + 𝑒(−(𝑤𝑥+𝑏)))  

 

Where equation I is written as H β = Y, Where β = [β1….βL]Tε RLxm, Y = [Y1…..YN]T ε RNxm. 

The output of the hidden layer is the combinational coefficient, which balances the spatial and spectral 

information. The parameters ‘µ’ are crucial in checking the reliability of hyperspectral image categorization of 

the picture. 

 

Ʌ =  µ𝐻𝑠 + (1 − µ)𝐻𝑤  
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Where Hs&Hw are the output of the hidden layer corresponding to the spatial feature and spectral feature for 

computation, due to the output of the multi-hidden layer in the convolution network of the output is fed with 

the SoftMax to predict the feature of the classification accuracy. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Data depiction 

The sensors collect reflective electromagnetic spectra with narrow spectral bands, this reflective 

portion creates a unique spectral signature for the classification of objects Our 3D-CNN model can adopt the 

3D structure against the start-of-the-art deep learning methods for HIS classification. The publicly available 

three datasets were used for result analysis and classification. 

 

3.1.1. AVIRIS Indian pines dataset 

The dataset of Indian pines was collected aside from airborne in Northwest parts of Indian, USA. It 

has 16 labeled classes, 10249 samples, and 220 spectral bands. The data set ranges from 0.2 to 2.4 μm 

wavelength, with a narrow bandwidth. Each scene has 145×145 components with a 20 m spatial declaration. 

Among 220 bands, 20 noise bands were pre-processed during training [29]. The task of creating ground truth 

and pixel labeling is time-demanding, and few samples are used for research. 

 

3.1.2. Pavia University (PU) dataset:  

Pavia university’s images were captured over north Italy. There are 9 design argument precision in 

the midst of 610 × 610 components, each with a 1.3 m range dimensional declaration of each pixel and removed 

water-absorbed bands, and the remaining 103 bands are used for training and testing [30]. After removing the 

noisy and other bands 9 classes have 42776 samples in the dataset used for training. The dataset mainly reflects 

the urban landscape information. 

 

3.1.3. Salinas dataset: 

The AVIRIS sensor was captured in Salinas Valley, California, USA, with a spectral spectrum of 

512×217 components, along 224 phantom bands. The statistics from Salinas have a pixel declaration of 3.7 

meters and 16 classes. 

 

3.1.4. Kennedy space centre (KSC) dataset 

AVIRIS sensors have collected data over the KSC Florida, with 224 strings of 10 nm measurement 

bands with a core vision of 400-2500 nm, an elevation of around 20 km, and a dimensional decision of 

approximately 18 m. The records analysis involved 176 posse, elimination of low SNR bands, and water 

absorption bands. 

 

3.2.  Model testing results analysis 

Outcomes of the Indian pines scene: The H3D-CNN model in Figure 1 is used to classify each pixel 

of the 7x7x200 patch. The information included 200 spectral bands handled as channels after the 2D and 3D 

convolution layers of size 3x3. The step is set to 2,2 in the first function, resulting in hidden layers created from 

the first to the last stride in the convolution network layers are 5x5,3x3, and 1x1, respectively. Finally, the 

classified 16 labels are deployed in the image map using SoftMax. The processed model includes the Adam 

optimizer cross-entropy for the loss function and Relu activation function for the different kernel sizes of the 

best 3x3. The four layers in the convolution network with different filters of sizes 8,16, and 32, respectively, 

were used. 

The model of Hybrid 3D-CNN is depicted in Figure 2, Table 1 report the different methods used in 

the different datasets at the different convolution layers Table 1 resemble the results of different methods, the 

principal component analysis (PCA) lowers the dimensionality of the database without losing spatial data, 

while the SVM classifier in minimizes the dimensionality of the database without losing spectral information 

and ignores the spatial and spectral context. The second is that 2D-CNN achieves a comparable performance 

then SVM and the next is the 3D-CNN method performed well over the other methods in and finally the 

H3DCNN method achieved the best average accuracy. In Table 2 The kappa assesses the narrowly categorized 

cases for the model learning, matched with the actual truth and classified maps, regulating the accuracy with 

different methods and the average accuracy (AA) and overall accuracy (OA) for different methods. Figure 3 

and Figure 4 show the classified outcomes for the IP dataset and the SA dataset, respectively, and the accuracy 

of each class label is presented in the Table 1. 
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Table 1. Classification accuracy of Indian Pines, Salinas dataset comparisons 
S.NO Class 

Labels 

No. 

Samples 

Indian_ Pines Accuracy Class 

Labels 

No. 

Samples 

Salinas DS Accuracy 

   H3D-

CNN 

3D-

CNN 

2D-

CNN 

SVM   H3D-

CNN 

3D-

CNN 

2D-

CNN 

SVM 

1 Alfalfa 46 88.90 85.71 71.72 85.71 Brocoli-

green-

weeds-1 

804 100 97.50 99.50 99.83 

2 Corn-notill 1428 92.11 96.46 95.85 86.82 Brocoli-

green-

weeds-2 

1490 100 99.46 99.82 100 

3 Corn-mintill 830 96.08 97.13 95.90 86.12 Fallow 790 100 97.80 98.31 100 

4 Corn 237 97.90 98.55 73.91 88.40 Fallow-

rough-

plow 

558 99.73 97.13 97.61 99.04 

5 Grass-

pasture 

483 87.33 97.90 97.20 95.10 Fallow-

smoth 

1071 99.85 98.80 98.50 99.75 

6 Grass-trees 730 99.82 97.68 96.31 98.61 Stubble 1584 100 98.91 99.75 100 

7 Grass-

pasture-

mowed 

28 81.81 100 100 75.00 Celery 1432 99.75 96.55 98.42 99.91 

8 Hay-

windrowed 

478 100 99.30 100 98.60 Grapes-

untrained 

4509 95.80 97.28 99.47 92.69 

9 Oats 20 100 100 100 100 Soil-

vinyard-

develop 

2481 99.97 99.84 99.89 100 

10 Soybeans-

notill 

972 90.23 98.26 97.20 87.19 Corn-

sensed-

green-

weeds 

1311 98.24 98.78 99.70 99.08 

11 Soybean-

mintill 

2455 97.80 98.77 99.04 91.01 Lettuce-

romaine-

4wk 

427 99.64 99.06 99.37 100 

12 Soybean-

clean 

593 98.10 97.15 95.45 94.84 Lettuce-

romaine-

5k 

771 100 99.14 98.09 100 

13 Wheat 205 88.96 96.72 100 100 Lettuce-

romaine-

6k 

366 100 90.55 96.00 99.64 

14 Wood 1265 99.02 99.46 98.94 96.81 Lettuce-

romaine-

7k 

428 98.94 93.46 96.89 98.75 

15 Buildings-

Grass-Trees-

Drives 

386 96.08 93.80 94.73 81.57 Vinyard-

untrained 

2907 95.23 97.47 99.22 82.61 

16 Stone-steel-

Towers 

93 97.03 100 100 100 Vinyard-

vertical-

trellis 

723 99.58 99.06 99.41 99.82 

  10249      54129     

AA   97.53 97.31 96.37 85.23  AA  99.85 98.65 98.90 97.37 

OA   98.29 98.92 97.08 86.55  OA  99.67 99.08 98.96 94.95 

 

 

Table 2. Classification accuracy of different methods 
Methods Indian pines dataset Salinas dataset 

OA AA Kappa OA AA Kappa 

SVM 85.30 79.03 83.10 92.95 94.60 92.11 

2D-CNN 89.48 86.14 87.96 97.38 98.84 97.08 

3D-CNN 91.10 91.58 89.98 93.96 97.01 93.32 

H3D-CNN 98.30 96.53 98.06 99.67 99.85 99.64 

 

 

The training and validations of the datasets were analyzed at a loss, and accuracy compared with 50 

to 100 epochs of the datasets in the fully connected layersr1 and layer 2. We used 256 units for batch size for 

an activation dropout rate of 0.4%. For the Indian pines and Salinas datasets, all the analyses are in Table 2 

display the findings for several techniques in terms of AA, OA, and kappa coefficient. The performance of the 

multiple databases, and the spectral and spatial information of the 3D-CNN and the 2D-CNN, are comparable. 

The Indian pines and Salinas classification map of the hyperspectral image are shown in Figure 3 and 

Figure 4. We used SVM, 2D-CNN, 3D-CNN, [30], and H3D-CNN methods. The quality of the H3D-CNN 

classified image is better than the other models. The spectral accuracy of class label information of different 

datasets shown in Figure 5.  
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The confusion matrix of the Salinas classified hyperspectral image is shown in Figure 6. The accuracy 

and loss convergence of 50 epochs of training and validation are shown in Figure 7. The computation efficiency 

of the H3D-CNN in terms of the training and testing with the window size 25x25 is the best outcome of spatial 

dimensions compact to model with the 10% of the samples used for the summarization for the best results.  

We have trained our model using Keras, Scikit, and Tensorflow, and it is trained on a single AMD 

Radeon 1.60 GHz 4GB GPU and Google Colab. We have compared our results with SVM, 2D-CNN, 3D-

CNN, and H3D-CNN. Table 1 summarises the accuracy and performance of the Indian Pines (IP), Pavia 

University (PU), and Salinas (SA) datasets. The grades of AA and OA used for altered approaches precision 

adjacent to an evaluation of instruction and test outcomes are 98.53 %(AA), 98.29 %(OA) for Indian Pines, 

and 99.67% (AA), 99.85% (OA) for Salinas data with 50 epochs for data training. We have illustrated this in 

Table.2, the spatial performance of the H3D-CNN model with 19 x 19 spatial dimensions are used for the 

proposed model, and computed the results with training data only10% of the total samples. Where the proposed 

model still outperforms other methods. 

 

 

 
 

Figure 3. The Indian Pines classification SVM, 2D-CNN, 3D-CNN, H3D-CNN predicted map with labels 

 

 

 
 

Figur 4. Salinas classification SVM, 2D-CNN, 3D-CNN, H3D-CNN predicted map with labels 
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Figure 5. Indian Pines, Salinas accuracy 

 

 

 
 

Figure 6. Confusion matrix of the salinas dataset 

 

 

  
 

Figure 7. Salinas datasets training and validation loss and accuracy 
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4. CONCLUSION 

This paper proposes a HIS classification architecture with a reduced-dimensional Hybrid 3D-CNN 

model, demonstrating the overall performance for data training and research. The H3D-CNN framework 

suggested the exclusive use of classified spatial and spectral knowledge for HSI analysis. In future studies, we 

intend to explore theoretically more powerful HSI classification approaches based on H3D-CNN that can be 

used for unlabelled samples. Untreated samples are much simpler to access in HSI than labeled samples. To 

allow better use of such unmarked samples, including in the organized categorization process relating to 3D-

CNN files, the 3D convolution spectral classification method based on 3D-CNN wishes to be enhanced. 

 

 

REFERENCES 
[1] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. M. Nasrabadi, and J. Chanussot, “Hyperspectral remote sensing 

data analysis and future challenges,” IEEE Geoscience and Remote Sensing Magazine, vol. 1, no. 2, pp. 6–36, Jun. 2013, doi: 

10.1109/MGRS.2013.2244672. 

[2] M. Chi and L. Bruzzone, “Semisupervised classification of hyperspectral images by SVMs optimized in the primal,” IEEE 

Transactions on Geoscience and Remote Sensing, vol. 45, no. 6, pp. 1870–1880, Jun. 2007, doi: 10.1109/TGRS.2007.894550. 

[3] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sensing images with support vector machines,” IEEE 

Transactions on Geoscience and Remote Sensing, vol. 42, no. 8, pp. 1778–1790, Aug. 2004, doi: 10.1109/TGRS.2004.831865. 

[4] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic 

regression and Markov random fields,” IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 3, pp. 809–823, Mar. 

2012, doi: 10.1109/TGRS.2011.2162649. 

[5] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Semisupervised hyperspectral image classification using soft sparse multinomial logistic 

regression,” IEEE Geoscience and Remote Sensing Letters, vol. 10, no. 2, pp. 318–322, Mar. 2013, doi: 

10.1109/LGRS.2012.2205216. 

[6] Y. Zhong and L. Zhang, “An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing 

imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 3, pp. 894–909, Mar. 2012, doi: 

10.1109/TGRS.2011.2162589. 

[7] H. Jiao, Y. Zhong, and L. Zhang, “Artificial DNA computing-based spectral encoding and matching algorithm for hyperspectral 

remote sensing data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 10 PART2, pp. 4085–4104, Oct. 2012, 

doi: 10.1109/TGRS.2012.2188856. 

[8] A. Santara et al., “Bass net: Band-adaptive spectral-spatial feature learning neural network for hyperspectral image classification,” 

IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 9, pp. 5293–5301, Sep. 2017, doi: 

10.1109/TGRS.2017.2705073. 

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the 

IEEE, vol. 86, no. 11, pp. 2278–2323, 1998, doi: 10.1109/5.726791. 

[10] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based classification of hyperspectral data,” IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 6, pp. 2094–2107, Jun. 2014, doi: 

10.1109/JSTARS.2014.2329330. 

[11] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings of the IEEE Computer Society Conference on Computer Vision 

and Pattern Recognition, Jun. 2015, vol. 07-12-June-2015, pp. 1–9, doi: 10.1109/CVPR.2015.7298594. 

[12] W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, “Deep convolutional neural networks for hyperspectral image classification,” 

Journal of Sensors, vol. 2015, pp. 1–12, 2015, doi: 10.1155/2015/258619. 

[13] Z. Zuo et al., “Learning vontextual dependence with convolutional hierarchical recurrent neural networks,” IEEE Transactions on 

Image Processing, vol. 25, no. 7, pp. 2983–2996, Jul. 2016, doi: 10.1109/TIP.2016.2548241. 

[14] Z. Zhong, J. Li, Z. Luo, and M. Chapman, “Spectral-spatial residual network for hyperspectral image classification: A 3-D deep 

learning framework,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 2, pp. 847–858, Feb. 2018, doi: 

10.1109/TGRS.2017.2755542. 

[15] L. Fang, Z. Liu, and W. Song, “Deep hashing neural networks for hyperspectral image feature extraction,” IEEE Geoscience and 

Remote Sensing Letters, vol. 16, no. 9, pp. 1412–1416, Sep. 2019, doi: 10.1109/lgrs.2019.2899823. 

[16] M. He, B. Li, and H. Chen, “Multi-scale 3D deep convolutional neural network for hyperspectral image classification,” in 

Proceedings - International Conference on Image Processing, ICIP, Sep. 2018, vol. 2017-September, pp. 3904–3908, doi: 

10.1109/ICIP.2017.8297014. 

[17] S. H. S. Basha, S. Ghosh, K. K. Babu, S. R. Dubey, V. Pulabaigari, and S. Mukherjee, “RCCNet: An efficient convolutional neural 

network for histological routine colon cancer nuclei classification,” in 2018 15th International Conference on Control, Automation, 

Robotics and Vision, ICARCV 2018, Nov. 2018, pp. 1222–1227, doi: 10.1109/ICARCV.2018.8581147. 

[18] V. K. Repala and S. R. Dubey, “Dual CNN models for unsupervised monocular depth estimation,” in Lecture Notes in Computer 

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11941 LNCS, 2019, 

pp. 209–217. 

[19] C. Nagpal and S. R. Dubey, “A performance evaluation of convolutional neural networks for face anti spoofing,” in Proceedings of 

the International Joint Conference on Neural Networks, Jul. 2019, vol. 2019-July, pp. 1–8, doi: 10.1109/IJCNN.2019.8852422. 

[20] X. Kang, B. Zhuo, and P. Duan, “Dual-path network-based hyperspectral image classification,” IEEE Geoscience and Remote 

Sensing Letters, vol. 16, no. 3, pp. 447–451, Mar. 2019, doi: 10.1109/LGRS.2018.2873476. 

[21] Y. Yu, Z. Gong, C. Wang, and P. Zhong, “An unsupervised convolutional feature fusion network for deep representation of remote 

sensing images,” IEEE Geoscience and Remote Sensing Letters, vol. 15, no. 1, pp. 23–27, 2018, doi: 10.1109/LGRS.2017.2767626. 

[22] W. Li, C. Chen, M. Zhang, H. Li, and Q. Du, “Data augmentation for hyperspectral image classification with deep CNN,” IEEE 

Geoscience and Remote Sensing Letters, vol. 16, no. 4, pp. 593–597, Apr. 2019, doi: 10.1109/LGRS.2018.2878773. 

[23] W. Song, S. Li, L. Fang, and T. Lu, “Hyperspectral image classification with deep feature fusion network,” IEEE Transactions on 

Geoscience and Remote Sensing, vol. 56, no. 6, pp. 3173–3184, Jun. 2018, doi: 10.1109/TGRS.2018.2794326. 

[24] G. Cheng, Z. Li, J. Han, X. Yao, and L. Guo, “Exploring hierarchical convolutional features for hyperspectral image classification,” 

IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 11, pp. 6712–6722, Nov. 2018, doi: 

10.1109/TGRS.2018.2841823. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Hyperspectral image classification using Hyb-3D convolution neural network … (Easala Ravi Kondal) 

303 

[25] J. M. Haut, S. Bernabé, M. E. Paoletti, R. Fernandez-Beltran, A. Plaza, and J. Plaza, “Low-high-power consumption architectures 

for deep-learning models applied to hyperspectral image classification,” IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 

5, pp. 776–780, May 2019, doi: 10.1109/LGRS.2018.2881045. 

[26] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extraction and classification of hyperspectral images based on 

convolutional neural networks,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 10, pp. 6232–6251, Oct. 2016, 

doi: 10.1109/TGRS.2016.2584107. 

[27] X. Mei et al., “Spectral-spatial attention networks for hyperspectral image classification,” Remote Sensing, vol. 11, no. 8, 2019, doi: 

10.3390/rs11080920. 

[28] L. Mou, P. Ghamisi, and X. X. Zhu, “Unsupervised spectral-spatial feature learning via deep residual conv-deconv network for 

hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 1, pp. 391–406, Jan. 2018, 

doi: 10.1109/TGRS.2017.2748160. 

[29] M. E. Paoletti, J. M. Haut, R. Fernandez-Beltran, J. Plaza, A. J. Plaza, and F. Pla, “Deep pyramidal residual networks for spectral-

spatial hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 2, pp. 740–754, 

Feb. 2019, doi: 10.1109/TGRS.2018.2860125. 

[30] M. E. Paoletti et al., “Capsule Networks for Hyperspectral Image Classification,” IEEE Transactions on Geoscience and Remote 

Sensing, vol. 57, no. 4, pp. 2145–2160, Apr. 2019, doi: 10.1109/TGRS.2018.2871782. 

 

 

BIOGRAPHIES OF AUTHORS  

 

 

Easala Ravi Kondal     is received his M.Tech. in Computer Science & 

Engineering from Jawaharlal Nehru Technological University, Hyderabad, India, and he is 

pursuing a Ph.D. from VIT-AP University Amaravati, Andhra Pradesh, India, from 2017. 

Research area interests are Digital Image processing, computer vision, and Machine 

Learning. He can be contacted at email: easala.ravi@vitap.ac.in. 

  

 

Dr. Soubhagya Sankar Barpanda     is an Associate Professor at the Department 

of Computer Science & Engineering, VIT-AP University, Amaravati, India. He received his 

doctoral degree from the Department of Computer Science & Engineering, National Institute 

of Technology Rourkela, India. He has completed his M. Tech. Degree from the same 

institute. His research interests include biometric security, Digital Image processing, 

computer vision, and Machine Learning. He can be contacted at email: 

soubhagya.barpanda@vitap.ac.in. 

 

https://orcid.org/0000-0002-6413-1953
https://orcid.org/0000-0002-5966-7198

