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 It is critical for many countries to ensure public safety in detecting and 

identifying threats in a night, commercial places, border areas and public 

places. Majority of past research in this area has focused on the use of image-

level categorization and object-level detection techniques. As an X-ray and 

thermal security image analysis strategy, object separation can considerably 

improve automatic threat detection when used in conjunction with other 

techniques. In order to detect possible threats, the effects of introducing 

segmentation deep learning models into the threat detection pipeline of a large 

imbalanced X-ray and thermal dataset were investigated. With the purpose of 

boosting the number of true positives discovered, a faster regional 

convolutional neural network (R-CNN) model was trained on a balanced 

dataset to identify probable hazard zones in X-ray and thermal security 

pictures. In order to get the final results, we combined the two models i.e faster 

R-CNN with Mask RCNN into a single detection pipeline using the transfer 

learning technique, which outperforms baseline and end-to-end instance 

segmentation methods using less number of the practical dataset, with mAPs 

ranging from 94.88 percent to 91.40 percent helps in detecting the person with 

guns, knives, pliers to avoid cross border threats. 
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1. INTRODUCTION 

Thermal imaging and X-ray imaging are commonly employed in public and border areas to keep them 

safe [1]. To complete the time-consuming and complex work of detecting risks in X-ray and thermal security 

images, it is necessary to create algorithms that aid human inspectors in locating threats in X-ray and thermal 

security images deployed at border areas. Deep learning has lately outperformed all prior systems for automatic 

threat recognition in X-ray and thermal security pictures, becoming the industry's most extensively used 

method with the highest accuracy. The most common way for detecting threats in X-ray and thermal security 

photographs is to train deep learning models on real-world data. X-ray and thermal security images, on the 

other hand, lack the fine detail found in nature photography and have a restricted color spectrum, as well as 

low contrast and roughness. The presence of object overlap in these pictures distinguishes them, posing a 

challenge to deep learning models since object overlap increases intra-class differences as discussed in [2]. 

Because each pixel represents a muted radiation intensity that may be viewed in an image, pixels in security 

images convey information about object overlap. In X-ray and thermal security pictures, attenuation increases 

https://creativecommons.org/licenses/by-sa/4.0/
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in areas with many overlapping items or a limited number of non-overlapping high-density objects. Lighter 

areas of the picture, on the other hand, show less attenuation. To deal with items that overlap, X-ray and thermal 

security images can be analyzed pixel by pixel, as seen in the example below. Pixel-level deep learning, for 

example, has been a dominating paradigm in medical X-ray and thermal imaging. As a result, pixel-level 

analysis can provide similar advantages in efficiency and reliability in X-ray and thermal security applications 

as well as other X-ray imaging industries, such as structural materials inspection [3]. 

In picture segmentation, semantic segmentation and instance segmentation are two distinct challenges 

[4]. Using semantic segmentation, all pixels in an image may be allocated to one of the provided object classes. 

The instance segmentation technique uses an item's position and pixel-by-pixel classification to distinguish 

each distinct object instance in an image. Case segmentation appears to be the optimum task domain for 

detecting risks in X-ray and thermal security images since it allows for pixel-level localization of each possible 

threat. This job cannot be applied directly to X-ray or thermal security photos since each pixel must be classed 

as a single instance of an object, which is impossible. To cope with the problem of overlap, object separation, 

a more narrowly defined task domain, is required. This is a more sophisticated version of instance segmentation 

that employs numerous classes and labels. According to [5], this task domain was initially developed as a 

method for detecting possibly overlapping things in X-ray and thermal security images and then connecting 

the appropriate pixel values with each object's estimated atomic number. Disallowed products with non-organic 

material traits, such as a weapon, can be recognized using the form, texture, and other visual aspects as part of 

the object separation operation's initial stage. Despite the fact that explosives and illicit chemicals have no 

apparent features, this component may identify them. This is performed by identifying the constituent elements 

of the forbidden items. Using the whole object separation task domain, a generic solution for disallowed things 

in X-ray and thermal security pictures may be found. Deep learning can help with the first half of the object 

separation problem since annotations are readily available at an early level. There is still a lot of work to be 

done to finish the second phase of object separation, however, this knowledge is currently unavailable to the 

general public. 

As the public's knowledge of X-ray security photographs grew, a researcher established SIXray, the 

world's largest collection of X-ray and thermal security images that accurately portray the actual scene. Even 

if the overlapping of objects is revealed, the issue of imbalance in this dataset is also highlighted, which is an 

even more critical point. This is due to the fact that X-ray security screening detects threats far less frequently 

than it does normal objects, hence the data distribution of X-ray security images is substantially skewed towards 

the majority class or negative samples. Traditional models trained on imbalance datasets are heavily biased 

toward properly forecasting the majority class because of the overrepresentation of the majority class in the 

datasets. A substantial issue arises because the cost of misclassifying minorities in the majority or positive 

samples is significantly greater than the cost of misclassifying minorities in the majority or negative samples 

[6]. Oversampling the minority class or undersampling the majority class is the simplest method for balancing 

an unequal dataset. Even though the majority class is enormously more numerous, oversampling the minority 

group is ineffective and has been proved to be outperformed by other methods several times. Over- or under-

sampling of minority groups might result in an increase in false positives since the traditional model tries to 

match items from unobserved negative samples to any identified threats that have been under-sampled. It is 

critical to minimize the number of false positives when utilizing a detection algorithm in security systems to 

assist human inspectors [7]. An imbalanced, huge X-ray and thermal security image dataset, commonly known 

as a realistic dataset, was used to investigate how well the threat detection pipeline performed when the pixel-

level analysis was added to solve the first half of the object separation challenge. In order to get the most 

accurate results, we used a Faster-RCNN [8] trained on a well-balanced subset of the dataset. A DeepLabV3+ 

was trained to categorize each pixel in the probable hazard zones to reduce false positives. The two models 

were combined into a single detection method for the final predictions. To choose these models, we conducted 

a thorough review of the top object recognition and semantic segmentation models currently on the market. 

The following are the most significant contributions made by this paper: i) object separation has been 

restored as a separate task domain for X-ray security pictures, ii) a realistic X-ray security dataset has been 

segmented to solve the problem of class imbalance, iii) deep learning models have been evaluated on our own 

dataset, iv) to make the most of the annotation already available, a two-stage threat detection approach has 

been designed that separates detection and segmentation, v) Use of data augmentation technique to overcome 

the dataset issues, and vi) with the use of transfer learning, we can merge faster R-CNN and Mask R-CNN to 

minimize the complexity of training a model from scratch. 

According to the studies, the suggested technique outperformed both earlier baseline methods and an 

end-to-end instance segmentation method by a wide margin, achieving mean average precision (AP) of 94.88 

percent, 91.40 percent, and 89.52 percent across increasing imbalance ratios. The following parts make up the 

remainder of the paper: A summary of the relevant research is presented in section 2. The dataset that is skewed 

to one side is discussed in section 3. There are measures that will be used to evaluate the project in section 4. 
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The approach's methodology is examined in detail in section 5 of the proposed plan. According to the 

conclusions of the study, the experiments are detailed in section 6. This investigation's results are presented in 

section 7. 

 

 

2. RELATED WORK  

These findings are related to previous studies that detected threats using pixel-level analysis in X-ray 

and security threat photos, as well as works that addressed class imbalance in massive security threat images. 

The use of X-ray and threat images increased log space. Most genuine port security operations, as shown in 

the images below, do not necessitate multiple photographs of the same target item. Because their method 

resulted in incorrect segmentation, they shifted to predicting material qualities using atomic numbers. As a 

result of this limitation, their findings cannot be applied to other threats such as weapons. There has been no 

attempt since then to partially or completely solve the problem. Pixel-level X-ray and threat security imaging 

techniques were also evaluated. According to the researchers, machine learning algorithms can distinguish 

between organic and inorganic X-ray and threat security photos based on colour. To identify anomalies in an 

item, a two-stage segmentation technique was used. Identifying X-ray threats is similar to segmentation. 

Because semantic segmentation does not distinguish between duplicates, it cannot separate objects. 

Using a convolutional neural network (CNN), Miao et al. presented class-imbalance hierarchical 

refinement (CHR), which uses poorly connected objects from the feature map to improve threat detection in 

unbalanced X-ray security images. Study show discussed in [9] looked at the impact of employing a generative 

adversarial network (GAN) to learn how negative samples are distributed under the surface, in order to identify 

positive cases that differ from the learned distribution as anomalies. As a result of identifying anomalies in the 

dataset, we may train our classifier on an ideal dataset while simultaneously minimizing the number of false 

positives it produces. A variety of image-generating GANs was used to execute picture synthesis, and the 

results of this study [10] looked at the effect on the number of positive samples. When threat objects are 

separated from backgrounds that differ from positive samples when creating synthetic images by combining 

isolated threat objects and negative samples, the model is better able to generalise and suppress false positives 

for object-level threat detection, according to our findings. Early and late feature fusion is performed by 

concatenating features gathered earlier in the classification model as discussed in [11] which was achieved by 

taking the weighted total of losses determined at different stages of the classification model. Due to the unequal 

data, these components are combined into a dual branch network in order to take use of low-level spatial 

properties and eliminate bias. A combination of approaches, such as the tensor pooling method presented in 

[12], can be used to detect pixels of risk items utilizing preprocessed inputs. In this method, the image's 

contours are recovered and represented as a tensor representation at multiple orientations. When it came to 

threat detection, however, the authors were anxious about danger item separation or isolation since they 

neglected the problem of picture overlap in X-ray security images. They also have to name each variety of the 

threat category, which increases the cost of annotation by tenfold. 

 

 

3. DATASET 

More than 8,000 pictures in this collection are expected to contain at least one of the following tools: 

a handgun, a knife, or one of the following: a wrench, pliers, or scissors. SIXray has about 1 million images 

with at least one of the following objects labelled: a weapon, a knife, a wrench, pliers, and scissors. 

Furthermore, the dataset is divided into three subgroups, SIXray10, SIXray100, and SIXray1000, based on 

rising imbalance ratios between positive and negative values. Regardless, the collection only contains 

annotations at the picture and object levels, with no information on the source images. To complete the object 

separation method, pixel-level annotations are necessary. The ground truth masks in Figure 1 address semantic 

segmentation, instance segmentation, and object separation in Figure 1(a) annotations at the pixel level for 

various activities, Figure 1(b) images with overlapping items as input, Figure 1(c) ground truth labels for 

instance segmentation, and Figure 1(d) ground truth labels for object separation. An object's semantic group 

and object instance can only be defined by occlusion, however, a pixel can be classed under many instances of 

the same object. Both semantic and instance segmentation can benefit from occlusion. As a result, the object 

separation task's distinctive characteristic is the employment of ground truth labels in the supervised training 

process. Each object instance, as shown in Figure 2, has a unique binary mask for instance segmentation and 

object separation. Consider the instance segmentation task: objects near the bottom of the stack tend to lose 

more, if not all, of their pixel-wise labels to those above them, even if the complete item is visible in the image. 

Using these masks to train a model will clearly result in a model that ignores item overlaps and lacks 

information about the items at the bottom of a stacked hierarchy. 
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Figure 1. Annotations at the pixel level for various activities (a) image with overlapping items as input,  

(b) segmentation by semantics, (c) ground truth labels for instance segmentation, and (d) ground truth labels 

for object separation 

 

 

 
 

Figure 2. Each object instance's isolated binary ground truth labels for instance segmentation and object 

separation 

 

 

As a result, we manually categorised the photographs so that the ground truth mask includes all of the 

pixels that define each occurrence. This is why we choose to start with a random sampling of 2,500 images 

from the positive samples used in training subgroups and share our findings in order to inspire future research 

into this task domain to generate further labelled datasets that include humans with these threat-related 

elements. In the pixel-level labeled dataset, category 1 has more instances than any other category discussed 

in Figure 3. Researchers in [13] examine the dataset in great depth. When the data was analyzed, it was 

discovered that certain samples had been wrongly labeled as negative despite the fact that they clearly included 

hazards. The subject of machine learning frequently encounters labels that are noisy or broken. According to 

the findings, the percentage of datasets with incorrect labels might range from 8 to 38.5 percent [14]. An 

entirely new field of training approaches for models that can withstand noisy labels has grown out of this 

study's original focus. 

 

 

 
 

Figure 3. Distribution of the subset's occurrences 

 

 

4. EVALUATION MATRICES 

To select the best detection model, we evaluated performance using average precision [15], as (1). 

 

𝐴𝑝 = ∑ (𝑟𝑛+1 − 𝑟𝑛)𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟𝑛+1)𝑛=0   (1) 

 

Where 𝑟 is the recall and 𝑝𝑖𝑛𝑡𝑒𝑟𝑝 is the interpolated precision given by 𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟𝑛+1)=max (𝑟𝑛 + 1) p(er), 

wherein 𝑝 is the precision at 𝑒𝑟 and 𝑛 includes all of the recall points, and 𝑛 includes all of the recall points. 

The precision-recall curve's area under the curve (AP) is another way of defining 𝐴𝑝. The mean of the averages 

of the APs determined for each type of threat items is the mean of the mAPs. As one of the most widely used 

metrics for assessing the efficacy of identification and classification systems, this is a good place to start. 
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Other evaluation criteria, such as intersection-over-union (IoU), dice coefficient (DC), precision, and 

recall, are used to select the segmentation model, as (2)-(5). 

 

𝐼𝑜𝑈 =
|𝐴∩𝐵|

|𝐴∪𝐵|
  (2) 

 

𝐷𝐶 =
2|𝐴∩𝐵|

|𝐴|+|𝐵|
  (3) 

 

Where A and B are the segmentation masks for the target and anticipated segments. For each threat type item, 

intersection over union (IoU) is determined. The mean IoU for each threat item class is recorded, and the 

average is shown as the mean IoU, (mIoU). Another prominent metric for gauging the performance of modern 

segmentation algorithms is DC, which measures the amount of overlap between two segments and is similar 

to the IoU metric in that it measures the amount of overlap between two segments. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (5) 

 

True positives (TP), false positives (FP), and false negatives (FN) are the proportions of pixels in the 

masks that are assessed to be true positive, false positive, and false negative, respectively. Precision and recall 

may be calculated independently for each class as well as as a total for all classes taken together. In accordance 

with the benchmark standard established in [16] we once again used the 𝑚𝐴𝑃, described in (1), to compare our 

suggested method to previously published methods. We calculated the 𝐴𝑃 for each of the classes by ranking 

the classification predictions according to their confidence scores, and then calculated the average (𝑚𝐴𝑃) 

across all of the classes in order to report the overall performance of the models. 

 

 

5. PROPOSED METHOD 

5.1.  Model selection 

In this section, we preciously discuss research that has used deep learning algorithms to tackle critical 

computer vision tasks like object identification and proposed methodology that adopted and provides an in-

depth discussion of the model selection process as well as the whole threat detection pipeline with an accuracy 

of different models on the same dataset. Annotate image, object, and pixel data when building an end-to-end 

object separation model. X-ray security imaging lacks this data. Missing annotation data is discarded when 

training end-to-end models. Instead, we created a threat detection pipeline that separates object instance 

localization and segmentation mask prediction into separate models. Every sample in the dataset that only has 

picture and object-level annotations is used to train the object identification model, and every sample in the 

dataset is used to train the segmentation model. It is possible to designate the pixels associated with each 

individual object instance using this separation model while also utilising the annotations that are made 

available when all of these pipelines are put together in one place at the same time. By using the transfer 

learning technique and data augmentation technique in conjunction with constrained annotated X-Ray and 

Thermal image data, the pre-trained model faster R-CNN was merged with mask R-CNN (semantic 

segmentation). The following two subsections of this section go into further detail on how experiments are 

used to find appropriate models for these two purposes. 

 

5.2.  Detection models 

To find the optimum detection model, we examined four of the most extensively utilised cutting-edge 

technologies. Zhao et al. [17] discussed a two-stage object detection model that is part of the region-based CNNs 

object detection model family. After following RPN operation, it removes areas of an image suspected of holding 

target items and sends them to the second stage of an algorithm that classifies those things; this algorithm is known 

as a region-proposal network (RPN). The method then uses the extracted region to perform a classification 

operation on the extracted objects. The prediction of the bounding boxes can be improved by treating it as a 

regression problem and accounting for the difference between the actual bounding boxes and the anticipated 

regions. In comparison to previous models, this model is intended to be the most efficient and precise. 

You only look once (YOLOv3) [18], a one-stage object detector, as part of the study, the algorithm 

does not require a geographical proposal and instead analyses a dense sample of the likely locations. It is 

divided into grid cells (known as priors), and each cell uses the YOLO method to predict a predefined number 

of bounding boxes as well as the image's confidence ratings. A single CNN predicts all of these outcomes 
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simultaneously, making it one of the most efficient real-time algorithms. In this experiment, the third version 

of the system was used, which was meant to recognise small objects more precisely by utilising shortcut 

connections. The new version is intended to identify minor details more accurately than the previous two. 

The single-shot multibox detector (SSD) [19] detects various sizes and scales at each pyramidal layer 

of the CNN using a single-stage approach. Instead of separating the input into rows and columns, anchor boxes 

in a feature map are utilised to anticipate the offset of the default boxes. Each level of the CNN pyramid has 

its own set of receptive fields for feature maps. The early layers' feature maps are finer-grained, whereas the 

latter layers' feature maps are coarser-grained. Because anchor boxes have fixed sizes in relation to their 

respective cells, predictions at higher layers capture larger objects in the image, while predictions at lower 

levels capture smaller objects. This is due to the anchor boxes having a fixed size in proportion to the cells to 

which they are connected. 

Using the notion of detection at each level of the CNN's pyramidal layers, RetinaNet is a one-stage 

approach that is analogous to the concept of detection in SSD. They do add a feature pyramid network (FPN) 

to build more robust representations, which clubs succeeding feature maps with prior feature maps. "Hard" 

data, or samples that are regularly misclassified by researchers, are further highlighted by the use of a new loss 

function called as focused loss. For the evaluation of each detection model's performance in identifying dangers 

in the original picture, we solely utilized positive samples. Training and a validation dataset were created from 

the data set. The same backbone network, ResNet-50 [20], was used to train all the models, and a total of 

60,000 iterations were conducted on it. On the validation set, Figure 4 displays the detectors' per-category and 

mean APs. The overall analysis suggests that Faster R-CNN is the most accurate detector, despite the fact that 

the findings varied by category discussed in Figure 5. RetinaNet had an FPN connected to its backbone network 

at the time of testing, which none of the other models had. As a result, in terms of total performance, it exceeded 

earlier one-stage detectors, approaching the faster R-CNN technique. As a result of this discovery, throughout 

the remainder of the trial, we used faster R-CNN as our object detection model. 

 

 

  
 

Figure 4. Detection mean average precision (%) 

 

Figure 5. Segmentation performance 

 

 

6. EXPERIMENT RESULTS 

We used predetermined chunks of the SIXray dataset and ms coco dataset to train our models and 

then used those same areas to test our predictions. At a ratio of 1 to 10, 1 to 100, and 1 to 1000 in SIXray, 

negative samples vastly outnumber positive ones. While the detection model was trained using all of the 

photographs in the training sets, the segmentation model was developed using only the annotated images. Based 

on what was mentioned in Section 2, we constructed the patches that were utilized to train the segmentation 

model. A total of 192×192 pixels were added to the size of all patches. 

Stochastic gradient descent (SGD) [21], [22] was used to train faster-RCNN, with a batch size of 2 

and an SGD rate of base learning rate of 0.001 that progressively decays by an order of magnitude after iteration 

30,001 through 50,000. Between iterations 30K and 50K, we used a learning rate of 0.01 that linearly decreased 

by 0.01 between the 30K and 50K points. There were 250 epochs of DeepLabV3+ training with a 32-batch 

batch size and a 0.001 learning rate, which linearly declined by 0.1 after 75th, 150th, and 200th iterations. It 

was used to train DeepLabV3+ for 250 iterations with a batch size of 32 using the Adam optimizer. Mask R-

CNN, an advanced end-to-end instance segmentation framework, was also trained using the entire training set 

with comprehensive annotations. Both faster and the mask R-CNN were trained using the identical backbone 
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and settings and produced the same results [23]. It is shown in figure 6 that the trial had a qualitative effect. 

Figures 7 (a)-(e) shows how our method accurately segmented the detected dangerous objects, despite the fact 

that the knife, a wrench, and a firearm all overlapped. This is seen in Figure 7(c), where our approach was 

unable to properly separate overlapping objects despite the fact that the majority of them possessed high-

density material qualities, as indicated in the preceding section. For the vast majority of non-overlapping items, 

however, our technique was able to correctly verify the detections. Second-stage techniques significantly 

decreased the number of false positives we saw during our testing of the scissors class. The scissors class may 

have had an abnormally high number of false-positive predictions from other methodologies, which may have 

contributed to its poor performance. After that, the failure scenarios that we encountered while creating our 

technique are depicted in Figure 7. Faster R-CNN incorrectly forecasted suspicious regions, therefore 

DeepLabV3+ built segmentation masks for these images. 

 

 

 
 

Figure 6. Threat detection pipeline using transfer learning approach 

 

 

     
 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 7. Exemplar images of verified detections, (a) person with gun, (b) person with knife, (c) person with 

gun, (d) thermal imaging person with gun, and (e) person with plier 

 

 

During our investigation, we found that the vast majority of the mistakes were the result of incorrect 

localization and verification of the suspicious knives and wrenches. Products in these categories may have been 

mistaken for elongated metals in the suitcase owing to their blandness, according to certain theories [24], [25]. 

Weaponry, on the other hand, was able to be continuously anticipated with high precision, regardless of how 

lopsided the overall scenario was. 

 

 

7. CONCLUSION 

We examined each module in our threat detection pipeline to see how they affected the algorithm's 

overall performance. The performance examined of four distinct instances discussed in above figures, each 

with its own threat detection pipeline configuration. To begin, we only looked at the detection model without 

considering the pre-processing and testing of the segmentation model. The detection method was then 
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combined with a pre-processing technique. Following that, we merged detection and segmentation (Det + 

Segm), and finally, we combined all modules (Crop, Det, and Segm) to establish a single threat detection 

pipeline. As previously proven, we may make a small but significant improvement by simply removing 

unwanted picture regions, such as air gaps/spaces that are typical in X-ray security photos. Cropping photos to 

expose only key details and extracting additional features improves the detection model's capacity to recognise 

more items with better reliability. Because the detection model was trained on a balanced training set, it must 

match a substantial amount of previously discovered data from negative samples to more recognised targets in 

positive samples. This enhances both true positive and false positive detection. This is identified as the primary 

bottleneck, which is solved by including the segmentation model to validate the preliminary predictions. 
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