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 Making an accurate and timely diagnosis of cardiac disease is critical for 

preventing and treating heart failure. The accuracy of results produced by 

traditional machine learning (ML) algorithms is satisfactory. On the other 

hand, deep learning algorithms result in higher prediction accuracy. In this 

study, we used an artificial neural network (ANN) model to construct a deep 

learning diagnosis system for heart disease prediction. The developed ANN 

prediction model achieved 93.44% accuracy, which is 7.5% higher than a 

traditional ML model support vector machine (SVM). Additionally, using a 

simpler neural network reduced the time taken for training and classification 

to less than a minute. 
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1. INTRODUCTION  

The workload on a person has increased dramatically in recent years. Due to this unavoidable 

situation, the person is likely to get heart disease [1]. According to World Heart Federation (WHF) data, 

worldwide, heart disease kills millions of people a year [2]. Heart disease (HD) is caused when the blood flows 

to the brain, heart, lungs, and other vital organs is reduced. Defective heart valves can also result in heart failure 

(HF). Furthermore, angina pectoris, stroke, congestive heart failure (CHF), and dilated cardiomyopathy are 

linked to heart disease. Therefore, it is essential to monitor cardiovascular disease (CVD) biomarkers and 

identify a person's risk of heart failure [3], [4]. Humans have developed in machines and health care since 

ancient times. Medicine and health care have improved significantly since the introduction of machines and AI 

[5]-[7]. As technology advances, healthcare facilities must now store massive amounts of data in databases, 

making data interpretation harder. By using several longitudinal research results, the prediction models for 

heart disease are constructed [8].  

Machine-learning algorithms (ML) can solve many challenges in medical centers management and 

data analysis. These tools and approaches help analyze and interpret large datasets. Many factors contribute to 

heart diseases, including age, weight, height, gender, cholesterol, ECG results, blood pressure, chest pain, 

smoking, obesity, and eating habits [9]. The traditional approaches for heart disease risk diagnosis rely on a 

physician's study of a patient's medical history, physical examination report, and relevant symptoms, leading 

to inaccuracies and delays in diagnosis [10], [11]. Early identification of heart disease can reduce the disease 

progression. Thus, detection of cardiac disease at an early stage is critical to lower mortality and increasing 

survival rates [12], [13].  

https://creativecommons.org/licenses/by-sa/4.0/
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Early heart disease detection is challenging, so many computer-aided methods have been developed 

to overcome this issue. One of the most used computer-aided methods is machine learning [14], such as support 

vector machine, k-nearest neighbor, decision tree, and fuzzy logic. However, with huge healthcare data, deep 

learning methods like artificial neural networks (ANN) and deep neural networks (DNN) are currently gaining 

popularity [15]. Deep learning (DL) algorithms which are part of ML can combine information from several 

sources and manage large amounts of data, enhancing prediction ability [16].  

Many studies have proposed medical decision support systems based on deep learning algorithms [1]. 

Palaniappan et al. [17] suggested a diagnostic heart disease system using Naive Bayes, decision trees, and 

ANN. The ANN predictive model's prediction accuracy was 85.68%. Heart disease diagnosis using an ANN 

ensemble model was obtained with 89.01% accuracy by Das et al. [18]. Olaniyi et al. [19] developed an ANN-

based intelligent system to diagnose cardiac problems that were 85% accurate. Samuel et al. [20] used ANN 

and fuzzy AHP to identify heart disease. Their proposed classification approach was accurate to 91.10%.  

Miao et al. [12] proposed a model based on a DNN to predict coronary artery disease (CAD) and achieved an 

accuracy of 83.67%. ANN was used by Haq et al. [21] to diagnose cardiac problems with an accuracy of 86%. 

Das et al. [1] used the ANN model to predict cardiac disease with 92% accuracy. Priyanga [15] suggested a 

clustered deep neural network (C-DNN) model for heart disease detection. The proposed model outperformed 

DNN, SVM, KNN, and ELM with an accuracy of 83.6%. Mienye et al. [22] proposed an enhanced sparse 

autoencoder based ANN for heart disease prediction. Traditional machine learning approaches were 

outperformed by the researchers' proposed model, which achieved an accuracy of 90%.  

In this research, an ANN model is developed and optimized by fine-tuning its hyperparameters to 

improve diagnostic accuracy and predict whether patients have cardiac disease. The performance of the 

proposed ANN model is then evaluated in terms of accuracy, precision, recall, f1-score, and area under the 

curve (AUC). This study’s main contributions are as shown in: 

- To develop a heart disease diagnosis system using ANN for enhanced prediction accuracy. 

- To optimize ANN model hyperparameters, such as hidden layer width, learning rate, and activation 

function by using random and grid search method. 

- To validate the results yielded by the proposed model using a 10-folds cross-validation. 

- To study how a neural network's depth affects prediction accuracy on a small dataset.  

- To evaluate the accuracy of the suggested heart disease diagnosis model by comparing it to the traditional 

ML model support vector machine (SVM) using several performance measures. 

 

 

2. METHOD 

In the sections that follow, a detailed description of the methods that was used for this work is 

provided. In section 2.1, the details of the dataset that was used are explained. Section 2.2 outlines the data 

preparation technique. In section 2.3, the artificial neural network design for predicting heart disease is 

explained in greater detail. 

 

2.1.  Heart disease dataset 

For this study, we utilized the Cleveland dataset obtained from the machine learning repository at the 

University of California, Irvine (UCI) [23]. This dataset comprises 76 raw attributes, but only a subgroup of 

13 features is mostly used in research for the prediction of heart disease [24]. The 13 attributes include age, 

gender, type of chest pain, blood pressure, cholesterol level, maximum heart rate, fasting blood sugar, exercise-

induced angina, resting ECG, ST depression, ST slope, thalassemia, number of significant vessels colored by 

fluoroscopy. The presence or absence of cardiac disease is determined by a final target attribute with binary 

values of 0 and 1. Detailed information on the dataset's characteristics can be found in Table 1. The data used 

in the work are publicly available at the UCI machine learning repository. The code of our model is available 

at heart disease prediction using ANN UCI_dataset Kaggle. 

 

2.2.  Data pre-processing 

Considering the used dataset, no missing values were found. However, some features had uneven data 

distribution, which will lead to wrong results in model training if not treated well. Therefore, the data is 

standardized by subtracting the mean and dividing by the standard deviation. A data point (𝑥𝑖) is converted as 

stated in (1). 

 

𝑥𝑠𝑡𝑑 =
𝑥𝑖 − 𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 
 (1) 
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Table 1. Attributes description of Cleveland datasets 
Name Type Description 

age numeric Age in years 

sex categorial 0 = Female or 1 = male 

cp categorial Type of Chest pain (1: typical angina, 2: atypical angina, 3: non anginal pain, 4: asymptomatic) 

trestbps numeric Resting blood pressure (mm hg) 

chol numeric Serum cholesterol (mg/dl) 

fbs categorial Fasting blood sugar >120 mg/dl (0: no, 1: yes) 

restecg categorial Resting ECG results (0: normal, 1: ST-T wave abnormality, 2: left ventricular hypertrophy) 

thalach numeric Maximum heart rate 

exang categorial Exercise-induced angina (1: yes, 0: no) 

oldpeak numeric St depression induced by exercise  

slope categorial Slope of peak exercise ST segment (1: upsloping, 2: flat, 3: downsloping) 

ca categorial No. of vessels coloured by fluoroscopy 

thal categorial Thalium stress test result (3: normal, 6: fixed, 7: reversible defect) 

num categorial Heart disease status (1: yes, 0 = no) 

 

 

2.3.  Artificial neural network architecture 

ANNs are supervised learning algorithms that mathematically represent biological brain networks 

[21]. An artificial neural network mimics the structure and function of the human brain. An artificial neural 

network is a deep learning algorithm [1]. DNN was developed from an artificial neural network. The only 

difference between ANN and DNN is the number of hidden layers; DNN has more than one hidden layer, 

whereas ANN has only one [25]. ANN consists of three layers: input layer, hidden layer, and output layer [25]. 

As shown in Figure 1, inputs are passed to the first layer, and the last layer provides output. 

 

 

 
 

Figure 1. Typical ANN structure [26] 

 

 

Each layer comprises nodes known as artificial neurons that model the biological neurons. Weights 

are assigned to the connections between neurons [1]. ANN is trained with a backpropagation network that 

modifies its weights [19]. Weights are modified based on the difference between predicted and actual outcome 

[21]. Finally, weights’ changes are sent from the sink back to the source to be tested by the feedforward 

network. The optimal goal of this process is to minimize error, which means producing outputs that are as close 

to the target as possible [19]. The basic unit in ANN is the artificial neuron.  

Each neuron calculates its output by summing up the values of all neurons in the previous layer to 

which it is connected. It uses an activation function that accepts the weighted inputs and produces a number 

(usually between 1 and -1) based on a pre-defined threshold set by the function’s type [1], [25]. Each neuron's 

function is depicted in Figure 2. In this study, we developed an ANN model to determine if a person has a 

cardiac disease or not. The model consisted of two layers. There were 30 units in the input layer, which was 

also the first hidden layer. Through this input layer, a patient's heart-related attributes were fed into the network 

and multiplied by their respective weights. Next, nodes in the hidden layer compute the weighted sum and add 

a bias (𝑏𝑖) as described in (2) to analyze incoming data (𝑥𝑖). To indicate the weighted connection between 

nodes, 𝑤𝑖𝑗 is used. 

 

𝑁𝑗 = 𝑏𝑖 + ∑ 𝑥𝑖𝑤𝑖𝑗
𝑚
𝑖  (2) 

 

After that, the ELU activation function [27] was used to transfer 𝑁𝑗, as presented in (3): 
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𝑦 =  {
 𝑥 𝑤ℎ𝑒𝑛 𝑥 ≥ 0

𝛼(𝑒𝑥 − 1) 𝑤ℎ𝑒𝑛 𝑥 < 0
 (3) 

 

where 𝛼 is an adjustable parameter that controls the saturation point of the ELU's negative part. The output 

layer had one node which applied a sigmoid activation to produce the final output. A detailed description of 

our model is shown in Table 2. 
 

 

 
 

Figure 2. Neuron components [25] 

 

 

Table 2. Architecture details of proposed ANN model 
Layers (Type) Units Output Size Activation Kernel Params # 

Inputs (Dense) 30 (None, 30) elu he_normal 420 

Output (Dense) 1 (None, 1) sigmoid he_normal 31 

 Total params: 451, trainable params: 451, non-trainable params: 0 

 

 

To begin the network training, connection weights in our network were randomly initialized. Afterward, the 

neural network processed the input data and generated the output value. Network output was then compared to 

the desired output, and error was calculated using binary cross-entropy loss, as shown in (4). 

 

𝐿𝐵𝐶𝐸 =  −
1

𝑛
 ∑ (𝑦𝑖 × 𝑙𝑜𝑔(�̂�𝑖)) + (1 − 𝑦𝑖)

𝑛
𝑖=1  × 𝑙𝑜𝑔(1 − �̂�𝑖)  (4) 

 

Where 𝐿𝐵𝐶𝐸 is the binary cross-entropy, n is the number of samples, 𝑦 and �̂� represent the actual and predicted 

output. While training, the calculated error was propagated back to the network, and weights were adjusted 

accordingly as shown in (5). 

 

𝛥𝑤𝑖𝑗 =  − 𝜂
𝜕𝐸𝑟𝑟𝑜𝑟

𝜕 𝑤𝑖𝑗
  (5) 

 

Where 𝛥𝑤𝑖𝑗 is the weight change, and 𝜂 is the learning rate, which is a constant that indicates the relative 

weight change. After all the weights were updated based on the training errors, the output value was 

recalculated. This process was repeated until the network had converged with the minimum possible error.  

To improve the performance of a neural network model, its hyperparameters must be configured 

appropriately [25]. Hyperparameters are model parameters that are not trainable but manually set values during 

model creation. Therefore, we used an optimization technique to find the best combination of hyperparameters 

before building our model. We used random and grid search methods to optimize the number of neurons in the 

hidden layer, learning rate, and activation function. Using the optimization technique, the achieved optimal 

hyperparameter configuration is shown in Table 3. Furthermore, to tune the model's hyperparameters and 

improve its performance, we used the 10-fold cross-validation scheme [28] in combination with search. First, 

we ran a hyperparameter search to generate a variety of hyperparameter value combinations. Then, one 

combination at a time, we built a model. The model was then trained and evaluated using 10-fold cross-

validation, and the average accuracy was stored. Then we took a different set of hyperparameter values and 

repeated the same procedure. After considering all the possible combinations, we chose the best combination 

of hyperparameters that resulted in the best performance as the optimal combination for building our model. 

Figure 3 depicts a detailed process. Manual adjustments have been made to the ANN model's other 

hyperparameters, as follows: 30 batches, which speeds up the model’s learning process, 250 epochs of training.  
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Table 3. Hyperparameter tuning best configuration 
Hyperparameter Value 

No. of layers 1 

No. of neurons 30 

Activation function elu 

Learning rate 0.001 

 

 

 
 

Figure 3. 10-fold cross-validation with hyperparameters tuning 

 

 

3. RESULTS AND DISCUSSION 

A total of 303 samples were collected in the Cleveland dataset. First, we partition the data set into 242 

training and 61 testing samples in an 8:2 ratio. Then, we further partitioned the training set using an 8:2 ratio 

into training and validation sets. Training data is used to train the model, validation data is used to validate 

model performance, and testing data is used to evaluate the performance. The performance of the proposed 

ANN model was evaluated on the following metrics: accuracy, precision, recall, f1-score, and area under the 

curve (AUC). After implementing our proposed ANN model, we got an accuracy of 93.44%, precision of 

93.35%, recall of 93.30%, f1-score of 93.35%, and AUC of 0.95. 

Any learning algorithm's goal is to find a good fit between an underfit and an overfit model. This 

means that the training and validation accuracies should be stable and have a slight difference between them. 

The accuracy plot for train and validation data over epochs is shown in Figure 4. It is evident from the plot the 

effect of the overfitting problem. Furthermore, we compared our proposed model with the ML model based on 

SVM, which achieved an accuracy of 86.88%, precision of 87.75%, recall of 86.40%, f1-score of 86.44%, and 

AUC of 0.93 as depicted in Figure 5 and Figure 6.  

The proposed ANN model is evaluated in greater detail in comparison to the SVM model by making 

use of the confusion matrix metric, which can be seen in Figure 7. The resulting confusion matrix of the ANN 

model is presented in Figure 7(a). The figure shows that the proposed model can correctly detect 32 patients 

and classify 25 out of 27 healthy persons. The resulting confusion matrix of the SVM model is presented in 

Figure 7(b). It shows that 32 patients were detected correctly, and 21 of 27 healthy people were accurately 

classified. We further evaluated the proposed ANN model with a DNN model to show network depth's effect 

on model accuracy when having a small dataset. The DNN model that we used consisted of 16 neurons in the 

input layer, 1 neuron in the output layer, and 2 hidden layers with 32 neurons for each. The model achieved an 

accuracy of 87%, precision of 88%, recall of 86%, and f1-score of 86%. This shows that even when a DNN is 

fine-tuned (i.e., not made that deep), ANNs with one hidden layer outperform DNNs. The proposed method 

results are detailed in Table 4. 
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Figure 4. ANN model accuracy with epochs 

 

 

 
 

Figure 5. Comparison of ANN and SVM 

 

 

 
 

Figure 6. AUC measures of ANN and SVM 
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Table 4. Comparison of Performance metrics for the ANN model 
Method Accuracy Precision Recall F1-Score 

SVM 86.88% 87.75% 86.40% 86.44% 

DNN 87% 88% 86% 86% 

Proposed 93.44% 93.35% 93.30% 93.35% 

 

 

  
(a) (b) 

 

Figure 7. Confusion matrix of (a) ANN and (b) SVM 

 

 

Moreover, the proposed model results are compared to other state-of-art is detailed in Table 5. All 

previous techniques have already used ANNs or DNNs either in their current form, or they have been improved 

or hybridized with other methods. Three previous state of art methods [1], [17], [19] used simple ANN 

consisting of three layers: input, hidden and output units. They achieved 92%, 85.68%, and 85% accuracy rates, 

respectively. A prior state of the art method [21] used feature selection techniques to evaluate the ANN 

classifier's performance on a set of important features and obtained an accuracy of 86%. Prior approaches [12], 

[15] developed enhanced DNN and cluster based DNN models to improve accuracy and speed of training 

respectively. Their scores were 83.67% and 83.6%, accordingly. One prior study [18] suggested neural 

networks ensemble and achieved 89.01% accuracy. Another previous study [22] offered an optimized sparse 

autoencoder based ANN and attained a 90% accuracy rate. It was reported in [20] that they had attained a 

91.10% accuracy rate with a hybrid decision support system (ANN and Fuzzy AHP). Our suggested model 

gives better accuracy to predict heart diseases. It achieves an accuracy of 93.44% which outperforms the 

previous state-of-the-art methods for predicting cardiovascular diseases. 

 

 

Table 5. Comparative analysis of proposed model with other state-of-the-art techniques 
Method Accuracy Precision 

Mohammed et al. [15] C-DNN 83.6% 

Miaoa and Miaoa [12] DNN 83.67% 

Olaniyi et al. [19] ANN 85% 

Palaniappan and Awang [17] ANN 85.68% 

Haq et al. [21] ANN 86% 

Das et al. [18] Neural networks ensemble 89.01% 

Mienye et al. [22] ANN 90% 

Samuel et al. [20] ANN and Fuzzy AHP 91.10% 

Das et al. [1] ANN 92% 

Proposed Enhanced-ANN 93.44% 

Notes: C-DNN: Cluster Based Deep Neural Network; Fuzzy AHP: fuzzy analytic hierarchy process. 

 

 

4. CONCLUSION 

The goal of this research is to increase diagnostic accuracy and predict whether patients have cardiac 

disease. To achieve this goal, an artificial neural network (ANN) model is developed and optimized by 

performing fine-tuning on its hyperparameters including (i.e number of hidden layers, number of neurons in 

each layer, the learning rate, and the activation function). After that 10-fold cross-validation approach is 

adopted to estimate performance of a variety of hyperparameter value combinations and chose the best 
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combination. Finally, the performance of the ANN model that was proposed is assessed using a number of 

metrics, including accuracy, precision, recall, f1-score, and area under the curve (AUC). The results 

demonstrate improved accuracy that is greater than 93%. This improvement is 7.5% higher than a traditional 

ML model (i.e support vector machine model). In addition, the amount of time needed for training and 

classification has been significantly decreased due to our simple one layer ANN architecture. This result 

indicates that our proposed model is superior to existing methods that are considered to be state-of-the-art when 

it comes to predicting heart disease. 
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