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 In unconstrained optimization algorithms, we employ the memoryless quasi 

Newton procedure to construct a new conjugacy coefficient for the conjugate 

gradient approaches. This newer updating formula was adapted by scaling 

the well-known broyden fletcher glodfarb shanno (BFGS) formula by a self-

scaling factor in order to reach to the new form of the conjugacy coefficient 

which makes a satisfactory result in the descent direction and satisfies the 

globally convergent features when compared the proposed method to HS 

standard conjugate gradient approach. The theorems are studied in detail and 

moreover the numerical results of this paper is depend on a Fortran 

programming which are extremely stable. 
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1. INTRODUCTION  

In this paper, the well-known large-scale unconstrained minimization method has been considered: 
 

min 𝑓(𝑥), 𝑥 𝜖 𝑅𝑛  (1) 
 

Where 𝑓: 𝑅𝑛 → 𝑅 is continuously differentiable and the matrix of the first partial derivative 𝑔(𝑥) = ∇𝑓(𝑥) is 

available. 𝑥 𝜖 𝑅𝑛, n is a dimensional of the vector 𝑥, the CG algorithm is among the most efficient 

optimization algorithms for getting the minimum of the function (1) especially for large-scale problem [1]. 

Nevertheless, the CG algorithm is one of the more excepted choices in the big scale problem solving, as this 

method does not need any matrices [2]. The behaviour of the unconstrained optimization problem (1) is onset 

with a starting guess 𝑥0 ∈ 𝑅𝑛, then the CG algorithm would  output a sequence of points {𝑥𝑖}𝑖=0
∞  using the 

repeated form which is denoted in the next equation: 
 

𝑥𝑖+1 = 𝑥𝑖 + 𝜔𝑖𝑡𝑖  (2) 
 

where 𝜔𝑖 the length of a step is calculated with a suitable line search method and 𝑡𝑖 is the direction of search, 

that is getting as follows: 
 

𝑡𝑖+1 = {
−𝑔𝑖+1                                         𝑓𝑜𝑟 𝑖 = 0

 
−𝑔𝑖+1 + 𝛽𝑖𝑡𝑖                       𝑓𝑜𝑟 𝑖 ≥ 1 

}  (3) 
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where 𝑔𝑖 is the gradient vector of the function 𝑓(𝑥) and 𝐵𝑖  is a small value used to correct the path of search 

at 𝑥𝑖 . There are a number of well-known conjugation method formulas given by see [3]-[7]: 
 

𝛽𝑖
𝐹𝑅 =

‖𝑔𝑖+1‖2

‖𝑔𝑖‖2   (4) 

 

𝛽𝑖
𝑃𝑅𝑃 =

𝑔𝑖+1 
𝑇 𝑦𝑖

‖𝑔𝑖‖2   (5) 

 

𝛽𝑖
𝐻𝑆 =

𝑔𝑖+1 
𝑇 𝑦𝑖

𝑡𝑖
𝑇𝑦𝑖

  (6) 

 

𝛽𝑖
𝐷𝑌 =

‖𝑔𝑖+1‖2

𝑡𝑖
𝑇𝑦𝑖

 (7) 

 

where 𝑦𝑖 = 𝑔𝑖+1 − 𝑔𝑖 is the difference gradient of the function 𝑓(𝑥) at the points 𝑥𝑖+1, 𝑥𝑖  respectively, and 

more details for the coefficient 𝐵𝑖  can be seen in [8]-[12]. 

These aforementioned methods have been studied by many researches including [13], [14], most of 

these methods studied the features of the conjugate gradient approach, recently there are many attempts to 

discover a recent formula for conjugate gradient methods which have good numerical execution and 

satisfying a global property and that is the same aim of our research, to establish this convergence property it 

is required to compute the step 𝜔𝑖 > 0 with some conditions such as week wolfe condition (WWc) [15]: 
 

𝑓(𝑥𝑖 + 𝜔𝑖𝑡𝑖) − 𝑓(𝑥𝑖) ≤ 𝑝1𝜔𝑖  𝑔𝑖
𝑇𝑡𝑖  (8) 

 

ᶊ 𝑔𝑖
𝑇𝑡𝑖 ≤ 𝑔(𝑥𝑖 + 𝜔𝑖𝑡𝑖)𝑇𝑡𝑖 ≤ −𝑝2 𝑔𝑖

𝑇𝑡𝑖  (9) 
 

or by using strong wolfe condition (SWc) which satisfy (8): 
 

|𝑔(𝑥𝑖 + 𝜔𝑖𝑡𝑖)𝑇𝑡𝑖| ≤ −𝑝2 𝑔𝑖
𝑇𝑡𝑖  (10) 

 

where 0 < 𝑝1 < ᶊ , 𝑝2 ≥ 0. There are many other formulas that have been proposed by various scholars, for 

more details see [16]-[20]. The search direction is also important to determine the amount of the function that 

is ensuring the reduction of the search direction therefore we use quasi Newton method: 
 

𝑡𝑖 = − 𝐺𝑖
−1𝑔𝑖 (11)  

 

where 𝐺𝑖 is a matrix which is asymmetric and non-singular of the accession of the Hessian matrix which is denoted 

as a matrix of identity in the first step. The structure of this article is sequential as: first, a recent formula for the 

coefficient 𝛽𝒊
^ is derived, while the sufficient descent property and global convergence is presented in the next 

section, after that, the numerical facts results are presented. Finally, the conclusion is presented in the last section. 

 

 

2. NEW FORMULA OF 𝛽𝒊
^ 

The self-scaling quasi-Newton will be utilized to scale the Hessian matrix 𝐺𝑖, [21], [22] scale some 

terms of broyden fletcher glodfarb shanno (BFGS). Our technical method is to scale all the terms of BFGS by 

multiplying 𝐺𝑖 by a scalar ệ, then the direction becomes: 
 

𝑡𝑖+1 = −ệ 𝐺𝑖+1𝑔𝑖+1  (12) 
 

where ệ is a self-scaling factor and there are several types of the scalar ệ such as [23], [24]: 
 

ệ =
𝑦𝑖 

𝑇𝑦𝑖

𝑦𝑖 
𝑇𝑠𝑖

  (AlBayati)  (13) 

 

ệ =
𝑦𝑖 

𝑇𝑠𝑖

𝑔𝑇𝐻𝑔𝑖
  (AlBayati & Maha) (14) 

 

ệ =
6

𝑠𝑖 
𝑇𝑦𝑖

[𝑓(𝑥𝑖) − 𝑓(𝑥𝑖+1) + 𝑠𝑖 
𝑇𝑔𝑖+1] − 2 (Biggs) (15) 

 

Now the (BFGS) formula can be written in the form: 
 

𝐺𝑖+1 = 𝐺𝑖 − (
𝐺𝑖𝑦𝑖𝑠𝑖 

𝑇+𝑠𝑖𝑦𝑖 
𝑇𝐺𝑖

𝑠𝑖 
𝑇𝑦𝑖

) +
𝑠𝑖𝑠𝑖 

𝑇

𝑠𝑖 
𝑇𝑦𝑖

+
𝑦𝑖 

𝑇𝐺𝑖𝑦𝑖

𝑠𝑖 
𝑇𝑦𝑖

.
𝑠𝑖𝑠𝑖 

𝑇

𝑠𝑖 
𝑇𝑦𝑖

  (16) 
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To scale the Hessian matrix G we have to use the self-scaling quasi-Newton method, by multiplying (16) by 

ệ then: 
 

𝐺𝑖+1 = ệ [𝐺𝑖 − (
𝐺𝑖𝑦𝑖𝑠𝑖 

𝑇+𝑠𝑖𝑦𝑖 
𝑇𝐺𝑖

𝑠𝑖 
𝑇𝑦𝑖

) +
𝑠𝑖𝑠𝑖 

𝑇

𝑠𝑖 
𝑇𝑦𝑖

+
𝑦𝑖 

𝑇𝐺𝑖𝑦𝑖

𝑠𝑖 
𝑇𝑦𝑖

.
𝑠𝑖𝑠𝑖 

𝑇

𝑠𝑖 
𝑇𝑦𝑖

]  (17) 

 

Now if we choose ệ from (15), and replace 𝐺𝑖 by 𝐼 then (17) will be refer to memory less (BFGS) and written as: 
 

𝐺𝑖+1 = ệ [𝐼 − (
𝑦𝑖𝑠𝑖 

𝑇+𝑠𝑖𝑦𝑖 
𝑇

𝑠𝑖 
𝑇𝑦𝑖

) +
𝑠𝑖𝑠𝑖 

𝑇

𝑠𝑖 
𝑇𝑦𝑖

+
𝑦𝑖 

𝑇𝑦𝑖

𝑠𝑖 
𝑇𝑦𝑖

.
𝑠𝑖𝑠𝑖 

𝑇

𝑠𝑖 
𝑇𝑦𝑖

]  (18) 

 

In order to compute the new parameter 𝛽𝒊
^, both sides of (18) will be multiplied by 𝑔𝑖+1, from 

𝑡𝑖+1 = −ệ 𝐺𝑖+1𝑔𝑖+1 and from (3): 
 

−𝑔𝑖+1 + 𝛽𝒊
^𝑡𝑖 = ệ (−𝑔𝑖+1 +

𝑠𝑖 
𝑇𝑔𝑖+1

𝑠𝑖 
𝑇𝑦𝑖

𝑦𝑖 +
𝑦𝑖 

𝑇𝑔𝑖+1

𝑠𝑖 
𝑇𝑦𝑖

 𝑠𝑖 − 
𝑠𝑖 

𝑇𝑔𝑖+1

𝑠𝑖 
𝑇𝑦𝑖

𝑠𝑖 −   
𝑦𝑖 

𝑇𝑦𝑖

𝑠𝑖 
𝑇𝑦𝑖

 
𝑠𝑖 

𝑇𝑔𝑖+1

𝑠𝑖 
𝑇𝑦𝑖

𝑠𝑖)  (19) 

 

now if we use  ệ  from biggs (15) and for simplicity, we assume the term: 
 

𝐹 = 𝑓𝑖 − 𝑓𝑖+1 + 𝑠𝑖 
𝑇𝑔𝑖+1  (20) 

 

to simplify the steps of derivation, we have: 
 

−𝑔𝑖+1 + 𝛽𝒊
^𝑡𝑖   =

−6𝑔𝑖+1

𝑠𝑖 
𝑇𝑦𝑖

[𝐹] + 2𝑔𝑖+1 +
6

𝑠𝑖 
𝑇𝑦𝑖

 [𝐹]
𝑠𝑖 

𝑇𝑔𝑖+1𝑦𝑖+𝑦𝑖 
𝑇𝑔𝑖+1𝑠𝑖

𝑠𝑖 
𝑇𝑦𝑖

−  2  
𝑠𝑖 

𝑇𝑔𝑖+1𝑦𝑖+𝑦𝑖 
𝑇𝑔𝑖+1𝑠𝑖

𝑠𝑖 
𝑇𝑦𝑖

−

6

𝑠𝑖 
𝑇𝑦𝑖

 [𝐹]
𝑠𝑖 

𝑇𝑔𝑖+1𝑠𝑖

𝑠𝑖 
𝑇𝑦𝑖

+ 2
𝑠𝑖 

𝑇𝑔𝑖+1𝑠𝑖

𝑠𝑖 
𝑇𝑦𝑖

− 
6

𝑠𝑖 
𝑇𝑦𝑖

[𝐹]
𝑦𝑖 

𝑇𝑦𝑖

𝑠𝑖 
𝑇𝑦𝑖

.
𝑠𝑖 

𝑇𝑔𝑖+1𝑠𝑖

𝑠𝑖 
𝑇𝑦𝑖

+ 2
𝑦𝑖 

𝑇𝑦𝑖

𝑠𝑖 
𝑇𝑦𝑖

.
𝑠𝑖 

𝑇𝑔𝑖+1𝑠𝑖

𝑠𝑖 
𝑇𝑦𝑖

  (21) 

 

now by multiplying (21) by 𝑦𝑖 
𝑇  and divide both side of (21) by 𝑦𝑖 

𝑇𝑡𝑖: 
 

𝛽𝒊
^ =

𝑦𝑖 
𝑇𝑔𝑖+1

𝑦𝑖 
𝑇𝑡𝑖

−
6𝑦𝑖 

𝑇𝑔𝑖+1

𝑠𝑖 
𝑇𝑦𝑖 𝑦𝑖 

𝑇𝑡𝑖
[𝐹] + 2

𝑦𝑖 
𝑇𝑔𝑖+1

𝑦𝑖 
𝑇𝑡𝑖

+
6

𝑠𝑖 
𝑇𝑦𝑖

[𝐹].
𝑠𝑖 

𝑇𝑔𝑖+1.𝑦𝑖 
𝑇𝑦𝑖+𝑦𝑖 

𝑇𝑔𝑖+1.𝑦𝑖 
𝑇𝑠𝑖

𝑦𝑖 
𝑇𝑡𝑖.𝑠𝑖 

𝑇𝑦𝑖
− 2

𝑠𝑖 
𝑇𝑔𝑖+1.𝑦𝑖 

𝑇𝑦𝑖+𝑦𝑖 
𝑇𝑔𝑖+1.𝑦𝑖 

𝑇𝑠𝑖

𝑠𝑖 
𝑇𝑦𝑖.𝑦𝑖 

𝑇𝑡𝑖
−

6

𝑠𝑖 
𝑇𝑦𝑖

[𝐹].
𝑠𝑖 

𝑇𝑔𝑖+1.𝑦𝑖 
𝑇𝑠𝑖

𝑦𝑖 
𝑇𝑡𝑖.𝑠𝑖 

𝑇𝑦𝑖
+ 2

𝑠𝑖 
𝑇𝑔𝑖+1.𝑦𝑖 

𝑇𝑠𝑖

𝑠𝑖 
𝑇𝑦𝑖.𝑦𝑖 

𝑇𝑡𝑖
−

6

𝑠𝑖 
𝑇𝑦𝑖

[𝐹]
𝑦𝑖 

𝑇𝑦𝑖

𝑠𝑖 
𝑇𝑦𝑖

.
𝑠𝑖 

𝑇𝑔𝑖+1.𝑦𝑖 
𝑇𝑠𝑖

𝑠𝑖 
𝑇𝑦𝑖.𝑦𝑖 

𝑇𝑡𝑖
+ 2

𝑦𝑖 
𝑇𝑦𝑖

𝑠𝑖 
𝑇𝑦𝑖.𝑦𝑖 

𝑇𝑡𝑖
.

𝑠𝑖 
𝑇𝑔𝑖+1.𝑦𝑖 

𝑇𝑠𝑖

𝑠𝑖 
𝑇𝑦𝑖

  (22) 

 

Since 𝑠𝑖 
𝑇  = 𝜔𝑡𝑖 

𝑇 
 

𝛽𝒊 =
𝑦𝑖 

𝑇𝑔𝑖+1

𝑦𝑖 
𝑇𝑡𝑖

−
6𝑦𝑖 

𝑇𝑔𝑖+1

𝜔𝑡𝑖 
𝑇𝑦𝑖.𝑦𝑖 

𝑇𝑡𝑖
[𝐹] + 2

𝑦𝑖 
𝑇𝑔𝑖+1

𝑦𝑖 
𝑇𝑡𝑖

+
6[𝐹]

𝜔𝑡𝑖 
𝑇𝑦𝑖

.
𝜔𝑡𝑖 

𝑇𝑔𝑖+1.𝑦𝑖 
𝑇𝑦𝑖+𝑦𝑖 

𝑇𝑔𝑖+1.𝜔𝑦𝑖 
𝑇𝑡𝑖

𝜔𝑦𝑖 
𝑇𝑡𝑖.𝑦𝑖 

𝑇𝑡𝑖
−

2
𝜔𝑡𝑖 

𝑇𝑔𝑖+1.𝑦𝑖 
𝑇𝑦𝑖+𝑦𝑖 

𝑇𝑔𝑖+1.𝜔𝑦𝑖 
𝑇𝑡𝑖

𝜔𝑡𝑖 
𝑇𝑦𝑖.𝑦𝑖 

𝑇𝑡𝑖
−

6

𝜔𝑡𝑖 
𝑇𝑦𝑖

[𝐹].
𝜔𝑡𝑖 

𝑇𝑔𝑖+1.𝜔𝑡𝑖 
𝑇𝑦𝑖

𝜔𝑦𝑖 
𝑇𝑡𝑖.𝑡𝑖 

𝑇𝑦𝑖
+ 2

𝜔𝑡𝑖 
𝑇𝑔𝑖+1.𝜔𝑡𝑖 

𝑇𝑦𝑖

𝜔𝑡𝑖 
𝑇𝑦𝑖.𝑦𝑖 

𝑇𝑡𝑖
−

6

𝜔𝑡𝑖 
𝑇𝑦𝑖

[𝐹].
𝑦𝑖 

𝑇𝑦𝑖

𝜔𝑡𝑖 
𝑇𝑦𝑖

.
𝜔𝑡𝑖 

𝑇𝑔𝑖+1.𝜔𝑡𝑖 
𝑇𝑦𝑖

𝜔𝑡𝑖 
𝑇𝑦𝑖.𝑦𝑖 

𝑇𝑡𝑖
+

2
𝑦𝑖 

𝑇𝑦𝑖.𝜔𝑡𝑖 
𝑇𝑔𝑖+1

𝜔𝑡𝑖 
𝑇𝑦𝑖.𝑦𝑖 

𝑇𝑡𝑖
  (23) 

 

=
𝑦𝑖 

𝑇𝑔𝑖+1

𝑦𝑖 
𝑇𝑡𝑖

−
6[𝐹]

𝜔𝑡𝑖 
𝑇𝑦𝑖

(
𝑦𝑖 

𝑇𝑔𝑖+1

𝑦𝑖 
𝑇𝑡𝑖

−
𝑡𝑖 

𝑇𝑔𝑖+1.𝑦𝑖 
𝑇𝑦𝑖+𝑦𝑖 

𝑇𝑔𝑖+1.𝑦𝑖 
𝑇𝑡𝑖

𝑦𝑖 
𝑇𝑡𝑖.𝑦𝑖 

𝑇𝑡𝑖
+

𝜔𝑡𝑖 
𝑇𝑔𝑖+1

𝑦𝑖 
𝑇𝑡𝑖

+
𝑦𝑖 

𝑇𝑦𝑖

𝑡𝑖 
𝑇𝑦𝑖

.
𝑡𝑖 

𝑇𝑔𝑖+1

𝑦𝑖 
𝑇𝑡𝑖

) + 2 (
𝑦𝑖 

𝑇𝑔𝑖+1

𝑦𝑖 
𝑇𝑡𝑖

−

𝑡𝑖 
𝑇𝑔𝑖+1.𝑦𝑖 

𝑇𝑦𝑖+𝑦𝑖 
𝑇𝑔𝑖+1.𝑦𝑖 

𝑇𝑡𝑖

𝑡𝑖 
𝑇𝑦𝑖.𝑦𝑖 

𝑇𝑡𝑖
+

𝜔𝑡𝑖 
𝑇𝑔𝑖+1

𝑦𝑖 
𝑇𝑡𝑖

+
𝑦𝑖 

𝑇𝑦𝑖.𝑡𝑖 
𝑇𝑔𝑖+1

𝑡𝑖 
𝑇𝑦𝑖.𝑦𝑖 

𝑇𝑡𝑖
)  (24) 

 

=
𝑦𝑖 

𝑇𝑔𝑖+1

𝑦𝑖 
𝑇𝑡𝑖

−
6[𝐹]

𝜔𝑡𝑖 
𝑇𝑦𝑖

(
𝑦𝑖 

𝑇𝑔𝑖+1..𝑦𝑖 
𝑇𝑡𝑖−𝑡𝑖 

𝑇𝑔𝑖+1.𝑦𝑖𝑦𝑖−𝑦𝑖 
𝑇𝑔𝑖+1.𝑦𝑖 

𝑇𝑡𝑖+𝜔𝑡𝑖 
𝑇𝑔𝑖+1.𝑦𝑖 

𝑇𝑡𝑖+𝑦𝑖𝑦𝑖.𝑡𝑖 
𝑇𝑔𝑖+1

𝑦𝑖 
𝑇𝑡𝑖.𝑦𝑖 

𝑇𝑡𝑖
+

2
𝑦𝑖 

𝑇𝑔𝑖+1.𝑦𝑖 
𝑇𝑡𝑖−𝑡𝑖 

𝑇𝑔𝑖+1.𝑦𝑖 
𝑇𝑦𝑖−𝑦𝑖 

𝑇𝑔𝑖+1.𝑦𝑖 
𝑇𝑡𝑖+𝜔𝑡𝑖 

𝑇𝑔𝑖+1𝑡𝑖 
𝑇𝑦𝑖+𝑦𝑖 

𝑇𝑦𝑖.𝑡𝑖 
𝑇𝑔𝑖+1

𝑡𝑖 
𝑇𝑦𝑖.𝑦𝑖 

𝑇𝑡𝑖
)  

 

=
𝑦𝑖 

𝑇𝑔𝑖+1

𝑡𝑖 
𝑇𝑦𝑖

−
6[𝐹]𝜔

𝜔𝑡𝑖 
𝑇𝑦𝑖

.
𝑡𝑖 

𝑇𝑔𝑖+1

𝑦𝑖 
𝑇𝑡𝑖

+ 2𝜔
𝑡𝑖 

𝑇𝑔𝑖+1

𝑦𝑖 
𝑇𝑡𝑖

  (25) 

 

Now subs (F) of (20) in (25) we get: 
 

=
𝑦𝑖 

𝑇𝑔𝑖+1

𝑡𝑖 
𝑇𝑦𝑖

−
𝑡𝑖 

𝑇𝑔𝑖+1

𝑡𝑖 
𝑇𝑦𝑖.𝑡𝑖 

𝑇𝑦𝑖
[6(𝑓𝑖 − 𝑓𝑖+1 + 𝑠𝑖 

𝑇𝑔𝑖+1)] + 2𝜔
𝑡𝑖 

𝑇𝑔𝑖+1

𝑦𝑖 
𝑇𝑡𝑖

  

 

𝛽𝒊
^ =

𝑦𝑖 
𝑇𝑔𝑖+1

𝑡𝑖 
𝑇𝑦𝑖

−
𝑡𝑖 

𝑇𝑔𝑖+1

𝑡𝑖 
𝑇𝑦𝑖

. (6
(𝑓𝑖−𝑓𝑖+1+𝑠𝑖 

𝑇𝑔𝑖+1)

𝑡𝑖 
𝑇𝑦𝑖

− 2𝜔)  (26) 
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And that is the final form of our new coefficient. If the direction is exact line search, then 𝐵𝑖
^ will be 

reduced to Hesten Stefile method. However, if we used inexact line search with Wolfe type line search then 

our algorithm of a new method is as the following: 
 
Algorithm (1) 

Given 𝑥0 𝜖 𝑅𝑛 and 𝜔𝑖 > 0, set i=1. 
Step1: set 𝑡𝑖 = −𝑔𝑖 = −∇𝑓(𝑥𝑖)  , if ‖𝑔𝑖‖ < 𝜖 , then go to end. 
Step2: determine 𝜔𝑖 > 0 satisfying Wolfe type line search in (8) and (9). 

Step3: calculate a new iteration (𝑥𝑖+1) by (2) and 𝑔𝑖+1 .if ‖𝑔𝑖+1‖ < 𝜖 then go to end, 
else go to step (2). 

 

 

3. THE SUFFICIENT DESCENT AND GLOBAL CONVERGENCE PROPERTY 

3.1.  Acceptance (1) 

(a) Let the set 𝜓 = {𝑥0 𝜖 𝑅𝑛: 𝑓(x) ≤ 𝑓(𝑥0)} is bounded. 

(b) Suppose 𝜓 is a neighbourhood of 𝜁 then 𝑓 is continuously differentiable and the Lipchitz condition of 

the gradient is continuous of  𝜓. This means, there is  𝑘 > 0 such that ∀ 𝑥. 
 

‖g(x) − 𝑔(𝑥)‖ ≤ 𝑘‖x − 𝑥‖, 𝑥 ∈  𝜓 
 

From acceptance (a) and (b) we can design the sequence {𝑥𝑖}𝜖𝜁 , because 𝑓 is decreasing. From acceptance 

(a) and (b), we can profit that ∀ 𝑥 ∈ 𝜁∃𝑐1, 𝑐2 > 0 for which ‖x‖ ≤ 𝑐1, ‖�̂�‖ ≤ 𝑐2 and the sequence {𝑥𝑖}𝜖𝜁 

because {𝑓(𝑥𝑖)} is decreasing, henceforward we will assume that assumption (a), (b) are hold and the 

objective function is bounded below. 

 

Theorem (1): let that acceptance (1) it satisfies, and 𝜔 holds the Wolfe type line search (8) and (9) and 𝛽𝒊
^ is 

given in (26) then (3) holds the property of descent. 

 

Proof: for (i=1) we get  𝑡1 = −𝑔1 ⟹ 𝑡1 
𝑇𝑔1 = −‖𝑔1‖2 ≤ 0, and this satisfies the descent property. Now we 

have to prove the descent for all 𝑘 ≥ 1, by multiplying (3) by 𝑔𝑖+1: 
 

𝑡𝑖+1 
𝑇 𝑔𝑖+1 = −‖𝑔𝑖+1‖2 + 𝛽𝒊

^ 𝑡𝑖 
𝑇𝑔𝑖+1 (27) 

 

if an exact line search is used then 𝑡𝑖 
𝑇𝑔𝑖+1 = 0 ⟹ 𝑡𝑖+1 

𝑇 𝑔𝑖+1 = −‖𝑔𝑖+1‖2 ≤ 0, but if we used inexact line 

search then (27) yield: 
 

𝑡𝑖+1
𝑇 . 𝑔𝑖+1 = −‖𝑔𝑖+1‖2 + [

𝑦𝑖 
𝑇𝑔𝑖+1

𝑡𝑖 
𝑇𝑦𝑖

−
𝑡𝑖 

𝑇𝑔𝑖+1

𝑡𝑖 
𝑇𝑦𝑖

. (6
(𝑓𝑖−𝑓𝑖+1+𝑠𝑖 

𝑇𝑔𝑖+1)

𝑡𝑖 
𝑇𝑦𝑖

− 2𝜔)] (𝑡𝑖 
𝑇𝑔𝑖+1)  (28) 

 

from (SWC) and (10) and the equality: 
 

 𝑦𝑖 
𝑇𝑔𝑖+1 < ‖𝑔𝑖+1‖2   (29)   

 

and (8), (9) and since: 
 

𝑡𝑖 
𝑇𝑦𝑖 ≥ 𝑡𝑖 

𝑇(𝑔𝑖+1 − 𝑔𝑖) ≥  (ᶊ − 1)𝑔𝑖 
𝑇𝑡𝑖  (30) 

 

then: 

 

𝑡𝑖+1 
𝑇 𝑔𝑖+1 ≤ −‖𝑔𝑖+1‖2 + [

‖𝑔𝑖+1‖2

(ᶊ−1)𝑔𝑖 
𝑇𝑡𝑖

−  
(−𝑝2𝑔𝑖 

𝑇𝑡𝑖)

𝑡𝑖 
𝑇𝑦𝑖

(
−6(𝑓𝑖+1−𝑓𝑖−𝑠𝑖𝑔𝑖+1)

(ᶊ−1)𝑔𝑖 
𝑇𝑡𝑖

− 2𝜔)] (−𝑝2 𝑔𝑖 
𝑇𝑡𝑖)  

 

≤ −‖𝑔𝑖+1‖2 + [
‖𝑔𝑖+1‖2

(ᶊ−1)𝑔𝑖 
𝑇𝑡𝑖

+
(𝑝2𝑔𝑖 

𝑇𝑡𝑖)

𝑡𝑖 
𝑇𝑦𝑖

(
−6(𝑝1𝜔𝑔𝑖 

𝑇𝑡𝑖−𝜔𝑝2𝑔𝑖 
𝑇𝑡𝑖)

(ᶊ−1)𝑔𝑖 
𝑇𝑡𝑖

− 2𝜔)] (−𝑝2𝑔𝑖 
𝑇𝑡𝑖)  

 

≤ −‖𝑔𝑖+1‖2 − 𝑝2𝑔𝑖 
𝑇𝑡𝑖

‖𝑔𝑖+1‖2

(ᶊ−1)𝑔𝑖 
𝑇𝑡𝑖

−
𝜔( 𝑝2𝑔𝑖 

𝑇𝑡𝑖)2

𝑡𝑖 
𝑇𝑦𝑖

(
−6(𝑝1−𝑝2)

(ᶊ−1)
− 2)  

 

≤ −‖𝑔𝑖+1‖2 − 𝑝2
‖𝑔𝑖+1‖2

(ᶊ−1)
  

 

≤ −(1 +
𝑝2

(ᶊ−1)
)‖𝑔𝑖+1‖2  (31) 
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let κ =
𝑝2

(ᶊ−1)
 and 0 < κ < 1 <  is negative, then (1 + κ) = m is a positive number then (31) satisfies 

𝑡𝑖+1 
𝑇 𝑔𝑖+1 ≤ −𝑚 ‖𝑔𝑖+1‖2, which completes the proof. To state the global convergence for the new 

algorithms, you should see [13], [25] which is containing the Zoutindijk condition. 

 

 

4. THE GLOBAL CONVERGENCE PROPERTY 

Theorem (2): suppose that acceptance (1) holds, consider the algorithm (1) satisfies Wolfe condition, then: 
 

lim
𝑘→∞

inf‖ 𝑔𝑖+1‖ = 0  (32) 

 

Proof: If the theorem is not true, then ∃  3 > 0 , s.t ‖ 𝑔𝑖+1‖ > 3, ∀𝑘, then (3) can be written as: 
 

𝑔𝑖+1
𝑇 + 𝑡𝑖+1 = 𝛽𝒊

^𝑡𝑖  (33) 
 

by squaring both sides of (33) and rearranging it yields: 
 

‖𝑡𝑖+1‖2 = − ‖𝑔𝑖+1‖2 − 2 𝑔𝑖+1 
𝑇 𝑡𝑖+1 + (𝛽𝒊

^)2‖𝑡𝑖‖
2  

 

= (𝛽𝒊
^)2 ‖𝑡𝑖‖

2 − 2 𝑔𝑖+1 
𝑇 𝑡𝑖+1 − ‖𝑔𝑖+1‖2  (34) 

 

dividing both sides of (34) by (𝑔𝑖+1 
𝑇 𝑡𝑖+1)2: 

 

‖𝑡𝑖+1‖2

(𝑔𝑖+1 
𝑇 𝑡𝑖+1)2 =

(𝛽𝒊
^)2 ‖𝑡𝑖‖2

(𝑔𝑖+1 
𝑇 𝑡𝑖+1)2 −

2

𝑔𝑖+1 
𝑇 𝑡𝑖+1

−
‖𝑔𝑖+1‖2

(𝑔𝑖+1 
𝑇 𝑡𝑖+1)2  

 

=
(𝛽𝒊

^)2 ‖𝑡𝑖‖2

(𝑔𝑖+1 
𝑇 𝑡𝑖+1)2 − (

‖𝑔𝑖+1‖

𝑔𝑖+1 
𝑇 𝑡𝑖+1

−
1

‖𝑔𝑖+1‖
)

2

+
1

‖𝑔𝑖+1‖2   

 

≤
(𝛽𝒊

^)2 ‖𝑡𝑖‖2

(𝑔𝑖+1 
𝑇 𝑡𝑖+1)2 

+
1

‖𝑔𝑖+1‖2  (35) 

 

now from (26), (29), (30) and the (8)-(10) and that 𝑡𝑖 
𝑇𝑔𝑖 = −‖𝑡𝑖‖

2 we have: 
 

𝛽𝒊
^ ≤

‖𝑔𝑖+1‖2

(ᶊ−1)𝑔𝑖 
𝑇𝑡𝑖

+
𝑝2𝑔𝑖 

𝑇𝑡𝑖

−(ᶊ−1)‖𝑡𝑖‖2 (
6(𝑝1𝜔‖𝑡𝑖‖2−𝑝2𝜔‖𝑡𝑖‖2)

(1−ᶊ)‖𝑡𝑖‖2 + 2𝜔)  (36) 

 

      ≤
‖𝑔𝑖+1‖2

−(ᶊ−1)‖𝑡𝑖‖2+
𝑝2𝑔𝑖 

𝑇𝑡𝑖

−(ᶊ−1)‖𝑡𝑖‖2 (
6(𝑝1𝜔−𝑝2𝜔)

(1−ᶊ)
+ 2𝜔) (37) 

 

      ≤
‖𝑔𝑖+1‖2

−(ᶊ−1)‖𝑡𝑖‖2  (38) 

 

by squaring (38), we have (𝛽𝒊
^)2 = (

‖𝑔𝑖+1‖2

−(ᶊ−1)‖𝑡𝑖‖2)
2

and sub it in (35): 

 
‖𝑡𝑖+1‖2

(𝑔𝑖+1 
𝑇 𝑡𝑖+1)

2 ≤
‖𝑔𝑖+1‖4

(−(ᶊ−1))
2

‖𝑡𝑖‖4
.

‖𝑡𝑖‖2 

(𝑔𝑖+1 
𝑇 𝑡𝑖+1)

2
 
+

1

‖𝑔𝑖+1‖2  

 

≤
1

‖𝑡𝑖‖2 +
1

‖𝑔𝑖+1‖2 =
1

𝐷1
+

1

�̅�
= 𝐷2  (39) 

 

since ‖𝑡1‖2 = −𝑔1 
𝑇 𝑡1 = ‖𝑔1‖2 by noting that 

 ‖𝑡𝑖‖2

(𝑔0 
𝑇 𝑡0)2 =

1 

‖𝑡𝑖‖2 
, then (39) yields that: 

 
‖𝑡𝑖+1‖2

(𝑔𝑖+1 
𝑇 𝑡𝑖+1)2 ≤ ∑

1

‖𝑔𝑖‖2 
   ∀𝑘𝑘

𝑖=1 →
1

𝐷2
∑ 1 =𝑘≥1 ∞  

 

this contradiction to Zoutendijk condition and with this contradiction, we complete the proof of the theorem. 

 

 

5. NUMERICAL FACTS 

The primary goal of this work is to compire and compute the proposed method's execution for a set 

of test functions against the well-known HS routine. These test experiments were collected by Andrei [26]. 

We select (20) large-scale test problems and consider two dimensions (n=100, n=1000) for each test.  
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The stop criterion is ‖𝑔𝑖+1‖ ≤ 10−6, all codes were written in Fortran 90. We denote the number of iterations 

as (NuI) and (NuF), (NuR) as the number of evaluation functions and restarts. All of these results are 

reported in the Table 1 while the percentage performance with respect to (NuI), (NuF) and (NuR) is denoted 

as 92.75%, 72.53%, 61.71% respectively. 
 
 

Table 1. Numerical results of a new algorithm 
Functions dim 𝛽𝑖

^ HS 

Extended Beale 
  NuI NuR NuF NuI NuR NuF 

100 14 8 26 13 7 26 

1000 17 10 32 17 10 32 

Penalty 
100 9 6 25 9 6 25 
1000 22 13 47 61 53 1290 

Diagonal 2 
100 58 21 101 61 19 103 

1000 204 69 351 207 59 339 

Generalized Tridiagonal 1 
100 22 6 44 22 6 44 

1000 27 12 50 27 134 50 

Extended Tridiagonal 1 
100 7 4 15 7 4 15 

1000 13 7 26 13 7 26 

Extended Three Expo Terms 
100 17 9 25 18 10 26 
1000 14 9 25 13 7 24 

Generalized Tridiagonal 2 
100 41 15 61 41 15 61 

1000 52 20 83 62 23 97 

Diagonal 4 
100 4 2 8 4 2 8 

1000 4 2 8 4 2 8 

Extended Powell 
100 55 18 103 56 19 104 
1000 79 22 149 76 26 140 

Quadratic Diagonal Perturbed 
100 49 10 89 73 18 129 

1000 182 29 324 193 31 343 

Extended Wood WOODS 
100 23 8 46 23 8 46 

1000 24 10 47 25 10 49 

Himmelbh 
100 6 3 13 6 3 13 
1000 6 3 13 6 3 13 

Nondia 
100 15 8 30 16 8 31 

1000 11 6 22 12 7 25 

Dqdrtic 
100 6 1 13 7 1 15 

1000 7 1 15 7 1 15 

Dixmaanb 
100 10 10 18 10 10 18 
1000 11 11 19 11 11 19 

Liarwhd 
100 17 10 31 17 10 31 

1000 22 11 47 23 12 52 

Extended Block-Diagonal BD2 
100 11 7 21 11 7 21 

1000 12 8 24 12 8 24 

Diagonal 7 
100 3 3 9 3 3 9 
1000 4 4 11 4 3 11 

Generalized quartic GQ2 
100 36 14 57 37 13 57 

1000 33 11 53 31 9 55 

Denschna 
100 9 6 17 9 6 17 

1000 9 6 18 9 6 18 

Total   1165 433 2116 1256 597 3429 

 

 

6. CONCLUSION 

We have suggest a recent memoryless algorithm depending on scaling the (BFGS) formula. Where this 

newly method produces a sufficient descent direction while this property depends on the type of line search that 

is used in the algorithm which is important. We proposed the global convergence and the numerical results 

which are produced in the previous section showing the percentage of the method efficiency. 
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