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Abstract 
Scaling behavior is a extremely typical phenomenon in complex system research, as well as it 

can act that many Macro indicators in system or distribution function of some variables meet exactly 
power-law behavior, which possesses different kinds of Exponents. In this article, according to Phase 
Change concept in Physics, it is researched that the nature in critical state of complex network with 
Seepage model, and it is totally stated that the basic reason of Self-similar behavior, Fractal behavior, and 
so on, and also Phase Change in complex network in critical state of complex network in accord with 
power-law distribution. 
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1. Introduction  

Scaling behavior is a important area in complex network now, such as no scaling 
network is just a power-law Distribution network, also,  for example, the income in society is in 
accord with the famous Pareto theorem, which is income density function (f(x)~x-1.75), belong 
to power-law Distribution [1]. Another, among English words, the frequency of occurrence of 
word ‘r’ in the sequence of frequency of occurrence from largest to smallest is f(r)~r-1,that is 
Zipf theorem. In addition, the relation of two variable is power-law, giving an example that 
organism Metabolism and its Body Size meet 3/4 power-law (F~M3/4), called Kleiber theorem. 
The last example illustrated with is no scaling network as well-known.  Many complex network in 
the real world totally meet power-law distribution (p(x)~x-3).That is A large class of scaling 
behavior [2, 3]. 

Then, another class of scaling behavior is that fractal is familiar to us. Calculating fractal 
dimension of Fractal images, in fact, there is a kind of power-law relation between Measure 
Value ’Y’ of fractal and Accuracy value ’x’ of scale, as y~x-D, and power-law D is its fractal 
dimension as talked above. Of course, it is normal that scaling behavior is occurred in random 
fractal, like Brownian Motion and Levy Flight [4-6]. More and more appearances of phenomenon 
about scaling, that makes researchers pursue to the nature. 

What kind of research is originated in scaling behavior and power-law phenomenon, 
then? Of course, strictly speaking, in the era of classical mechanics, people had discovered 
power-law phenomenon, such as the famous Gravitation formula, F~M1M2/r2, is a power-law. 
However, there are two sources about that the word ‘scaling’ is really mentioned and a relatively 
large-scale research have been developed in physics. One is the Turbulence in liquid, when 
people discovered that Multi-scale phenomena in Turbulence, which was surveyed by different 
scales, completely showed us the analogy regularity. And the other one is Phase change in 
Statistical Physics, especially Phase change in critical status [7-8]. 

With the discovery of researching on complex system in Phase change, like Phase 
change behavior of a magnet in high temperature, many Accumulation of macro indicators can 
give a series of scaling behaviors. That is to say, relations among so many indicators can be 
carved by power-law, another, the system can also show a lot of similar behavior to itself, while 
close to the phase transition point. So, critical state and scaling behavior is one of the most 
important branches in classification of Statistical Physics. 
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2. Percolation Model 
Creating a grid chart consists of L*L lattices, they will be colored by Probability p, which 

is the color of every lattice decided by one Probability p. When Probability p appears, the lattice 
will be colored by black. The contrary is white. P is 0.4 and L is 10, arbitrarily. As shown in 
Figure 1. 

 

 
 

Figure 1. The Grid Chart when p=0.4 
 
 

Next, the black lattices will be colored twice, and some of them communicating with 
each others must be the same color under constraint, but the opposite is different. For the nice 
effect, communicating lattices are all colored by black, yet independent lattices is no color. The 
two lattices communicate with each other means their edges are connected, not points between 
lattices. The same color lattices connected with the others is called clusters. Figure 2 is 
obtained by coloring figure above. 
 

 
 

Figure 2. The Communicating Lattices 
 
 

The figure above is achieved in L=10，p=0.4. For a better situation, it can be like figure 
2.3, 2.4 and 2.5, if while L expand to 100, and p is 0.4, 0.6 and 0.7. 

 

 
Figure 3. The Grid Chart when p=0.4, p=0.6

 

 
 

Figure 4. The Grid Chart when p=0.7 
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In these figures, the biggest cluster is marked by black. As we have seen, the smaller p 
is (p<0.6), the less these clusters is. Moreover, they show a tendency to not connect with, 
therefore, different grayscale values marked the clusters. When the bigger p is, they trend to a 
large one. Especially, while is 0.6, there is the larger cluster of them. At the same time, all kinds 
of and so many types of clusters are beginning to take shape, and also a large quantity. 
 
 
3. Seepage and Phase Change 
3.1. Seepage 

The so-called Seepage is one large cluster in system can get through and permeate left 
and right, or up and down boundary of these lattices. At that situation of p with three different 
values as above, the cluster is smaller and no communication with each other, when p is 0.4. 
That is to say, there is no seepage formation in system. But, when p is 0.6 or 0.7, the 
phenomenon of that cluster is much larger and interconnected is obvious. In particular, when p 
is 0.7, the seepage occurs. 

Therefore, while p is from 0.4 to 0.7, the cluster turns from small and disconnected to 
large and interconnected. That is the seepage growing out of nothing. The phenomenon is so-
called phase change, which means phase change happens while p is from 0.4 to 0.7 in system. 
The nature of system has changed during the process of phase change. It is illustrated that the 
seepage of system must be formed when there is a critical probability Pc is equal or lesser than 
p. 
 
3.2. Phase Change 

T For getting the value of pc, when calculating p from 0.1 to 0.9, the biggest size of the 
cluster is Smax. P is as abscissa, and the size is as ordinate. Because system is random, the 
result is not same to the different value of p. To avoid random disturbance, ensemble average 
can be to execute. Then, in different size, it shows the Smax-p curve, like Figure 5. 

 
 

 
Figure 5. Chart the Biggest Size of Cluster as p Changing 

 
 

Whatever the p is, all curve is monotonically increasing. And also, the more L is, the 
steeper the curve is. Especially, when L is bigger (L = 150), it is happened that a sudden 
change is at 0.6. Some macro state of system suddenly turns as one variable has changing, 
which is called change phrase. 

According to the Figure 5, at the value of p about 0.59, there is a sudden change in 
curve when L is at some point. 
 
 
4. Scaling Behavior 

When p is at about critical point nearby pc, all kinds of scaling behaviors will be 
achieved (that is power-law behavior). Firstly, it is surveyed that probability distribution belong to 
the sizes of every clusters in seepage system. In the clusters in seepage system (every different 
colors part), the sizes are extremely different. So, to get the diversity, a size of one cluster is 
seen as a random parameter, and also it can get probability distribution of the parameter. The 
figure below has shown that different parameters can decide probability distribution of clusters’ 
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size. clusters’ size is as abscissa, and p is as ordinate. Figure 6 shows that under L = 150, 
probability distribution of clusters’ sizes at different values of p. 

 
 

 
Figure 6. The Probability Different Clusters’ Sizes 

 
 

In figure 6, every data point represents, under a fixed size x, there are some proportion 
of clusters in Inter-cell x+dx. As we shown, as the p is more and more to be approaching the 
critical point 0.59, the distribution curve is to be a line eventually. Double logarithmic coordinates 
that is abscissa and ordinate are both logarithmic. Thus, the line means that two variables are to 
meet the power-law relationship. Under p=0.58, the distribution density function of its size can 
be marked by p(x) =0.37*x-1.72. 

In a word, the distribution of system’s size is power-law at critical point as a conclusion, 
called a scaling behavior.  

Nearby critical state, the larger cluster in seepage system is just the similar fractal 
object. For instance, it can be the biggest one under L=150, p=0.6. As Figure 7. 
 
 

 
 

Figure 7. Grid Figure under L=150，p=0.6 
 
 

The black cluster is the biggest one in seepage. To shown clearly, others is colored by 
light gray. According to the cluster, it is extremely similar to random trajectory of common 
Brownian motion. In fact, it is a random fractal geometry, which can calculate the black biggest 
fractal dimension by box covering. 

So-called box covering is so simple, that is the dimension is covered by different 
resolutions boxes. Then at a fixed resolution, it will be tested that the number of boxes l(s) 
needed is as approximate area of this dimension. Next, some smaller boxes s’ are used by 
covering these lattices and a new approximate area is achieved. Repeating the process, it can 
get a curve depicted the relation between l(s) and s as change of different s. For two-
dimensional geometry, like a circle, the curve got by this action is also a power-law one. That is 
l(s)~s-D, and D = 2. However, for fractal geometry, although a power-law can be achieved, D is 
less than 2 as usual. So it is a fractal. 

As below, the fractal dimension of the red cluster is got by Box Covering, result shown 
by the Figure 8. 



TELKOMNIKA  e-ISSN: 2087-278X  
 

Scaling Behavior and Phase Change in Complex Network (Wei Cheng) 

6791

 
 

Figure 8. The Fractal Dimension 
 
 

It is the line under power-law that the whole figure is covered by changing the size of 
boxes, and also the slope of line, that is fractal dimension, is 1.95, less than 2. It is asserted that 
it can get a smaller clump of fractal dimension when L is tested as a bigger value. It will reflect 
that Complexity of Clusters can deviate far from conventional geometry. 

Thus, it can be concluded that clusters is a similar fractal structure under critical state, 
and that is a scaling behavior. 
 
 
5. Renormalization Equation 

To any percolation model, the parameter that decides its nature is P, and every 
renormalization operation make P change a time to a percolation model. It assumes that in 
original scale S probability of black lattices is P(s), and after renormalization operation, the scale 
S becomes S’, which is larger. Also, the P(s) change into P(s’). The problem is that what relation 
is between P(s) and P(s’). 

 
    sPfsP       (1) 

 
That f, the function nature is lay in Coarse Graining rule, as shown Figure 3, that is what 

is provision of ignoring information. Attention is that the left of these rules is the situation of 
many black lattices occupied partly under original scale Sn in fact. The right is the situation of 

new scale Sn+1 occupied. Then, the relation of between  1nsP  and  nsP  can be calculated 

by the equation as follow: 
 
             2234

1 1214 nnnnnn sPsPsPsPsPsP 
     (2) 

 

4 power items of  nsP  is the last rule in corresponds with ones (that means black 

lattices appear consecutively four times and the probability is obviously  4nsP  in original 

scale), 3 power item is the situation that there are three black lattices on left of rule, which is 
totally four rules. 

So the coefficient is four. The probability of consecutively appearing three times and the 

last is white lattice. That is 
    nn sPsP 13

.  2 power items corresponds with that two kinds of 
two black vertical rules connected, and the coefficient is 2.  

By comparing the three situation: when P= 0.5, 0.6 and 0.7, there is much larger 
influence in renormalization especially P =0.5 and 0.7. For instance, while P= 0.5, 
renormalization make probability turn smaller and the colored lattices can be more and more 
sparse. When P = 0.7, the situation is opposite. Otherwise, these two situations can affect the 
proportion of the biggest cluster. When P = 0.5, the proportion of black lattices turn smaller 
quickly, and when 0.7 rapidly increase nearly to 1. 

  However, in critical status, even if P= 0.6 is similar to Pc, there is hardly influence in 
the biggest cluster to renormalization operation to the density of black lattices. As Figure 8. 
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Figure 8. The Curve of the Density of Colored Lattices from Renormalization Steps 
 
 

In Figure 8, the density of colored lattices (original black ones) change from 
renormalization steps. In these three statuses, when only in P = 0.6, the curve still stay same, 
and in other status, the density is either larger or smaller.    

Therefore, in different status, the result of renormalization of percolation model is got, 
then, and how to calculate probability Pc in the critical status by renormalization? 
 
 
6. Renormalization and Fixed Point  

While the scale of model turns from Sn to Sn+1 to every operation of Renormalization, 

and the probability is from 
 nsP

 to 
 1nsP

, which is according refer to (2). Then, iterative 
equation can be achieved, which shows every renormalization operation make black lattices 
change. Different initial probability can decide the evolutionary tracks of this iterative equation. 
Also Figure 7 shows track of renormalization equation in different initial point

  7.0,6.0,5.00 sP
. It is seen that the curve gradually declines when

  5.00 sP
. If original 

lattice is infinity and renormalization keeps continued, then, the curve approaches to 0. When

  7.00 sP
, the curve is near 1. Otherwise, when

  6.00 sP
, although it decline so slowly, it 

may be near 0. In fact, the behaviours of these curves are completely decided by fixed points of 

renormalization groups. So-called the fixed point is a special  *sP . 
 

             2*2**3*4* 1214* sPsPsPsPsPsP n       (3) 
 
When N approaches infinity, we can get the equation on the top, and solving tchis 

equation, we can get four answers of  *sP . 
 

 







  512
1,

512
1,1,0

        (4) 
 
Among these answers, the third is omitted because of negativity. Therefore, there are 

three answers: {0, 1, 0.618}, which are thought as the fixed points of renormalization equation. 
For the case of 0 and 1, they are called as trivial fixed points. They are corresponded to the 
density 0(no lattice) and 1 (all are lattices) of last lattices after operation renormalization. Both 

are stable attractor, which is 
 0sP

 initial. After renormalization unlimited operation, they will 
converge to the two attractors. And once they converge, there is no escape. For the last answer 

0.618, it is non-trivial fixed point. The situation is exactly fractal. That is to say, when 
 0sP

 is 
about 0.618, renormalization operation does not affluent the seepage graphics. 

So, the attractor  *sP  is the critical point Pc that we need to find. Under this 
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probability of critical point, seepage system is with scale invariance. However it zooms 
(renormalization), it can be got a similar system. 
 
 
7. Conclusion 

Percolation model is a kind of simple rule model, but its behavior is so complex and 
includes many critical phase transition phenomena and all kinds of scaling behaviors. One of 
the Methods is used in natures and details of so many complex network, thereby, it can be 
overall grasped the fundamental nature of complex network. 

According to calculating exactly, now, it is widely recognized that Pc=0.593, but it is 
0.618 by means of renormalization equation. Although it is similar, it is yet not the same. The 
reason is that calculating renormalization equation is an act of approximate operating, and non-
trivial fixed point is similar to Pc. The sources of error mainly happen in Coarse Graining rule. In 
that rule, it is seen approximately as a black lattice when the number of black lattices is larger 
than and equal to three. And when it is two, we only consider that it is a black lattice through Up 
and down. Ever, the fact is that the approximate operating may destroy status of original 
clusters. If two clusters are nearby on same level, Coarse Graining rule may ignore it. 
Therefore, the error appears. If the operating much rougher, only in accordance with the 
majority principle, when the number of original black lattices is larger than 3, it can be mapped a 
black lattice, otherwise, white. At that situation, we can get a probability deviate from Pc far. In 
opposite, if Coarse Graining is much finer, we can get better result. 

Seepage model is a kind of simple rules, but its behaviour is so complex, even includes 
phase transition and critical phenomena, and also all kind of scaling behaviours. In two-
dimensional percolation model, many acts can expand in complex network. Although Physicist 
can calculate analytical solutions of two-dimensional percolation problems, people realize hardly 
to lots of scaling phenomenon from a traditional point of view of time and space. In addition, 
renormalization is a similar act, but its entry point is very deep. It can grasp the nature of scaling 
behaviour, scale invariance. 

That is also fractal characteristics and scale invariance of system. Whatever initial 
dynamics rules of system is, whatever seepage model or Ising model is, as long as system 
turns to the critical status, when it can produce all kinds of scaling behaviours and omit some 
restrictions of dynamics rules, it can completely portray scaling behaviour newly from the point 
of view of the renormalization equation. So, renormalization method is likely to be a new starting 
point, rather than a simple technical means. 
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