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 Abstract 
Under the existence of system uncertainties and external disturbances, complete synchronization 

and anti-synchronization between two identical or different hyperchaotic systems are investigated in the 
paper. Firstly, an active control is used to eliminate the nonlinear part of the error. Then the sliding mode 
controller is designed based on suitable sliding surface. After that the adaptive updating law is designed to 
estate the bound of the uncertainties and external disturbances under the combination of active sliding 
mode control and adaptive control. The structure of the master and slave hyperchaotic systems has no 
restrictive assumption about the bound of the uncertainties and external. The active adaptive sliding mode 
controller (AASMC) is proposed to drive the state of slaver system trajectories into or opposites to the state 
of master system. The active adaptive sliding mode controller is proposed to realize synchronization and 
anti-synchronization by changing the parameter in the control function respectively. Moreover, a strict proof 
of the stability of the error dynamics is derived based on the Lyapunov stability theory. Finally, the  
corresponding numerical simulations are demonstrated the robustness and efficiency of the proposed 
controller. 
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1. Introduction 
Chaos is a very interesting nonlinear phenomenon due to its high sensitive dependence 

on initial conditions. Synchronization between two chaotic systems is one of the important 
processes in the control of complex phenomena for chemical, physical, and biological systems 
[1]. Since the pioneering work by Pecoraet al. in 1991 [2], chaos synchronization has received 
increasing attention and various researches have focused on the complete synchronization [3], 
lag synchronization [4], generalized synchronization [5] etc. At the same time, many effective 
technologies have been developed for instance nonlinear feedback control[6], impulsive method 
[7], adaptive method [8-9], sliding mode control [10], back-stepping control method [11] etc.  

Among several control methods, sliding mode control has received a great deal of 
attentions due to its robustness to parameters uncertainty and invariance to unknown 
disturbance. Haeri and Tavazoe [12] have studied the synchronization of chaotic systems with 
uncertainty using active sliding mode control. Aghababa [13] have proposed synchronization of 
two different chaotic systems with unknown parameters via sliding mode technique. H.Zhang 
and X.K. Ma [14] have achieved synchronization of chaotic systems with parametric uncertainty 
using active sliding mode control. 

Nevertheless, the previous methods have studied chaotic systems with known bounds 
of uncertainties and external disturbances. For instance, Cai et al. [15] have reported modified 
projective chaos synchronization between two different chaotic systems with external 
disturbances. Wafaa Jawaada has proposed a robust active sliding mode for anti-
synchronization of hyperchaotic systems with uncertainties and external disturbances. However, 
in the practical and real applications, it is difficult to determine the bounds of the uncertainties 
and external disturbances. The adaptive control is considered for this problem. W. Guo et al 
have designed a simple adaptive-feedback controller to synchronize a chaotic system [16].  

However, the most of the aforementioned works were involved mainly with low-
dimensional chaos system, characterized by one positive Lyapunov exponent and the 
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aforementioned methods did not deal with the problem of hyperchaotic complete 
synchronization and anti-synchronization [17]. In this paper, the complete synchronization and 
anti-synchronization is accomplished via changed the parameter in the control function. The 
adaptive updating law is designed to estate the bound of the uncertainties and external 
disturbances under the combination of active sliding mode control and adaptive control. The 
stability of error dynamics are demonstrated based on the Lyapunov stability theory. Numerical 
simulation of hyperchaotic system illustrates the effectiveness of the proposed control method. 

The rest of this paper is organized as follows. The synchronized problem is described in 
Section 2. Section 3 presents a brief description of designing active adaptive sliding mode 
controller. Simulation results presented in section 4 confirm the effectiveness and the 
applicability of the proposed method. Section 5 briefly concludes this paper. 

 
 

2. Systems Description and Synchronized Problem Formulations 
Consider the nonlinear hyperchaotic system as master system: 
 

1 1 1 1( + ) ( ) ( )x A A x f x t                                                      (1) 

  
And another hyperchaotic system as slave system:  

 
2 2 2 2( + ) ( ) ( ) ( )y A A y f y t u t                                                                  (2) 

 
Where , nx y R are the n-dimensional state vectors of the system. 1 2 , n nA A R  denote 

the linear parts of the system dynamics and 1 2( ), ( ) : n nf x f y R R represent the nonlinear parts 

of the system. 1   2 , n nA A R    are the matrixes of uncertainties and 1 2( ), ( ) n nt t R   are the 

vectors denoting external disturbances. In (2), ( ) nu t R is the n-dimensional vector that is the 

output of the controller. 
If 1 2A A and 1 2( ) ( )f x f x , master system and slave system are two identical chaotic 

(hyperchaotic) system. Otherwise they represent two different chaotic (hyperchaotic) systems.  
The synchronous error system between (1) and (2) can be written as follows: 
 
e y x                                                                                                          (3) 

 
When    T T

1 2 1, , , 1, 1, 1, 1n n           , the synchronization type of system is 

complete synchronization and if    T T
1 2 1, , , 1,  1,  1,  1n n       , the synchronization type 

is anti-synchronization. 
 The dynamics of the synchronization and anti-synchronization error can be expressed 

as: 
2 2 2 2 1 1 1 1

2 2 1 2 1 2 1 2 1

( + ) ( ) ( ) (( + ) ( ) ( )) ( )

 ( ) ( ) ( ) ( ) ( ) ( )

e A A y f y t A A x f x t u t

A e A A x f y f x t t A y A x u t

  
    

        
           


             (4) 

 
 For convenience, the following assumption is made: 
 

2 1 1 2( , ) ( ) ( ) ( )F x y f y f x A A x                                                 (5) 

 
So (4) is expressed as: 

 
2 2 1 2 1( , ) ( ) ( ) ( )e A e F x y A y A x t t u t                                                          (6) 

 
The master system and the slave system are to be synchronized by designing an 

appropriate control that is added into the slave system such that: 
 
lim  ( ) =  lim  =0
t t

e t y x
 

                                                                                            (7) 
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Where is the Euclidean norm. Assumption.  2 1A A      and 2 1    . Where ,   

are unknown positive constants.  
 
 

3. Active Sliding Mode Controller Design and Analysis 
According to the active control design procedure, the output of controller is used to 

eliminate the nonlinear part of the error dynamics. Therefore the ( )u t is considered as 
 

( ) ( ) ( , )u t G t F x y                                                                                           (8) 
 
Hence the error system can be rewritten as: 
 

2 2 1 2 1( ) ( ) ( )e A e A y A x t t G t                                                               (9) 
 
There are many possible methods for the control input G(t). Without loss of generality, 

we choose the sliding mode control law as follows: 
 

( ) ( )G t Kv t                                                                   (10) 

 
Where T

1 2 1[ , , , , ]n nK k k k k  is a constant gain vector and ( )v t satisfies: 

 

( )                  0
( )

( )                  0

v t s
v t

v t s





  


                                                    (11) 

 
Where ( )s s e is a switching surface. 

The sliding mode control method involves two major stages: (1) Choosing a suitable 
sliding surface; and (2) designing the sliding mode controller. 

In general, the switching surface can be represented as follows: 
 
s Ce                                                                        (12) 

 
Where T

1 2 1[ , , , , ]n nC C C C C   is a constant vector. 

When in sliding surface, the controlled system should satisfy the following conditions: 
 

0s Ce  and 0s Ce                                                                                  (13) 
 
Generally the sliding mode control method applies the constant plus proportional rate 

reaching law. The reaching law is expressed as:  
 

sgn( )s s rs                                                                 (14) 

 
Where  , r are positive real numbers. 

From (9) and (14), it is obvious that 
 

 2 2 1 2 1

sgn( )

 ( ) ( ) ( )

s s rs Ce

C A e A y A x t t Kv t


  

    

       

 
                                  (15) 

 
Hence, the ( )v t can be expressed as follow: 

 

 1
2 2 1 2 1( ) ( ) ( ) ( ) sgn( )v t CK CA e C A y C A x C t C t rs s                              (16)  

 
Where the existence of 1( )CK  is a necessary condition. 
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There exist system uncertainties and external disturbances in (16). In this regard, we 
propose the following control law: 

 
1

2 ˆ ˆ( ) ( ) sgn( ) sgn( ) sgn( )v t CK CA e C s C s rs s                                        (17) 

 
Where ˆ ˆ,  are estimations for ,   of Assumption 2.   

To tackle the bounds of the error system uncertainties and external disturbances, the 
suitable adaptive laws are defined as follow: 

 
ˆ ˆ,Cs Cs                                                                                                  (18) 

 
To prove that the error dynamics (6) is asymptotically stable, we choose the Lyapunov 

function defined by the equation 
 

2 2 21 1 1
 

2 2 2
V s                                                                (19)      

 
Where ˆ ˆ,          . 

Taking derivative of the Lyapunov function candidate with respect to time, one has 
 

1
2 2

2 1 2 1

2
2 1

2 1

ˆ ˆ{ ( ) ( sgn( ) sgn( ) sgn( ) )

  ( ) ( )}

ˆ ˆsgn( ) sgn( ) sgn( ) ( )

   ( ( ) ( ))

sgn(

V ss

sC A e K CK CA e C s C s s rs

A y A x t t

s s rs C s s C s s sC A y A x

sC t t

s

 

  

    

   

   





  

     

       

        

   

 

     

    

    
2

2 1

2 1

2

2

2

ˆ ˆ) sgn( ) sgn( )

( ) ( )

ˆ ˆsgn( ) sgn( ) sgn( )

ˆ ˆ ˆ ˆsgn( ) ( ) ( )

ˆsgn( ) ( )

s rs C s s C s s Cs A y A x

Cs t t

s s rs C s s C s s Cs Cs

s s rs Cs Cs Cs Cs

s s rs Cs

  

   

      

          

  

      

   

        

          

     

    

    

  

ˆ ˆ ˆ( ) ( ) ( )Cs              

     

2 0s rs                                                                                               (20) 

 
Therefore, the condition for Lyapunov stability is satisfied. States of the error system 

can reach the sliding surface asymptotically. 
 
 

4. Numerical Simulations 
In this section, the numerical simulation results of two methods with different control law 

are discussed and validate the effectiveness and superiority of sliding mode controller that we 
proposed in Section 3.  

The hyperchaotic Chen system is described by: 
 

1 2 1 4

2 1 1 3 2

3 1 2 3

4 2 3 4

( )x a x x x

x bx x x cx

x x x dx

x x x rx

  
   
  
  









                                                           (21)  

 
Where 35, 7, 12, 3, 0.5a b c d r     . 

The hyperchaotic Lorenz system is described by: 
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1 2 1 4

2 1 3 1 2

3 1 2 3

4 1 3 4

( )x a x x x

x x x bx x

x x x cx

x x x dx



  
   
  
   









                                                            (22)  

 
Where 10, 28, 8 / 3, 1.3a b c d    . 
 
4.1. Synchronization between Two Identical Chen Systems 

When    T T
1 2 1, , , 1, 1, 1, 1n n           , the synchronization type is complete 

synchronization. We choose the Chen system for the master and slave system. Let us consider 
that: 

 

1

3   1    0   1

0  -2   0   0
=

1   0   0   0

0   0   1   0

A

 
 
 
 
 
 

 
1

0.5 cos(50 )

0.5 sin(50 )
( )=

   sin(50 )

 sin(50 )

t

t
t

t

t



 
 
 
 
 

 

                                                (23) 

 

2

2    1    0  0

0  -2   0   0
=

0   2   0   0

0   0   1   0

A

 
 
 
 
 
 

2

0.1cos(50 )

0.3 sin(50 )
( )=

0.2 sin(50 )

0.2 sin(50 )

t

t
t

t

t



 
  
 
 
 

                                                     (24) 

 
Hence, the master system can be rewritten as the following: 
 

1 2 1 4 1 2 4

2 1 1 3 2 2

3 1 2 3 1

4 2 4 33

35( ) 3 0.5cos(50 )

7 12 2 0.5sin(50 )

3 sin(50 )

0.5 sin(50 )

x x x x x x x t

x x x x x x t

x x x x x t

x x x x x t

      
     
    
    









                                                  (25)  

 
The slave system can be rewritten as the following: 

 
1 2 1 4 1 2 4 1

2 1 2 3 2 2 2  

3 1 2 3 1 3

4 2 3 4 3 4

35( ) 2 0.5cos(50 ) ( )

7 12 2 0.3sin(50 ) ( )

3 2 0.2sin(50 ) ( )

0.5 0.2sin(50 ) ( )

y y y y y y y t u t

y y x y y y t u t

y y y y y t u t

y y y y y t u t

       
      
     
     









                                          (26) 

 
Make e y x  , we can get the error system: 

1 2 1 4 1 2 11

2 1 2 2 1 ) 2  3 3

3 3 1 1 2 1 31 2

4 4 3 2 3 43 2

35( ) 2 2 ( )

7 (12 2) ( 0.2sin(50 ) ( )

3 1.2sin(50 ) ( )

0.5 0.8sin(50 ) ( )

e e e e e e x u t

e e e x y x x t u t

e e e y y y x x t u t

e e e y y x x t u t

      
       
        
      









                                    (27) 

 

The control parameters is chosen as  0,  2,  1,  -1C  ,  T
1,  1,  0,  1K  then the sliding 

surface  2 3 42s e e e   .  

In simulation the initial values are assumed as           1 2 3 40 ,  0 ,  0 , 0   1,2,-1,2x x x x  , 

          1 2 3 40 ,  0 ,  0 , 0   2,5,-1,2y y y y  .The numerical simulation results are shown in Figure 1 

and Figure 2. Figure 1 shows the states of the master system and the slave system. It can be 
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seen that the slave system can trace the master system successfully when output of the 
proposed controller is in action at 5 second. 

 
 

 
 

  
 

Figure 1. System States under the Proposed Method in the Paper 
 
 

 
Figure 2. Time Response of the Update Parameter ψ,η 

 
 

4.2 Anti-synchronization between Lorenz System and Chen System 

The    T T
1 2 1, , , 1, 1, 1, 1n n           , the synchronization type is anti-sync- 

hronization. We choose the Chen system and Lorenz system for the master and slave system. 
Let us consider that:  

 

1 2

3   1    0   1

0  -2   0   0
=

1   0   0   0

0   0   1   0

A A

 
 
   
 
 
 

1 2

0.5 cos(50 )

0.5 sin(50 )
( )= ( )=

   sin(50 )

sin(50 )

t

t
t t

t

t

 

 
 
 
 
 

 

                                          (28) 

0 5 10 15 20
-40

-30

-20

-10

0

10

20

30
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3
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0 5 10 15 20
-100

-80

-60

-40

-20

0

20

40

60
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Hence, the master system can be rewritten as the following: 
 

1 2 1 4 1 2 4

2 1 1 3 2 2

3 1 2 3 1

4 2 3 4 3

35( ) 3 0.5cos(50 )

7 12 2 0.5sin(50 )

3 sin(50 )

0.5 sin(50 )

x x x x x x x t

x x x x x x t

x x x x x t

x x x x x t

      
     
    
    









                                                    (29)  

 
The slave system can be rewritten as the following: 

 
1 2 1 4 1 2 4 1

2 1 3 1 2 2 2

3 1 2 3 1 3

4 1 3 4 3 4

10( ) 3 0.5cos(50 ) ( )

28 2 0.5sin(50 ) ( )

28 / 3 sin(50 ) ( )

1.3 sin(50 ) ( )

x y y y y y y t u t

x y y y y y t u t

x y y y y t u t

x y y y y t u t



       
      
     
      









                                    (30) 

 
Make e y x  , the error system shown that: 

 
1 2 1 1 4 2 2 1 1

2 1 2 ) 2  1 1 3 1 3

3 3 1 3 2 1 31 2

4 4 3 44 1 3 2 3

10( ) 3 2 25( ) cos(50 ) ( )

7 21 2 ( sin(50 ) ( )

3 19 / 3 2sin(50 ) ( )

0.5 0.8 2sin(50 ) ( )

e e e e e e x x t u t

e e y e y y x x t u t

e e e y y y x x t u t

e e e y y y x x t u t

        
       
        
       









                                 (31) 

 

The control parameters is chosen as  0,  2,  1,  -1C  ,  T
1,  1,  0,  1K  then the sliding 

surface 2 3 42s e e e   .                                                                                                                       

In simulation the initial values are assumed as           1 2 3 40 ,  0 ,  0 , 0   1,2,-1,2x x x x  , 

          1 2 3 40 ,  0 ,  0 , 0   2,5,-1,2y y y y  .The numerical simulation results are shown in Figure 3 

and Figure 4. Figure 3 shows the states of the master system and the slave system. Obviously, 
the anti-synchronization is realized when the control input are active at 5 second. 

 
 

  

  
 

Figure 3. System States under the Proposed Method in the Paper 

0 5 10 15 20
-30

-20

-10

0

10

20

30

t/s

x1
,y

1

 

 
x1
y1control in action

0 5 10 15 20
-30

-20

-10

0

10

20

30

t/s

x2
,y

2

 

 
x2
y2control in action

0 5 10 15 20
-40

-20

0

20

40

60

t/s

x3
,y

3

 

 
x3
y3control in action

0 5 10 15 20
-100

-50

0

50

100

t/s

x4
,y

4

 

 
x4
y4control in action



TELKOMNIKA  e-ISSN: 2087-278X  
 

Synchronization of Hyperchaotic Systems under Active Adaptive Sliding Mode… (Minxiu Yan) 

6735

 
 

Figure 4. Time Response of the Update Parameter ψ,η 
 
  

The time responses of the adaptive parameters ψ and η are shown in Figure 2 and 
Figure 4 in two examples. Obviously, the adaptive parameters gradually converge to some 
constant. 

In comparison with the sliding mode method, our proposed scheme estimated the 
bound of the uncertainties and external disturbances, which in turn proves that our adaptive 
gain law is effective. 

 
 

5. Conclusion 
Chaotic systems which are required synchronization and anti-synchronization need 

good control systems. By choosing the appropriate parameters, the active adaptive sliding 
mode controller can have good synchronization result. The simulation results have validated the 
proposed controller. 
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