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 The conjugate gradient technique is a numerical solution strategy for finding 

minimization in mathematics. We present a simple, straightforward, 

efficient, and resilient conjugate gradient technique in this study. To address 

the convergence difficulty and descent property, the new technique is built 

on the quadratic model. Under some assumptions, the new improved 

approach meets the convergence characteristics and the adequate descent 

criterion. The suggested unique strategy is substantially more efficient than 

the classic FR method, according to our numerical analysis. The number of 

function evaluations, iterations and restarts are all included in the numerical 

results. The computational efficiency of the proposed approach is proved by 

comparative results. 
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1. INTRODUCTION 

Use the following formula to get the minimum of a continuously differentiable function: 

 

Min Ƒ(ӽ) , ӽ ∈ 𝑅𝑛 (1) 

 

the iterative methods we use are iterative approaches of the following form: 

 

ӽƙ+1 = ӽƙ + 𝜆ƙɗƙ (2) 
 

in (2) shows that various stepsizes 𝜆𝑘 and directions ɗ𝑘  result in distinct approaches, as shown in [1]. For 

example, in the quadratic case, 𝜆𝑘 is an accurate step size as (3): 

 

𝜆ƙ = −
ǥƙ

𝑇ɗƙ

ɗƙ
𝑇𝑄ɗƙ

 (3) 

 

for further information, see [2]. After that, the step length 𝜆𝑘 is selected to meet the Wolfe conditions, which 

are as (4) and (5): 

 

Ƒƙ+1 ≤ “Ƒƙ + 𝛿𝜆ƙǥƙ
𝑇ɗƙ (4) 

 

https://creativecommons.org/licenses/by-sa/4.0/
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ɗƙ
𝑇ǥƙ+1 ≥ 𝜎ɗƙ

𝑇ǥƙ (5) 

 

where 0 < 𝛿 < 𝜎 < 1, see [3]. The search directions in conjugate gradient algorithms can be specified 

recursively:  

 

ɗƙ+1 = −ǥ
ƙ+1

+ 𝛽
ƙ
ş

ƙ
 (6) 

 

where 𝛽
𝑘
 is selected in a way that ɗ𝑘 and ɗ𝑘+1 must satisfy the conjugacy property. To compute the scalar 

𝛽
𝑘
, a number of formulae have been presented. Fletcher and Reeves (FR) [4] and Dai and Yuan (DY) [5] are 

two well-known formulae. They're provided by: 

 

𝛽ƙ
𝐹𝑅 =

ǥƙ+1
𝑇 ǥƙ+1

ǥƙ
𝑇ǥƙ

 , 𝛽ƙ
𝐷𝑅 =

ǥƙ+1
𝑇 ǥƙ+1

ɗƙ
𝑇𝑦ƙ

 (7) 

 

The other nonlinear conjugate gradient techniques, for example, are the subject of a lot of study in 

this area (e.g. see [6]-[9]). Many writers have researched the nonlinear conjugate gradient technique in recent 

years, particularly from the perspective of global convergence. The nonlinear conjugate gradient technique 

was often studied independently because its characteristics might vary greatly depending on 𝛽𝑘 (see Powell 

[10]). 

We'd want to close the new search direction to the quasi-Newton direction later because of the 

theoretical usefulness of quasi-Newton approaches. In this situation, we're looking for a parameter that will 

allow us to: 

 

−𝑄ƙ+1
−1 ǥƙ+1 = −ǥƙ+1 + 𝛽ƙşƙ (8) 

 

where 𝑄𝑘+1 is the Hessian matrix. (See [11], [12]) for a useful resource for research describing the most 

recent CG coefficients with notable results and numerous 𝛽𝑘 adjustments. The approaches are efficient in 

reality, according to numerical findings, and the methods' convergence guarantees are comparable to the 

classical variations. Our key contribution is a novel coefficient derivation based on the second-order Taylor's 

series, which we utilized to build an inverse Hessian matrix for computing the search direction and ensuring 

global convergence.  

 

 
2. OUR NEW COEFFICIENT CONJUGATE 

A second order Taylor series is used to derive the new coefficient conjugate. Let we clarify: 

 

Ƒ(ӽ) = Ƒ(ӽƙ+1) + ǥƙ+1
𝑇 (ӽ − ӽƙ+1) +

1

2
 (ӽ − ӽƙ+1)𝑇𝑄(ӽƙ+1)(ӽ − ӽƙ+1) (9) 

 

the Ƒ(ӽ) has the following gradient:  

 

ǥƙ+1 = ǥƙ + 𝑄(ӽƙ+1)şƙ (10) 

 

putting (3) in (9) and using ELS search, we get: 

 

şƙ
𝑇𝑄(ӽƙ+1)şƙ = (Ƒƙ+1 − Ƒƙ) + 3 2⁄ 𝜆ƙǥƙ

𝑇ǥƙ (11) 

 

the yielded matrix 𝑄(ӽ𝑘+1) can be as: 

 

𝑄(ӽƙ+1) =
(Ƒƙ+1−Ƒƙ)+3 2⁄ 𝜆ƙǥƙ

𝑇ǥƙ

şƙ
𝑇şƙ

 𝐼𝑛𝑥𝑛 (12) 

 

putting 𝑄(ӽ𝑘+1) in (8) we get: 

 

𝛽ƙ = (1 −
şƙ

𝑇şƙ
 

(Ƒƙ+1−Ƒƙ)+3 2⁄ 𝜆ƙǥƙ
𝑇ǥƙ

)
ǥƙ+1

𝑇 𝑦ƙ

şƙ
𝑇𝑦ƙ

 (13) 

 

We will do some algebra manipulations on (14), in order to achieve an ideal direction of descent: 
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𝛽ƙ =
1

şƙ
𝑇𝑦ƙ

(𝑦ƙ − 𝜔
‖𝑦ƙ‖2

şƙ
𝑇𝑦ƙ

şƙ
 )

𝑇

ǥƙ+1 (14) 

 

where: 

 

𝜔 =
(şƙ

𝑇𝑦ƙ)

‖𝑦ƙ‖2 [
şƙ

𝑇𝑦ƙ

şƙ
𝑇şƙ

 ∗
şƙ

𝑇şƙ
 

(Ƒƙ+1−Ƒƙ)+3 2⁄ 𝜆ƙǥƙ
𝑇ǥƙ

 

] (15) 

 

this is the formale that will be utilized to do the convergence analysis. The application of optimization theory 

and methods to new formulations is a vast field of applied mathematics. The method described by is denoted 

by New (13). As follows, we suggest a novel conjugate gradient method.  

 

New Algorithm: 
1): Give ӽ1 ∈ 𝑅𝑛. Set 𝑘 = 1 and ɗ1 = −ǥ1. If ‖ǥ1‖ ≤ 10−6, then, stop. 

2): Evaluate 𝜆𝑘 > 0 satisfying a (4-5). 

3): Let ӽ𝑘+1 = ӽ𝑘 + 𝜆𝑘ɗ𝑘. If ‖ǥƙ+1‖ ≤ 10−6, then come to a halt. 

4): Evaluate 𝛽𝑘 by the formulae (14) and ɗ𝑘+1 by (6). 

5): Let 𝑘 = 𝑘 + 1 and continue with step 2. 

 

Theorem (2.2): Consider the CG technique (2), (4), (5), and the descent direction ɗ𝑘+1 provided by (6) with 

(14) is adequate. 

 

Proof: Since ɗ0 = −ǥ
0
 we get ɗ0

𝑇ǥ
0

= −‖ǥ
0
‖

2
≤ 0. Suppose that ǥ

ƙ
𝑇ɗƙ < 0 for all 𝑘 ∈ 𝑛. To finish the 

proof, we must prove that the theorem holds for all 𝑘 + 1. Because 𝑄(ӽ𝑘+1) is the quadratic model's search 

direction matrix, we may write it like this: 

 

𝑄(ӽƙ+1) =
(Ƒƙ+1−Ƒƙ)+3 2⁄ 𝜆ƙǥƙ

𝑇ǥƙ

şƙ
𝑇şƙ

 𝐼𝑛𝑥𝑛 = 𝜔 𝐼𝑛𝑥𝑛 (16) 

 

now, we have to prove that 𝜔 > 0. Using Wolfe's condition for determining the value of 𝜔, we have: 

 

𝜔 =
𝜆ƙ𝛿ɗƙ

𝑇ǥƙ+3 2⁄ 𝜆ƙǥƙ
𝑇ǥƙ

şƙ
𝑇şƙ

  (17) 

 

since ɗƙ
𝑇ǥƙ < −𝑐ǥƙ

𝑇ǥƙ, then, using the equation above, we obtain: 

 

𝜔 =
3 2⁄ 𝜆ƙǥƙ

𝑇ǥƙ+𝜆ƙ𝛿ǥƙ
𝑇ǥƙ

şƙ
𝑇şƙ

  (18) 

 

because the first half of (18) is greater than the second, we get: 

 

𝜔 > 0 (19) 

 

we may describe the search directions of the new approach as follows using (6) and (14) and some algebraic 

manipulations: 

 

ɗƙ+1 = −𝑄ƙ+1
−1 ǥƙ+1 = −

şƙ
𝑇şƙ

 

(Ƒƙ+1−Ƒƙ)+3 2⁄ 𝜆ƙǥƙ
𝑇ǥƙ

ǥƙ+1 (20) 

 

multiplying (20) by ǥƙ+1, we have: 

 

ɗƙ+1
𝑇 ǥƙ+1 = −

şƙ
𝑇şƙ

 

(Ƒƙ+1−Ƒƙ)+3 2⁄ 𝜆ƙǥƙ
𝑇ǥƙ

‖ǥƙ+1‖2 = −𝜔‖ǥƙ+1‖2 (21) 

 

since 𝜔 > 0, from (17) we obtained: 

 

ɗƙ+1
𝑇 ǥƙ+1 = −𝜔−1‖ǥƙ+1‖2 ≤ −𝑐‖ǥƙ+1‖2 (22) 
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3. CONVERGENCE ANALYSIS 

To do this, establish the “global convergence” of new Algorithm is one of the most property of 

numerical algorithms, the assumptions must be made: The Ω = {ӽ ∈ 𝑅𝑛/Ƒ(ӽ) ≤ Ƒ(ӽ1))} is a confined level 

set. The gradient of function g is Lipschitz continuous in some neighborhood Λ of Ω, i.e., there exists, a 

constant, 𝐿 >  0 such that: 

 
‖ǥ(𝑜) − ǥ(𝜏)‖ ≤ L‖𝑜 − 𝜏‖ , ∀o, τ ∈ Λ (23) 

 

for more details see [8]. We show why the Dai et al. [13] theorem is crucial for determining global 

convergence. 

 

Lemma (3.1): Let ӽ𝑘 be produced by (2), ɗ𝑘 satisfy descent property and 𝛼𝑘 be satisfy (4-5). If: 

 

∑
1

‖ɗ𝑘+1‖2
∞
𝑘≥0 = ∞ (24) 

 

then: 

 

lim
ƙ→∞

inf ‖ǥƙ+1‖ = 0 (25) 

 

we began by stating our paper's key theorem. 

 

Theorem (3.2): Assume that Ƒ(ӽ) meets Assumptions 1 and 2. Let {ӽ𝑘} be the sequence that (6) generates 

(14). If Wolfe criteria (4) and (5) are satisfied by step size 𝜆𝑘, then: 

 

lim
ƙ→∞

inf ‖ǥƙ‖ = 0 (26) 

 

Proof: Using (14) as an example of  𝛽𝑘 in (6), we get: 

 

‖ɗƙ+1‖ = ‖−ǥƙ+1 + 𝛽ƙ
𝑁𝑒𝑤ɗƙ‖ ≤ ‖ǥƙ+1‖ + ‖(𝑦ƙ − 𝜔

‖𝑦ƙ‖2

şƙ
𝑇𝑦ƙ

 şƙ
 )‖

‖𝑦ƙ
 ‖

‖şƙ
 ‖‖𝑦ƙ‖

‖ɗƙ‖ (27) 

 

and combining ş𝑘 = 𝜆𝑘ɗ𝑘 , we get: 
 

‖ɗƙ+1‖ ≤ ‖ǥƙ+1‖ +
‖𝑦ƙ

 ‖‖ǥƙ+1‖+𝜔‖ǥƙ+1‖‖𝑦ƙ
 ‖

𝜆ƙ‖ɗƙ‖‖𝑦ƙ
 ‖

‖ɗƙ‖ ≤ [
𝜆ƙ+1+𝜔

𝜆ƙ
] ‖ǥƙ+1‖ (28) 

 

which results in: 

 

∑
1

‖ɗƙ‖2ƙ≥1 ≥ [
𝜆ƙ

𝜆ƙ+1+𝜏
]

1

𝑇
∑ 1ƙ≥1 = ∞ (29) 

 

we may deduce from Lemma 1 that lim
ƙ→∞

inf ‖ǥƙ‖ = 0 is identical to lim
ƙ→∞

‖ǥƙ‖ = 0 for a uniformly convex 

function. 

 

 

4. NUMERICAL RESULTS  

On a series of unconstrained optimization test problems, this section shows the computing efficiency 

of a Fortran implementation of the novel CG technique and the FR-Algorithm. Readers who are interested 

can access the papers and references listed below ([14], [15]). The unconstrained concerns in [16] are the test 

problems. We investigated numerical experiments with 100 and 1000 variables for each test function for 15 

large scale unconstrained optimization problems in extended or generalized form. Many papers have 

proposed this method for optimization problems [17]-[20]. As for the papers, it is concerned with the 

convergence feature [21]-[24]. As a termination condition, we employ the inequality ‖ǥƙ+1‖ ≤ 10−6. The 

𝛿 = 0.001 and 𝜎 = 0.9 were used to evaluate both methods.The numerical findings are reported in Table 1. 

“The following are the definitions for each column: NI: the total number of iterations, NR: the total number 

of restart, NF: the total number of evelation functions”. Table 1 shows how many issues these algorithms 

have solved in terms of iterations (NI), restart (NR) and function evaluations (NF). 
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Table 2 shows that, overall, the tools score 100 percent for the FR-method, whereas the new 

approach (New) scores 22 percent NI, 23 percent NR, and 52 percent NF. “The results are shown in Figures 

1, 2 and 3. Note that a performance measure introduced by Dolan and More [25], [26] method was 

employed”. 

 

 

Table 1. The FR and new methods' numerical results 
New algorithm FR algorithm 

P. No. 
NF NR NI NF NR NI n 

89 23 43 93 18 47 100 Extended Rosenbrock 

82 21 37 131 45 78 1000 

34 11 18 52 15 32 100 Extended Beale 

35 11 19 42 10 22 1000 

31 8 12 27 6 10 100 Penalty 

47 13 22 191 16 24 1000 

23 7 11 31 9 15 100 Extended PSC1 

17 6 8 17 6 8 1000 

171 44 73 174 32 89 100 Extended Maratos 

157 44 69 211 40 107 1000 

56 15 24 65 12 32 100 Extended Q. Penalty 

90 20 37 116 22 53 1000 

184 36 117 196 49 130 100 Quadratic QF2 

580 106 367 593 119 364 1000 

18 6 10 18 4 9 100 ARWHEAD (CUTE) 

37 6 9 82 7 12 1000 

23 7 12 25 7 13 100 NONDIA (CUTE) 

25 6 12 29 7 15 1000 

134 25 85 123 21 74 100 Partial Quadratic 

543 85 329 616 88 370 1000 

49 6 28 49 10 30 100 Broyden Tridiagonal 

67 11 38 63 10 34 1000 

56 17 34 1202 50 69 100 EDENSCH (CUTE) 

450 30 42 1967 82 98 1000 

29 11 24 45 11 23 100 LIARWHD (CUTE) 

43 16 22 55 11 27 1000 

30 11 18 33 11 20 100 DENSCHNA (CUTE) 

32 11 19 35 11 19 1000 

30 10 16 80 22 49 100 DENSCHNC (CUTE) 

27 10 14 166 67 129 1000 

3189 633 1569 6527 818 2002  Total 

 

 

Table 2. The Performance percentage for the new algorithm compared with FR method 
NF NR NI  

.100 % .100 % .100 % FR 

48.85 % 77.38 % 78.37 % New 

 

 

 
 

Figure 1. Performance measure based on the NI 
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Figure 2. Performance measure based on the NR 

 

 

 
 

Figure 3. Performance measure based on the NF 

 

 

5. CONCLUSION 

On the basis of the quadratic model, we proposed a unique conjugate gradient technique. The 

proposed technique satisfies both the descent and convergence requirements. According to the numerical 

data, the new strategy outperformed the FR-method in terms of the number of iterations, restart, and 

evaluation functions. In addition, the new method surpasses the previous FR. 
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