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Abstract 
This paper presents a composite control scheme based on singular perturbation theory, which 

decouples the system of flexible-link manipulator into rigid motion (slow subsystem) and flexible vibration 
(fast subsystem) two different time scale subsystems. For the slow subsystem, a controller combined 
computer torque method and robust control is employed to track the desired trajectory, while, a state 
feedback control is used to stabilize the fast subsystem to suppress the vibration. The simulation results 
show that the proposed control strategy has good tracking performance and suppress the flexible-link 
vibration effectively. 
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1. Introduction 
Flexible manipulators have lots of advantages, such as light weight, high speed and 

high payload to robot weight ratio. Compared to rigid robot, it require less material, have less 
overall cost, are more maneuverable and are safer to operate [1]. All of these make flexible 
manipulator have been widely applied in space, defense military, industry etc. and attracted 
more and more attention. 

But the elastic vibration caused by joint flexibility of flexible robot makes the model of 
motion more complicate. For example, the order of the related dynamics become twice that of 
rigid robots and the number of degree of freedom is larger than the number of control input [2]. 
Therefore, the control of flexible manipulator is a complex and challenging problem. 

Considerable approaches on the control problem of flexible joint robot have been 
introduced and various control algorithms have been proposed in the literatures. Feedback 
linearization [3], is good for tracking control of nonlinear systems, however, the method depends 
not only on the exact knowledge of the dynamic parameters but also on the joint acceleration 
[4]. To deal with the unavoidable uncertainties of flexible manipulator, adaptive control 
schemes[5-6] were developed, which can adjust its control law to the parameters change, but 
with the huge computation. Robust control [7] also has the ability to overcome parametric 
uncertainties and external disturbance, but the upper bound of uncertainty is needed. Sliding 
mode control, back-stepping approaches and PD controller etc. are all widely used in robot 
control. 

Recently years, singular perturbation technique [8-9] has been shown to be a 
convenient strategy for the control of flexible manipulator. It is well known that the dynamics of 
singularly perturbed systems can be approximated by the dynamics of the corresponding 
reduced-order and boundary-layer subsystems for sufficiently small values of the singular 
perturbation parameter. the flexible manipulator can be decoupled into rigid motion and elastic 
vibrations by singular perturbation theory. In this way, the slow subsystem represents rigid 
motion is of the same order as the rigid manipulator and can also apply various control schemes 
developed for the rigid robot. While, the slow state variables being parameters in the fast 
subsystem, which represents flexible vibration. 

This paper proposes a composite control scheme for flexible manipulators based on the 
singularly perturbation theory. A controller combined computer torque method and robust 
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control is employed to control the slow subsystem to track the desired trajectory while a state 
feedback control scheme is used to the fast subsystem to suppress the elastic vibration. 

The paper is organized as follows: section 2 gives the dynamic description of flexible 
manipulator. Singularly perturbed model is depicted in section 3. Section 4 presents the 
controller of slow subsystem and fast subsystem respectively and forms the overall control 
input. Simulation results are addressed in section 5 to demonstrate the performance of the 
proposed method. Finally, a brief conclusion is given in section 6. 

 
 

2. Dynamic Equation of Flexible-link Manipulator  
From the Euler–Lagrange formulation and assumed modes approach, the dynamic 

equation of n-link flexible manipulator can be derived as: 
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Where,  1...
T

n   is the vector of joint variable.  1...
T

mq q q is the vector of modal variables. In 

which,  1...
T

i i imq q q . n , m represent the number of joint angle and modal respectively.
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 is the positive definite symmetric inertia matrix. 1C , 2C is the vector 

corresponding to coriolis, centrifugal. In which, the effect of gravity is ignored, because the 
motion of each link is assumed to be in the horizontal plane. 1S ,

 

2S is the vector containing 

terms of the interactions among joint angle, modal displacements and their time derivatives. 
K is the matrix corresponding to the structural stiffness of the flexible links.  is the control 
torque. 
 
 
3. Singularly Perturbed Model  

As previously mentioned, a successful solution to the control problem of flexible 
manipulator  has been provided by the singular perturbation technique, which essentially uses a 
perturbation parameter to divide the complex dynamic systems into simpler subsystems at 
different time scales.The procedure to decouple the flexible manipulator model into a two-time-
scale singular perturbation model is as follows. 

Inertia matrix D is positive definite symmetric and non-singular, so there is an inverse 
matrix H, which can be represented as follow: 

 

1 rr rf

fr ff

H H
H D

H H
  

   
                                                                         

   (2) 

  
Where n n

rrH R  , n m
rfH R  , m m

ffH R  .The subscripts r and
 

f refer to the sub matrices 

associated with the joint and modal variables, respectively. 
Multiply (1) by (2) from the left, rearrange terms and then Equation (1) can be written 

as: 
 

1 2 1 2rr rf rr rf rf rrH C H C H S H S H Kq H       

                    
            (3) 
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(4) 

Now, let us define
1

k
   , where, min( )ijk k  is the smallest stiffness constant. Then 

introduce new fast variable 
q

z


  and scaled stiffness matrix K K  
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Using these new variables, Equation (3), (4) can be rewritten as: 
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On the right side of these two equations, the superscript indicates that the corresponding 

quantities have been multiplied by K . 
It can be shown that the system described by Equation (5) have a boundary layer 

phenomenon in the fast variable z  because of the presence of  . Formally, setting 0  and 

substituting into Equation (5), (6) gives: 
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Where, subscripts indicates that the system is considered in the slow time scale. s is the 

control torque in the slow time scale, under which ,the actual output angle  will tend to d . 

From Equation (8), we can obtain: 
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And it is not difficult to find that there satisfies the following relation: 
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(10) 

 
Combining Equation (9), (10) and (7), yields the dynamic equation of slow subsystem. 
 

11 1( ,0) ( , )s s s sD C      
      

                                                                (11)  

 
In order to deduce the dynamic equation of fast subsystem, It is essential to define a 

new fast time-scale and given as /t   . Introducing new fast variable 1 szf z z  , 

2zf z  . 

Then leads to the dynamic equation of fast subsystem as follows: 
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Where f is the control torque of fast subsystem, which is used to suppress the elastic vibration. 
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4. Control Law Design 
From the above singular perturbation model of flexible manipulator, combining s  

and 

f  
forms a composite control law: 

 

s f                                                                 (14) 

 
Where s  is the tracking controller for the slow subsystem and f  is the stabilizer for the fast 

subsystem,  is the overall control torque. 
Figure 1 gives the structure for the composite controller. 
 
 

 
 

Figure 1. The Structure of Composite Controller 
 
 
4.1. Controller Design for the Trajectory Tracking Subsystem 

When the slow moving subsystem (11) is exactly known, the following controller based 
on the computed torque method can guarantee the asymptotic convergence of the system 
output tracking error. 

 

11( )s d Ps vsD k e k e                                                              (15)  

 

In which, d is the desired joint, de      is the tracking error. psk , vsk are defined as the gain 

matrix of position and velocity, respectively. 
Substituting (14) into (10) yields: 
 

0vs pse k e k e                                                                                   (16) 

 
Which indicates that the tracking error will converge to zero with proper choice of gains. 

But in practice the robot system can not be accurately known. When the system exists 
unmodeled dynamic and external disturbance, the control law (15) is not able to guarantee a 
good dynamic performance and stability of system. In order to eliminate the impact of system 
uncertainty, we add the robust compensation item. Then the control law of slow subsystem can 
be rewritten as: 
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Where,
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is used to compensate the influence of uncertainty. s e e  ,  is the 

upper bounded of uncertainty,  is a positive number. 

 
4.2. Controller Design for the Fast Subsystem 

The state space representation of fast subsystem can be expressed as: 
 

fX AX B 
                                                       (18) 
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Where: 
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The system described by Equation (18) is a linear system, which can easily be shown to 

be completely controllable. A fast feedback controller can damp out the deflection at steady 
state as fast as possible, is represented as: 

 

f fk X                                                                (19) 

 
Where, the feedback gain fk can be obtained through optimizing the cost function using LQR 

approach and is given by: 
 

1 T
fk R B P                                                        (20) 

 
Where P is obtained from the Riccati equation. 
 

1 0T TA P PA PBR B P Q                                     (21) 

 
In which, weighting matrix R , Q are the positive definiteness matrix. 

 
 
5. Experimental Results  

In order to demonstrate the validation of the proposed method, in this section, a planar 
manipulator with one link is taken into consideration. The manipulator structure is shown in 
Figure 2. 

 
 

 
Figure 2. The Structural Model of One-link Flexible Manipulator 

 
 
The model of one-link flexible manipulator has been description in section 2. The 

detailed matrix and its elements expression in the model can be seen in literature [10]. And 
parameters of the flexible manipulator for the experiment are shown in Table 1. 

 
 

Table 1. Experiment Parameters 
Beam length Beam mass Joint inertia Flexural rigidity Payload mass Payload interia 
1m 0.2kg 1kg.m2 60N m2 0.1kg 0.001 kg.m2 

 
 
A very simple desired trajectory is given by sin(2 )d t  . The initial conditions of the 

modes and its time derivative have been consideration as 1 2 0q q  , 1 2 0q q   . 
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The slow subsystem controller parameters in (17) are considered as 60psk  , 50vsk  , 

2  , 1  and 0.2  .For the fast subsystem, the gain in (19) is chosen as: 

 

 
0.1220 0.5616

0.5948 1.1316fk
 

  
 

 
 
The simulations are shown in Figure 3-5.  
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Figure 3. Tracking Response Figure 4. The First and Second Mode 
 

                                 
Tracking response is depicted in Figure 3, which shows that position tracking control 

can be achieved using proposed control strategy. The actual output trajectory can tend to 
desired trajectory well. Figure 4 shows the first and second modes for the flexible-link, from 
which, we can find that the elastic vibration can be suppressed effectively by the method. 
Although there are tiny vibrations in the initial stage, the vibration can be restrained to almost 
zero in very short time. The overall control input is shown in Figure 5. 
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Figure 5. Control Torque 
 
 

3. Conclusion 
The paper proposes a composite control strategy based on singular perturbation model 

of flexible manipulator, which decouples the system of flexible manipulator into two different 
time scale subsystems. Representative rigid motion slow subsystem and flexible vibration fast 
subsystem respectively. The combination of computer torque method and robust compensation 
is employed to control the slow subsystem to track the desired trajectory. At the same time, 
state feedback based on LQR approach is used to stabilize the fast subsystem and control the 
elastic vibration. The simulation results on the one-link flexible manipulator show that the 
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proposed scheme is able to move the flexible link along the given trajectory while suppressing 
the vibration that are excited during the motion of the system. 
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