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 Conjugate gradient methods (CG) constitute excellent neural network 

training methods that are simplicity, flexibility, numerical efficiency, and 

low memory requirements. In this paper, we introduce a new three-term 

conjugate gradient method, for solving optimization problems and it has 

been tested on artificial neural networks (ANN) for training a feed-forward 

neural network. The new method satisfied the descent condition and 

sufficient descent condition. Global convergence of the new (NTTCG) 

method has been tested. The results of numerical experiences on some well-

known test function shown that our new modified method is very effective, 

by relying on the number of functions evaluation and number of iterations, 

also included the numerical results for training feed-forward neural networks 

with other well-known method in this field. 
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1. INTRODUCTION  

Artificial neural networks (ANNs) have been used for decades with major success in many 

applications related to machine learning [1]-[3] due to their outstanding ability to self-adapting and self-

learning. They have been used in areas such as robotics, security, and self-driving cars very intensely. They 

are often more robust and accurate than other classification techniques due to their resilience in problem 

solving and parallel processing support [4], [5]. Although several different methods for training have been 

suggested one of which is feed forward neural networks (FNNs), this training pattern is one of the most 

known and widely used in many various areas and applications. Multi-layer (FNNs) are parallel 

computational models composed of densely interconnected, adaptive processing units, characterized by an 

inherent propensity for learning from experience and discovering new knowledge. Due to its excellent self-

adaptation and self-learning ability, it gained early popularity in machine learning [1], [2], [6] and are often 

found it to be more efficient. The process of a FNN is depend on the below formula: 

 

𝑛𝑒𝑡𝑗
𝑙 = ∑ 𝑤𝑖𝑗

𝑙−1,𝑙𝑦𝑖
𝑙−1 + 𝑏𝑗

𝑙,
𝑁𝑙−1
𝑖=1 𝑦𝑖

𝑙 = 𝑓(𝑛𝑒𝑡𝑗
𝑙)  (1) 

 

where the sum of its weighted inputs is 𝑛𝑒𝑡𝑗
𝑙 , for the 𝑗𝑡ℎ node in the 𝑙𝑡ℎ layer (𝑗 = 1, . . . , 𝑁𝑙), 𝑤𝑖𝑗

𝑙−1,𝑙
are the 

weights from the 𝑖𝑡ℎ neuron at the ) layer to the 𝑗𝑡ℎ neuron at the 𝑙𝑡ℎ layer, 𝑏𝑗
𝑙is the bias of the 𝑗𝑡ℎ neuron at 

the 𝑙𝑡ℎ layer, 𝑦𝑖
𝑙  is the outputof the 𝑗𝑡ℎ neuron that belongs to the 𝑙𝑡ℎ layer, and 𝑓(𝑛𝑒𝑡𝑗

𝑙), is the 𝑗𝑡ℎ neuron 

activation function. 

https://creativecommons.org/licenses/by-sa/4.0/
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The main conception of training a neural networks (NN) can be defined as a nonlinear optimization 

problem. Training a (NN) is to recursively modify its weights, in order to reduce the scale of the difference 

between the desired and actual output of all examples of the training set [7]. Therefore, the training process 

can be write mathematically as the reduction of the error function 𝐸(𝑤), which is determined by: 
 

𝐸(𝑤) = ∑ ∑ (𝑦𝑖
𝑙−1 − 𝑡𝑗,𝑝)

2𝑁𝑙
𝑗=1

𝑝
𝑝=1   (2) 

 

where 𝑤 is a vector weights in 𝑅𝑛 and the number of patterns used in the training set represented by 𝑃. [7] 

CG method are probably one of the well-known iterative methods for efficiently training NN due to 

their simplicity. This method create a sequence of weights {𝑤𝑘}, which is defined by: 
 

𝑤𝑘+1 = 𝑤𝑘 + 𝜆𝑘𝑝𝑘 (3) 
 

where the iteration number 𝑘 called epoch, the learning rate is 𝜆𝑘 > 0 and 𝑝𝑘 is the search direction 

calculated by: 
 

𝑝𝑘 = {
−𝑔0                        𝑖𝑓   𝑘 = 0

−𝑔𝑘 + 𝛽𝑘𝑝𝑘−1,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

 

where 𝑔𝑘 is the gradient of 𝐸 at 𝑤𝑘 and 𝛽𝑘 is a coefficient of (CG). In the literature, there have been 

presented several choices for 𝛽𝑘 which give rise to distinct CG methods. Some of classical formula methods 

are fletcher-reeves (FR) method [8], the hestenes-stiefel (HS) method [9], and the polak-rivière (PR) method 

[10], which are determined respectively as follows: 
 

𝑝𝑘 = −𝑔𝑘 + (𝛽𝑘
𝐹𝑅 =

𝑔𝑘
𝑇𝑔𝑘

𝑔𝑘−1
𝑇 𝑔𝑘−1

) 𝑝𝑘−1, Fletcher and Reeves (FR) (5) 

 

𝑝𝑘 = −𝑔𝑘 + (𝛽𝑘
𝐻𝑆 =

𝑔𝑘
𝑇𝑦𝑘−1

𝑝𝑘−1
𝑇 𝑦𝑘−1

) 𝑝𝑘−1, Hestenes and Steifel (HS) (6) 

 

𝑝𝑘 = −𝑔𝑘 + (𝛽𝑘
𝑃𝑅 =

𝑔𝑘
𝑇𝑦𝑘−1

𝑔𝑘−1
𝑇 𝑔𝑘−1

) 𝑝𝑘−1, Polak and Ribiere (PR) (7) 

 

Also, there are many studies to improve the parameter of conjugate gradient method such as 
 

𝑝𝑘 = −𝑔𝑘 + (𝛽𝑘
𝑁𝑒𝑤 =

𝑔𝑘
𝑇𝑔𝑘

𝑝𝑘−1
𝑇 𝑦𝑘−1

− 𝜇 (
𝑔𝑘

𝑇𝑔𝑘

𝑔𝑘−1
𝑇 𝑔𝑘−1

)
2

) 𝑝𝑘−1, [11]  (8) 

 

𝑝𝑘 = −𝑔𝑘 + (𝛽𝑘
𝑁𝑒𝑤 = 𝛽𝑘

𝐻𝑆 −
𝜆𝑘−1‖𝑝𝑘−1‖2𝑔𝑘

𝑇𝑝𝑘−1

(𝑝𝑘−1
𝑇 𝑦𝑘−1)

2 ) 𝑝𝑘−1, [12] (9) 

 

Furthermore, the design of CG-techniques had been studied by many researchers; for more details see, [13]-[15]. 

The three-term CG method is other important class of the CG methods [16], [17] presented a proposal of 

the three-term CG method by considering a descent modified (PRP and HS) CG method as (10). 
 

𝑝𝑘
𝑍𝑃𝑅𝑃 = {

−𝑔𝑘𝑖𝑓𝑘 = 0

−𝑔𝑘 +
𝑔𝑘

𝑇𝑦𝑘−1

𝑔𝑘−1
𝑇 𝑔𝑘−1

𝑝𝑘−1 −
𝑔𝑘

𝑇𝑝𝑘−1

𝑔𝑘−1
𝑇 𝑔𝑘−1

𝑦𝑘−1𝑖𝑓𝑘 ≥ 1
 (10) 

 

and, 
 

𝑝𝑘
𝑍𝐻𝑆 = {

−𝑔𝑘𝑖𝑓𝑘 = 0

−𝑔𝑘 +
𝑔𝑘

𝑇𝑦𝑘−1

𝑝𝑘−1
𝑇 𝑦𝑘−1

𝑝𝑘−1 −
𝑔𝑘

𝑇𝑝𝑘−1

𝑝𝑘−1
𝑇 𝑦𝑘−1

𝑦𝑘−1𝑖𝑓𝑘 ≥ 1
 (11) 

 

In the same way, Ibrahim and Shareef in (2019) [18], propose a new computationally effective new 

class of the three-term CG method defined in the following: 
 

𝑝𝑘
𝑁𝑇𝑇−𝐶𝐺 = {

−𝑔𝑘𝑖𝑓𝑘 = 0

−𝑔𝑘 + 𝛽𝑘𝑝𝑘−1 − 𝑡𝑘−1 (
𝑔𝑘

𝑇𝑝𝑘−1

𝑝𝑘−1
𝑇 𝑦𝑘−1

) 𝑦𝑘−1𝑖𝑓𝑘 ≥ 1
 (12) 
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where 𝑡𝑘−1 = 𝛾
‖𝑦𝑘−1‖

‖𝑠𝑘−1‖
+ (1 − 𝛾)

𝑠𝑘−1
𝑇 𝑦𝑘−1

‖𝑠𝑘−1‖2  , and the parameter 𝛽𝑘 is given from normal CG (HS, PRP, and 

FR) method. Also, nowadays there are many researchers intensely working on developing the three term CG 

direction and its applications [19], [20]. 

This paper, offer a new three-term CG method (NTTCG) and apply it for training neural networks in 

section 2. Section three include the proof of the (descent and sufficient descent) conditions of the (NTTCG) 

method. Also, we demonstrate that the (NTTCG) method is globally convergent in section 3. Finally, 

presents our concluding and remarks in section 4. 

 

 

2. DERIVATION (𝐍𝐄𝐖𝐓𝐓) METHOD 

In this section, proposed a new three-term CG method solve optimization problems and for training 

neural networks by using a modified vector 𝑦𝑘−1
∗  depend on the step size of Barzilai and Borwein [21]. 

Suppose 𝑦𝑘−1
∗ =

1

𝛼𝑘−1
𝐵𝐵 𝑦𝑘−1 −

𝜃

𝛼𝑘−1
𝐵𝐵 𝑦𝑘−1  , where 𝜃 ∈ (0,1)and 𝛼𝑘−1

𝐵𝐵 =
𝑦𝑘−1

𝑇 𝑣𝑘−1

𝑦𝑘−1
𝑇 𝑦𝑘−1

. So, we have: 

 

 𝑦𝑘−1
∗ = (1 − 𝜃)

𝑦𝑘−1
𝑇 𝑦𝑘−1

𝑦𝑘−1
𝑇 𝑣𝑘−1

𝑦𝑘−1, (13) 

 

Now, by replacing 𝑦𝑘−1by 𝑦𝑘−1
∗  in numerator the third term of (11) we obtained a new search direction 

named as (NEWTT): 
 

𝑝𝑘
𝑁𝐸𝑊𝑇𝑇 = {

−𝑔𝑘                                                                                           𝑖𝑓    𝑘 = 0

−𝑔𝑘 +
𝑔𝑘

𝑇𝑦𝑘−1

𝑝𝑘−1
𝑇 𝑦𝑘−1

𝑝𝑘−1 − (1 − 𝜃)
𝑦𝑘−1

𝑇 𝑦𝑘−1𝑔𝑘
𝑇𝑝𝑘−1

𝑦𝑘−1
𝑇 𝑣𝑘−1𝑝𝑘−1

𝑇 𝑦𝑘−1
𝑦𝑘−1,    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (14) 

 

REMARK: Note that when the search direction is exact (𝑔𝑘
𝑇𝑝𝑘−1 = 0) or if 𝜃 = 1, the search direction in 

(14), reduces to the HS method.  

 

2.1.  Outlines of (𝑵𝑬𝑾𝑻𝑻) method for solving unconstrained optimization 

In this section, the outlines of the new method for solving unconstrained optimization problems is stated. 

Step 1. Given 𝑥0 ∈ 𝑅𝑛 and set𝑑0 = −𝑔0, 𝑘 = 0. 

Step 2. If  ‖𝑔𝑘‖ = 0 then stop,  else continue to Step 3.  

Step 3. Set the 𝜆𝑘 by cubic line search method to minimize𝑓(𝑥𝑘+1). 

Step 4. Set 𝑥𝑘+1 = 𝑥𝑘 + 𝑣𝑘 . 

Step 5. Compute𝑔𝑘+1, if  ‖𝑔𝑘+1‖ ≤ 10−5 stop. 

            else go to Step 6. 

Step 6. Determine 𝑝𝑘+1 by using [(14)]. 

Step 7. If ‖𝑔𝑘+1‖2 ≤
|𝑔𝑘

𝑇𝑔𝑘+1|

0.2
  go to step 2, 

              else  set 𝑘 = 𝑘 + 1 and go to step 3. 
 

2.2.  Outlines of (𝑵𝑬𝑾𝑻𝑻) method for training neural networks 

This section, shows the outlines of (NEWTT) method for training neural networks to update the 

weights 𝑤𝑘by using the new search direction 𝑝𝑘 from (14). 

Step 1. Initiate𝑤0, 𝑔𝑜𝑙 = 𝐸𝐺  and 𝑘𝑚𝑎𝑥, set 𝑘 = 0. 

Step 2. Evaluate 𝐸𝑘 and 𝑔𝑘 = 𝛻𝐸(𝑤𝑘). 

Step 3. If 𝐸𝑘 < 𝐸𝐺, or ‖𝑔𝑘‖ ≤ 𝜀, return  𝑤∗ = 𝑤𝑘 and 𝐸∗ = 𝐸𝑘, then stop. 

       else Compute 𝑣𝑘 = 𝑤𝑘+1 − 𝑤𝑘  and 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘 . 

Step 4. Compute 𝑝𝑘 using equation [(14)].  

Step 5. Determine 𝜆𝑘 to minimize 𝐸(𝑤𝑘+1). 

Step 6.  Determine 𝑤𝑘+1 = 𝑤𝑘 + 𝜆𝑘𝑝𝑘 and 𝑘 = 𝑘 + 1  

Step 7. If 𝑘 > 𝑘𝑚𝑎𝑥   return “Error Goal not met” 

       else continue to step 2. 

 

 

3. DESCENT AND SUFFICIENT DESCENT CONDITIONS AND GLOBAL CONVERGENCE 

OF (𝑵𝑬𝑾𝑻𝑻) METHOD 

This section, shows that the new (NEWTT) three-term method sati.sfies the (descent and the 

sufficient descent) properties. In addition to that, we show the new (NEWTT) method is globally convergent 

as mentioned in the following theorems: 
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Theorem 1. Presume that {𝑤𝑘} is generated by (3), then the 𝑝𝑘 in (14) satisfies the condition, 𝑔𝑘
𝑇𝑝𝑘 ≤ 0. 

Proof: From (14), we have if 𝑘 = 0, we have 𝑝0
𝑇𝑔0 = −‖𝑔0‖2 ≤ 0. 

suppose that 𝑝𝑘−1
𝑇 𝑔𝑘−1 ≤ 0, ∀𝑘 = 1,2, … , 𝑖. 

Now, we must prove in iteration (𝑘 + 1) is a descent direction. By multiplying (14) by𝑔𝑘
𝑇, we have; 

 

𝑔𝑘
𝑇𝑝𝑘 = −𝑔𝑘

𝑇𝑔𝑘 +
𝑔𝑘

𝑇𝑦𝑘−1

𝑝𝑘−1
𝑇 𝑦𝑘−1

𝑔𝑘
𝑇𝑝𝑘−1 − (1 − 𝜃)

𝑦𝑘−1
𝑇 𝑦𝑘−1𝑔𝑘

𝑇𝑝𝑘−1

𝑦𝑘−1
𝑇 𝑣𝑘−1𝑝𝑘−1

𝑇 𝑦𝑘−1
𝑔𝑘

𝑇𝑦𝑘−1  (15) 

 

If the search direction is exact, then the equation above equation is satisfied the descent condition. 
 

i.e.          𝑔𝑘
𝑇𝑝𝑘 = −𝑔𝑘

𝑇𝑔𝑘 ≤ 0. 
 

However, If the direction 𝑝𝑘 is not exact. (i.e.) 𝑔𝑘
𝑇𝑝𝑘−1 ≠ 0. We conclude: 

 

−𝑔𝑘
𝑇𝑔𝑘 +

𝑔𝑘
𝑇𝑦𝑘−1

𝑝𝑘−1
𝑇 𝑦𝑘−1

𝑔𝑘
𝑇𝑝𝑘−1 ≤ 0, (16) 

 

because (16) is a search direction of HS method achieve the descent condition. 

Since from Lipschize condition we have: 

 

𝑔𝑘
𝑇𝑦𝑘−1 ≤ 𝐿𝑔𝑘

𝑇𝑝𝑘−1 where  𝐿 > 0.  (17) 

 

It is clearly 1 − 𝜃 > 0 and 𝑦𝑘−1
𝑇 𝑦𝑘−1, (𝑔𝑘

𝑇𝑝𝑘−1)2, 𝑦𝑘−1
𝑇 𝑣𝑘−1 ∧ 𝑝𝑘−1

𝑇 𝑦𝑘−1  are non-negative. 

So, we get to: 
 

𝑔𝑘
𝑇𝑝𝑘 ≤ −𝑔𝑘

𝑇𝑔𝑘 +
𝑔𝑘

𝑇𝑦𝑘−1

𝑝𝑘−1
𝑇 𝑦𝑘−1

𝑔𝑘
𝑇𝑝𝑘−1 − (1 − 𝜃)

𝑦𝑘−1
𝑇 𝑦𝑘−1(𝑔𝑘

𝑇𝑝𝑘−1)
2

𝑦𝑘−1
𝑇 𝑣𝑘−1𝑝𝑘−1

𝑇 𝑦𝑘−1
≤ 0 (18) 

 

The proof is completed. 

Theorem 2. Presume that {𝑤𝑘} is generated sequence by (3) where 𝑝𝑘 is define in (14) and 𝜆𝑘 is obtained 

from strong Wolfe conditions, then the 𝑝𝑘  satisfies: 
 

𝑔𝑘
𝑇𝑝𝑘 ≤ −𝑐‖𝑔𝑘‖2 

 

Proof: From (15). we have: 
 

𝑔𝑘
𝑇𝑝𝑘 = −𝑔𝑘

𝑇𝑔𝑘 +
𝑔𝑘

𝑇𝑦𝑘−1

𝑝𝑘−1
𝑇 𝑦𝑘−1

𝑔𝑘
𝑇𝑝𝑘−1 − (1 − 𝜃)

𝑦𝑘−1
𝑇 𝑦𝑘−1𝑔𝑘

𝑇𝑝𝑘−1

𝑦𝑘−1
𝑇 𝑣𝑘−1𝑝𝑘−1

𝑇 𝑦𝑘−1
𝑔𝑘

𝑇𝑦𝑘−1 (19) 

 

It is clearly from (16), the first two terms of the above equation are non- positive and by using (17), we 

obtained: 
 

𝑔𝑘
𝑇𝑝𝑘 ≤ −(1 − 𝜃)

𝑦𝑘−1
𝑇 𝑦𝑘−1(𝑔𝑘

𝑇𝑝𝑘−1)
2

𝑦𝑘−1
𝑇 𝑣𝑘−1𝑝𝑘−1

𝑇 𝑦𝑘−1
 (20) 

 

Therefore, (19) can be written as: 

 

𝑔𝑘
𝑇𝑝𝑘 ≤ − ‖𝑔𝑘‖2 

 

So, we have: 
 

𝑔𝑘
𝑇𝑝𝑘 ≤ −𝑐‖𝑔𝑘‖2 , where 𝑐 = (1 − 𝜃)

𝑦𝑘−1
𝑇 𝑦𝑘−1(𝑔𝑘

𝑇𝑝𝑘−1)
2

𝑦𝑘−1
𝑇 𝑣𝑘−1𝑝𝑘−1

𝑇 𝑦𝑘−1‖𝑔𝑘‖2. 

 

Therefore, our new method is sufficient descent. 

Now, we need the following assumptions [22], [23] to show the global convergence of (NTTCG) method. 

Assumptions: 

1. The level set 𝑆 = {𝑤: 𝑤 ∈ 𝑅𝑛 , 𝐸(𝑤) ≤ 𝐸(𝑤0)} is bounded. i.e.  ∃𝐵 > 0, such that 
 

‖𝑤‖ ≤ 𝐵,∀𝑤 ∈ 𝑆 (21) 
 

2. In a neighborhood Ω ∈ 𝑆, 𝐸 is differentiable and its gradient 𝑔 is Lipschitz continuous, i.e. ∃  𝐿 > 0, such that  
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‖𝑔(𝑤) − 𝑔(𝑤𝑘)‖ ≤ 𝐿‖𝑤 − 𝑤𝑘‖, ∀𝑤, 𝑤𝑘 ∈ Ω (22) 
 

From Assumptions 1 and 2, ∃𝑀 > 0, such that: 
 

‖𝑔(𝑤)‖ ≤ 𝑀, ∀𝑤 ∈ 𝑆. (23) 
 

We can rewrite (21) in the following manner: 
 

𝑦𝑘−1
𝑇 𝑣𝑘−1 ≥ 𝐿‖𝑣𝑘−1‖, (24) 

 

Lemma 1 [24]. Suppose that the Assumptions 1 and 2 holds and the {𝑤𝑘} generated by (3) and (14), where 

𝑝𝑘, satisfy the descent condition and 𝜆𝑘 set by strong Wolfe conditions.  
 

∑
1

‖𝑝𝑘‖2 = ∞𝑘≥1 . (25) 

 

Then, 
 

𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0. (26) 

 

Theorem 3. Suppose that Assumptions 1 and 2 holds. If any iteration of the (3) and (14), and 𝜆𝑘 satisfies the 

strong Wolfe conditions, then: 
 

𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0 

 

Proof: From (14), we have, we have: 
 

‖𝑝𝑘
𝑁𝐸𝑊𝑇𝑇‖ ≤ ‖𝑔𝑘‖ + |

𝑔𝑘
𝑇𝑦𝑘−1

𝑝𝑘−1
𝑇 𝑦𝑘−1

| ‖𝑝𝑘−1‖ + (1 − 𝜃) |
𝑦𝑘−1

𝑇 𝑦𝑘−1𝑔𝑘
𝑇𝑝𝑘−1

𝑦𝑘−1
𝑇 𝑣𝑘−1𝑝𝑘−1

𝑇 𝑦𝑘−1
| ‖𝑦𝑘−1‖,  (27) 

 

since 𝑔𝑘
𝑇𝑝𝑘−1 ≤ 𝑝𝑘−1

𝑇 𝑦𝑘−1 and by using (17), we get to: 
 

‖𝑝𝑘
𝑁𝐸𝑊𝑇𝑇‖ ≤ ‖𝑔𝑘‖ + |𝐿|‖𝑝𝑘−1‖ + (1 − 𝜃) |

𝑦𝑘−1
𝑇 𝑦𝑘−1

𝑦𝑘−1
𝑇 𝑣𝑘−1

| ‖𝑦𝑘−1‖,  (28) 

 

Also, Now, from Lipschitz Condition ‖𝑦𝑘−1‖ ≤ 𝐿‖𝑣𝑘−1‖ and by using equation (24), we have: 
 

‖𝑝𝑘
𝑁𝐸𝑊𝑇𝑇‖ ≤ 𝑀 + |𝐿|‖𝑝𝑘−1‖ + (1 − 𝜃)

𝐿2

‖𝑣𝑘−1‖
, (29) 

 

Since,‖𝑣𝑘‖ = ‖𝑤 − 𝑤𝑘‖,   𝐷 = 𝑚𝑎𝑥{‖𝑤 − 𝑤𝑘‖}, ∀𝑤, 𝑤𝑘 ∈ 𝑅}. 

Hence (29) becomes: 
 

‖𝑝𝑘
𝑁𝐸𝑊𝑇𝑇‖ ≤ [𝑀 +

𝐿𝐷

𝜆𝑘−1
+ (1 − 𝜃)

𝐿2

𝐷
] = 𝛽  

⇒ ∑
1

‖𝑝𝑘
𝑁𝐸𝑊𝑇𝑇‖

2
∞
𝑘≥1 ≥ ∑

1

𝛽2
∞
𝑘≥1 = ∞      ⇒ ∑

1

‖𝑝𝑘
𝑁𝐸𝑊𝑇𝑇‖

2
∞
𝑘≥1 = ∞  By using lemma (1), we get 

𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0. which completes the proof.  

 

 

4. EXPERIMENTAL RESULTS 

4.1.  Numerical results of (𝑵𝑬𝑾𝑻𝑻) method for optimization problems 

This section is present the implementation of the (NEWTT) method for solving unconstrained 

optimization problems. We compare our new method against ZHS method. The comparative includes some 

well-known nonlinear test problems with several dimensional and the test problems are selected from [25]. 

All program lines are written in FORTRAN 95. The line search method was a cubic interpolation. The 

numerical results given in Table 1 specifically depend on the number of functions (NOF) and the number 

iterations (NOI) while Table 2 present the experimental results to confirm that the (NTTCG) method is 

superior to ZHS method. 

Table 2, show the efficiency of the (NEWTT) compare with the (ZHS) method. We also note that the 

NOI and NOF of the standard method are about 100%. This means that the (NEWTT) method improved 

compared to the ZHS method by about 21.7715% in NOI and 17.2744% in NOF. Finally, the overall rate of 

improvement is 26.351% in (NEWTT). 
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Table 1. The numerical results for (NEWTT) and ZHS methods on the test functions 
Test Function 𝑛 𝑍𝐻𝑆 − 𝐶𝐺 𝑁𝐸𝑊𝑇𝑇   

  NOI NOF NOI NOF 

Powell 

10 

50 

100 
500 

1000 

5000 

38 

41 

41 
43 

43 

43 

100 

117 

117 
121 

121 

121 

33 

33 

33 
33 

33 

33 

92 

92 

92 
92 

92 

92 

Mile 

10 

50 

100 
500 

1000 

5000 

46 

53 

53 
53 

57 

60 

157 

190 

190 
190 

209 

225 

32 

36 

36 
39 

44 

44 

105 

123 

123 
140 

160 

160 

Shallon 

10 

50 

100 

500 

1000 

5000 

8 

8 

8 

8 

9 

9 

21 

21 

21 

21 

24 

24 

8 

8 

8 

8 

9 

9 

21 

21 

21 

21 

24 

24 

Cubic 

10 

50 

100 
500 

1000 
5000 

15 

15 

15 
F 

16 
F 

44 

44 

44 
F 

46 
F 

13 

13 

13 
13 

13 
13 

37 

37 

37 
37 

37 
37 

Central 

10 

50 
100 

500 

1000 
5000 

22 

26 
26 

26 

28 
32 

155 

204 
204 

204 

231 
292 

22 

22 
22 

23 

23 
28 

159 

159 
159 

171 

171 
248 

Wood 

10 

50 
100 

500 

1000 
5000 

29 

29 
29 

29 

29 
29 

67 

67 
67 

67 

67 
67 

29 

29 
29 

29 

29 
29 

67 

67 
67 

67 

67 
67 

Sum 

10 

50 
100 

500 

1000 
5000 

6 

11 
14 

19 

25 
139 

34 

65 
85 

106 

139 
174 

6 

11 
14 

21 

23 
31 

34 

60 
81 

122 

126 
144 

Rosen 

10 

50 
100 

500 

1000 
5000 

32 

33 
33 

33 

33 
33 

86 

88 
88 

88 

88 
88 

30 

30 
30 

30 

30 
30 

83 

83 
83 

83 

83 
83 

Total 1479 5137 1157 4251  

NOTES: 

 The letter F in above table refers to that a method is failed to find the minimum 

 We considered the failure result in ZHS is a twice value of ( NEWTT ) results 
 

 

Table 2. The percentage of improvement between the (𝑁𝐸𝑊𝑇𝑇) and (ZHS) method 
Tools 𝑍𝐻𝑆 𝑁𝐸𝑊𝑇𝑇 

NOI 100% 78.2285 

NOF 100% 82.7526 

 

 

4.2.  Numerical results of (𝑵𝑬𝑾𝑻𝑻) method for training neural networks 

This section tests the implementation of the NEWTT method for training neural networks in 

classical artificial intelligence problems (continuous function approximation). We search the execution of the 

(NEWTT) method by comparing it against to the ZHS method. The program steps are implemented five 

times by using MATLAB (2013a), neural network toolbox (version 8.1) for conjugate gradient. 

Problem: suppose the approximation of the function as: 
 

𝑓(𝑥) = 𝑠𝑖𝑛(𝑥) + 𝑐𝑜𝑠(2𝑥) , where 𝑥 ∈ [0, 𝜋]. 
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The network is trained to approximate the function and trained until the mean squares errors becomes 

less than the goal error1e-15 within the limit of 5000 epochs. Table 3 shows the performance comparison of 

(NEWTT) method with ZHS. The new method displays excellent likelihood (100%) of successful training for 

network by using the same initial weights. Thus, computational cost is possibly the most appropriate indicator 

for measuring the efficiency of the methods. The NEWTT method performance is better than the ZHS method 

in terms of the time, number of epochs, gradient, and step size as shown in Figures 1 and 2. 

 

 

Table 3. Comparing the performance of new method with ZHS method for training neural network 

Methods 
No. 

Running 
Epochs 

CPU 
time(s)/Epoch 

Gradient Step size 

𝑍𝐻𝑆 

1 

2 

3 
4 

5 

214 

120 

169 
114 

300 

0:00:01 

0:00:39 

0:00:55 
0:00:34 

0:01:32 

0.000175 

0.000201 

0.000223 
0.000199 

0.00347 

0.00 

0.00 

0.00 
0.00 

0.00101 

𝑁𝐸𝑊𝑇𝑇 

1 
2 

3 

4 
5 

168 
121 

70 

66 
300 

0:00:01 
0:00:36 

0:0021 

0:00:19 
0:01:29 

0.000133 
0.000206 

0.000170 

0.000163 
0.00346 

0:00 
0.00 

0.00 

0.00 
0.00102 

 

 

 
 

Figure 1. Performance of ZHS method for training 

neural networks 

 
 

Figure 2. Performance of NEWTT method for 

training neural networks 

 

 

5. CONCLUSION 
This paper offers a new three-term CG (NTTCG) method and apply it for training neural networks. 

Also, we proved that the NTTCG method is globally convergent in addition to the decent condition and 

sufficient decent condition. Depend on the numerical results, it can be clearly observed that the (NTTCG) 

method is more active in terms of a time, number of epochs, step size and gradient than other methods such 

as ZHS, which is providing a faster training curve. Finally, the practical application of the (NEWTT) method 

in risk optimization is also explored. It’s efficiency in solving portfolio selection problem was outstanding as 

it solves the problem with less function evaluations, iteration and CPU time compared with other methods. 
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