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 The retinal vascular morphological caliber changes reveal the signs of 

systemic health disorder and life threat diseases such as cardio and cerebral 

diseases. The quantitative vascular parameters like narrowed arteries, 

widened venules, reduced artery-vein ratio (AVR) have been associated with 

aforesaid disorders and diseases. Hence the quantitative biomarker AVR is 

important parameter in diagnosing variety of diseases. The accurate 

quantification of AVR be possible if and only if accurate classification of 

arteries and vein is done. In this paper, we proposed a deep learning based 

robust vessel segmentation and classification algorithm based on spatial  

U-Net and the accuracy of the algorithm is 97.8%. In the quantification 

process, this algorithm is applied on region of interest (RoI) of a fundus 

image and measured the AVR values using central retinal artery equivalent 

(CRAE) and central retinal vein equivalent (CRVE). The experimentation is 

carried on the digital retinal images for vessel extraction (DRIVE) dataset. 

The outcome of this work is the AVR observed to be >0.4 in normal retinal 

case and AVR value <0.4 for unhealthy case. 
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1. INTRODUCTION  

The retinal microvasculature provides an easily accessible location for non-invasive 

microcirculation assessment. Some investigations have found a link between some of the retinal vessel 

calibre alterations like retinal artery narrowing, venule widening, reduced artery vein ratio (AVR) and 

hypertensive retinopathy, coronary heart disease (CHD) [1]-[3]. According to Blue Mountain Eye Studies 

(BMES) [4], a high value of AVR indicates that arteriolar and venular calibres in that eye are on average the 

same, whereas a lower AVR indicates that arterioles are smaller than venules or venules are wider than 

arterioles. Due to arterial hypertension the arteries are getting narrowed over the period. Narrowed arteries 

itself is a biomarker for coronary artery disease in women [5]. Hence these kind of structural alterations in 

retinal vessel calibre provide quantitative biomarkers for diagnosing different systemic health disorders as 

well as a few cardiovascular diseases. The quantitative measurement of AVR biomarker requires the 

measurement of artery and vein diameters within the region of interest (RoI) on the retinal image. Within the 

RoI the arteries and veins are segmented and classified. Some of the existing methodologies for segmenting 

the vessels based on the traditional image processing methods are matched filtering, a multi-scale method and 

morphological processing. Chaudhuri et al. [6] suggested a strategy that involved searching for vessel 

segments in all available directions using different templates. Rangayyan [7] classified the pixels using 
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multilayer perceptron using the features extracted from Gabor filtering on green channel of the fundus 

images. Niemeijer et al. [8] developed a method for grading blood vessels that combined the k-nearest 

neighbour classifier using first and second order derivatives of a matched Gaussian filter. Hatanaka et al. [9] 

proposed a double ring filter and black hat transform based method. Hatanaka et al. [10] developed a system 

in which the artery and vein classification is done based on linear discriminant analysis (LDA). Vázquez et 

al. [11] classified the vessels using minimal path and measured at different distances from optic disc. All 

these methods for vessel segmentation depends upon ability of feature extraction methods and the type of 

filters for segmenting and classifying the vessels.  

The accurate quantification of arteriovenous (AV) ratio is essential in diagnosing the levels of 

abnormality from the retinal images. It depends upon the method where precise classification can be done on 

each pixel as artery and vein. Most recently deep learning algorithms performs the task of classifying the 

vessels as arteries and veins precisely. The most relevant tasks like feature extraction pertaining to 

segmentation is done by the neural network itself. Both local and global features are extracted using this 

approach. The U-Net [12] and its variants [13]-[15] outperforms the segmentation and classification tasks on 

each pixel. Hu et al. [16] proposed a segmentation and classification task based on vessel constraint network 

in which a feature weight map and multiscale modules are used along with U-Net variant. Here the pixels are 

segmented by combining both local and global features at different resolution levels. Hence some of the 

noisy edges also classified properly as arteries and veins. We proposed a spatial U-Net based classifier for 

segmenting blood vessels as arteries and veins. This method better classifies the pixel as arteries and veins 

even in the noisy and ambiguous areas. 

The existing methods in the quantification of AVR are discussed below. Manikis et al. [17] 

proposed a blood vessel detection method through top hat transform and median filter on VICAVR database. 

Agurto et al. [18] used a hessian-based vessel segmentation technique with thresholding to achieve their 

results. It was put to the test on two different datasets: digital retinal images for vessel extraction (DRIVE) 

and structured analysis of the retina (STARE). Based on a multi-scale enhancement and local-entropy 

thresholding, Khitran et al. [19] developed an automated vessel segmentation approach. The AVR calculation 

is carried on six largest vessels within the RoI of 0.5 DD to 1 DD. Rani and Mittal [20] classified blood 

vessels as arteries and veins with a new feature vector. Their experimentation is carried on both VICAVR 

and DRIVE datasets. Ramanathan et al. [21] have segmented and classified the vessels based on top hat 

transform and iterative thresholding’s on Messidor database. The methods discussed for segmentation and 

classification so far are based on different manual processing techniques and listed in Table 1. The 

segmentation and classification accuracies depend upon the manual setting of filter parameters. Hence the 

accuracy of AVR ratio is also limited by that of segmentation and classification techniques. Recently deep 

learning-based algorithms outperforms in the field of different medical imaging application [22]-[24]. In this 

paper, we proposed a deep learning based spatial U-Net for segmentation and classification. Here, the 

optimized filter parameters are obtained by iterative training of the neural network. Hence, the blood vessels 

are classified accurately so as the quantification of central retinal artery equivalent (CRAE), central retinal 

vein equivalent (CRVE) and AVR. 
 

 

Table 1. Comparison of existing methods in the quantification of AVR 
Author Method Dataset AVR 

Normal Abnormal 

Narasimhan et al.,[31]  Median filter, Top hat transform VICAVR 0.6-0.7 0.24-0.49 

Manikis et al.,[17] CLAHE, Hessian based vessel segmentation DRIVE/STARE - 0.1-0.5 

Agurto et al.,[26] Multi-scale linear structure, Enhancement Clinically acquired 0.67 0.58 

Khitran et al.,[27] Gabor wavelet, multi layered thresholding VICAVR 

DRIVE 

- 0.1-0.5 

Rani et al.,[28] Top hat transform and iterative thresholding MESSIDOR 0.62-0.735 0.203-0.495 

 

 
2. METHOD  

AVR quantification requires accurate classification of pixels as arteries and veins hence as a starting 

step, a robust segmentation and classification method is developed using spatial U-Net architecture with 

structured dropouts and activation block concept. After localizing the optic disc using circular hough 

transform (CHT), the RoI is determined as 1 disc diameter (DD) to 1.5 DD from the optic disc as per 

Knudtson’s formulae [25]. Within this RoI, the arteries and veins are differentiated by applying the 

developed classification methods. Usually, six largest arteries and veins are considered for quantification and 

CRAE and CRVE are calculated. Finally, AVR is measured from the ratio of CRAE and CRVE. The 

proposed model for quantification of AVR is depicted in Figure 1. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 27, No. 3, September 2022: 1404-1411 

1406 

 
 

Figure 1. Proposed method for quantification of AVR 

 
 

2.1.  Vessel segmentation and classification 

In the proposed method, vessels are extracted and classified using the spatial U-Net architecture 

which is empowered by structured dropout and activation block as shown in Figure 2. Basically, U-Net is 

configured with down sampling and up sampling convolutional blocks. At each step of down sampling path, 

the convolution operation, regularization using structured dropouts, batch normalization and a 2×2 max 

pooling are carried.  

 

 

 
 

Figure 2. Proposed method to classify arteries and veins 

 

 

In this process as move on to the deeper layers the feature maps are doubled with low resolution. 

Even though at the deeper layers the feature maps are of low resolution, but they contain semantically quality 

feature information. Later at each step of the up-sampling path, the semantically rich features are 

concatenated with the same level of resolution from the down sampling path. In this path a 2×2 transposed 

convolution operation is carried at each step of up sampling path. This concatenation operation makes the U 

Net can perform more robust vessel segmentation. Then the spatial activation block classifies the arteries and 

veins from the vessel background. 
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2.1.1. Structured dropouts 

Random and Structured dropouts as shown in Figure 3. The model’s overfitting can be reduced by 

the technique called regularization. In this process, some of the neurons are randomly dropped while training 

progress from one epoch to another epoch. The weights of those neurons made equal to 0. The original image 

and random dropouts from the convolution layer are shown in Figure 3(a) and Figure 3(b). But in our work, 

we used structured dropout instead of random dropout. In the structured dropout a feature map layer is 

dropped instead of single neuron as shown in Figure 3(c). The probability p=0.2 set at the input layer, p=0.5 

for the hidden layers. The structured dropouts are configured as per the equation given in 1 and 2. 

- During training phase: 

 

 𝑍 = 𝑓(𝑊𝑦) 𝑜 𝑚, 𝑚𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)  (1) 

 

- During testing phase: 

 

𝑍 = (1 − 𝑝)𝑓(𝑊𝑦) (2) 

 

 

    
(a) (b) (c) 

 

Figure 3. Random and Structured dropouts (a) original image, (b) random dropouts, and (c) structured 

dropouts 

 

 

2.1.2. Objective function 

The objective function is iterated for different epochs by choosing best set of hyper parameters are 

thereby decreasing the objective function to its lowest value. During training, the classifier computes the 

cross-entropy loss for each of the N points in the training set, effectively fitting the distribution 𝑡�̂�. Because 

each point's probability is 1/N, cross-entropy is expressed as (3). 

 

 𝐿𝐵𝐶𝐸(𝑡�̂�, 𝑖) = −
1

𝑁
∑(𝑖𝑖𝑙𝑜𝑔(𝑡�̂�) + (1 − 𝑖𝑖)𝑙𝑜𝑔(1 − 𝑡�̂�))  (3) 

 

The dice loss is preferable for segmenting task when imbalanced pixels in the image. As the artery vein area 

is 10-15% of overall background on the retinal image, we considered dice loss function while training and is 

computed as given (4) and (5). The combined loss function is given in (6). 

 

𝐿 𝐷𝑖𝑐𝑒(𝑡�̂�, 𝑖) = 1 − 𝐷𝑖𝑐𝑒𝐶𝑜𝑒𝑓  (4) 

 

 𝐷𝑖𝑐𝑒𝐶𝑜𝑒𝑓 =
2 ∑ 𝑖𝑖𝑖 𝑡�̂�

∑ (𝑖𝑖+𝑡�̂�)𝑖  
  (5) 

 

 𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 (𝐿𝑡𝑜𝑡𝑎𝑙 𝑙𝑜𝑠𝑠) = 𝐿𝐵𝐶𝐸(𝑡�̂�, 𝑖) + 𝐿𝐷𝑖𝑐𝑒 (𝑡�̂�, 𝑖)  (6) 

 

Where ii ground truth and 𝑡𝑖  ̂ is the predicted values. 

 

2.2.  Region of interest (RoI) determination 

In the process of RoI determination, first optic disc location needs to be identified. Through which 

all the blood vessels enters/leaves into/from brain. The vessels from optic disc spans over the retina till the 

periphery region. As per the literature, the vessel within 1-disc diameters (1-DD) serves as biomarkers for 

diagnosing many diseases. So, we have chosen Roni as 0.5-disc diameter to one-disc diameters from the 

optic disc. Then the arteries and veins are segmented and classified. The optic disc localization and RoI are 

shown in Figure 4. 
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Figure 4. RoI determination and classification 

 

 

2.3.  Measurement of vessel calibre 

The vessel calibre measurements are carried using Knudtson’s formulae. The artery and vein calibre 

parameters CRAE and CRVE is measured within the RoI. The approximate artery and vein calibre according 

to Knudtson’s as given in (7) and (8). 

 

𝐶𝑅𝐴𝐸 =  0.88 ∗ (𝑤𝑎1
2 + 𝑤𝑎2

2 )1/2   (7) 

 

 𝐶𝑅𝑉𝐸 =  0.95 ∗  (𝑤𝑣1
2 + 𝑤𝑣2

2 )1/2  (8) 

 

Where wa1, wa2 and wv1 , wv2 are the widths of largest and smallest arteries and veins. Then for the 

measurement of CRAE, CRVE the following procedure is adopted. First six largest arteries are considered 

from the RoI. Out of which one smallest artery and one largest artery is considered and measured the 

Euclidean distance to find the individual artery width following measuring of equivalent width using (1). 

From the remaining 5 arteries again the next set of largest and smallest arteries are considered, measured the 

equivalent width, and then continue till the final width measurement, that is the measurement of CRAE. A 

similar process is carried for the measurement of CRVE using the (2). 

 

2.4.  Quantification of AVR 

The precise and accurate classification of a retinal image as healthy or unhealthy is depends on the 

accurate quantification of AVR. It inturn depends on the retinal vessel central equivalents CRAE and CRVE 

computation equation. The diagnosing parameters from the retinal images are CRAE, CRVE and AVR for 

the biomarkers of artery narrowing, venule widening and reduced AVR. Respectively. The artery-vein ratio 

(AVR) is defined as the ratio of central retinal artery equivalent (CRAE) and central retinal vein equivalent 

(CRVE) and is given in (9). 

 

𝐴𝑉𝑅 =  
𝐶𝑅𝐴𝐸

𝐶𝑅𝑉𝐸
  (9)   

 

As the RoI is considered between 0.5 DD to 1 DD, the measurements are focused on central retinal 

equivalent measures. For other systemic abnormalities the periphery region of the eye also affected then the 

RoI selection depends upon the field of view (FoV). With the recent ultra-wide retinal imaging methods, the 

FoV can also be increased. Finally, the quantified score of AVR is used to deduce the qualitative inference. 

i.e lower AVR value, less than 0.5 may be the indication of hypertension according to Keith Wagener Barker. 

Even narrowed arteries and widened venules either individually or combinedly are the biomarkers for 

systemic hypertension and stroke events. Hence this quantitative measurement provides a biomarker for 

diagnosing different non-ocular diseases.  

 

 

3. RESULTS AND DISCUSSION  

3.1.  Dataset  

Our experimentation is carried on DRIVE [26] dataset for AVR measurement. The dataset has 40 

colour fundus images of resolution 584×565. Out of 40 images, 20 images are used for training and 

remaining 20 for testing. While training the neural network, the small image patches are extracted from the 

retinal images and those are given to neural network. The network extracts all the global and minute features 

required for classification. The network training progress is monitored for best optimized objective function 

and chosen the best epoch as 400 with learning parameter 0.001, convergence rate 0.9 with the stochastic 

gradient optimized algorithm. The original images and their classification results are shown in Figure 5. 

The model’s has given the performance metrics like sensitivity, specificity, and accuracy for 

segmenting the vessels from background are 0.8310, 0.9867, 0.9557 respectively and that of classification 
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results are 0.9423, 0.9556, 0.9788. The models performance in segmenting and classifying the arteries and 

veins are compared with the existing methods [27]-[30] and are shown in Figure 6. Our artery-vein 

classification network based on Spatial U Net has shown 97.8 % accurate classification result. Hence this 

method supports for the quantification process of AVR accurately.  

The vessel width is measured from the region of interest 1-DD to 1.5DD from the optic disc. The 

usual optic disc width is 1850 µm. From the optic disc within the zone B, the arteries and vein central 

equivalents (CRAE, CRVE) are measured and computed the AVR as shown in (1)-(3). On DRIVE dataset for 

each image, AVR value is computed statistically and listed in Table 1. According to Keith and Wegner [31] 

images having the AVR value >0.667 are healthy individuals and other images are having <0.667 are from 

unhealthy individuals indicating that their vessel calibre is deviating from normal calibre, at the same time 

may be the indication of systemic health disorder initially. Through our experimentation we observed 4 

images have AVR value <0.4 and upon observation these images are observed visually some pathological 

changes and is shown in Figure 7. 

 

 

    
    

    
 

Figure 5. Original and classified images on DRIVE dataset 

 

 

 
 

Figure 6. Comparison of artery-vein classifier’s performance with existing methods 
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AVR=0.19 

 
AVR=0.37 

 

Figure 7. AVR measurements on pathological images from DRIVE dataset 
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4. CONCLUSION  

The vascular morphological calibre changes reveal the signs of systemic health disorder and life 

threat diseases these diseases. In this work, the prominent and quantitative biomarkers such as CRAE, CRVE 

and AVR are measured on different images to know the early signs of disorders and diseases. The accurate 

quantification of AVR depends on the accuracy of the model in classifying the vessels as arteries and veins. 

Hence, we proposed a robust artery vein classification model based on Spatial attention U Net architecture. 

The vessel widths are measured in terms of number of pixels after successfully employing the proposed 

method of classification. It has been observed that 4 pathological images are having AVR less than 0.4, 

indicating that there are considerable vessel calibre changes along with other diabetic retinopathy changes.  
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