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 In this study have been utilized a modified version of ant colony optimization 

to improve the thresholds of neural networks and weights by including the 

rank- weight approach. Furthermore, this technique easily overcome the 

drawbacks speed up convergence into the minimum while training the back 

propagation neural network. The improved ant colony optimization-back 

propagation neural. not only has the capacity to map extensively, but it also 

enhances operating efficiency noticeably, according to the simulation 

findings. The simulation results revealed that the speed sensor replaced with 

the ant colony optimization rw-optimized back propagation neural network -

speed identification and motor’s speed determined using this approach the 

result is satisfactory.  
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1. INTRODUCTION  

Direct torque control is presently the most successful control methods in alternating current timing 

technology due to its simple control structure and lower reliance on rotor parameters, for example [1], [2]. 

Speed sensors are often employed in direct torque control (DTC) systems to monitor rotational speed in closed-

loop control, but their usage diminishes system dependability and increases equipment costs; in addition, they 

can- not be utilized in some situations, such as damp and dusty, when they are not reliable at all [3], [4]. Hence, 

the DTC based on speed sensor less technology has been detected by the general public. For the localization 

of the back propagation neural network model’s speed identification approach, it still has several weaknesses, 

such as sluggish con stringency speed, fast convergence to local minimum points and a poor capacity to 

generalize [5], [6]. Despite these drawbacks, the back propagation neural network model has been extensively 

employed in recent years [7], [8]. As a result, optimizing the back propagation neural network has long been a 

major focus of study.  

The ant colony optimization is a novel stochastic global optimization technique based on the notion 

of colony intelligence. This method was generated via looking for the ant’s eating habits and it is simple to 

execute [9], [10]. This work uses a modified ant colony optimization , the weight-rank based ant colony 

optimization, which out- performs the standard ant colony optimization in terms of both time and derivation 

efficiency. With ant colony optimization and the neural network, you have a network that is capable of mapping 

a large area and improving global convergence performance. In neural network weights and thresholds 

optimization, it demonstrates excellent qualities. It is a powerful tool [8], [10]. This integrated approach was 

able to properly determine the motor’s rotational speed in a simulated experiment using DTC [11], [12]. As a 
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result, we may replace the DTC system’s speed sensor with ant colony optimization rw-back propagation neural 

network-based speed identification and perform direct toque control for speed sensor less operation [13], [14].  

 

 

2. SPEED IDENTIFICATION MODEL OF DIRECT TOQUE CONTROL 

In recent years,the theory of DTC of induction motor has grown rapidly because of its rapid reaction 

to flux linkage and torque [4], [15] as well as its minimal reliance on the rotor parameters. in the direct toque 

control system theory the equations below describe the relationship of the static two-phase coordinate system 

between voltage,current and speed: 

 

{𝑢𝛼, 𝑖𝛼, 𝑖𝛽, 𝑢𝛽} −→  𝜔 (1) 

 

non-linear mapping created using newral network. There are four inputs and four outputs, as shown in (1), the 

inputs are 𝑖𝛽, 𝑖𝛼, 𝑢𝛽 and 𝑢𝛼. This means that the speed sensor may be changed. Speed identifi- cation using 

NN may be used to generate a speed signal that can be used as a feedback speed signal [16]-[18]. Also 

developed a speed sensor less DTC solution.  

 

 

3. AN ALTERED VERSION OF THE ANT COLONY OPTIMIZATION NN 

3.1.  Back propagation neural network 

There are many ways to reduce the mean square error of a back propagation network, but one way to 

do so is to distribute errors backwards until the error confessional request is reached, is to reduce the threshold 

and weights values of neural networks using this method. The back propagation (BP) neural network has 

several advantages, such as its capacity to generalize and its ability to map non-linearly, but it also has some 

drawbacks, such as its sluggish con stringency speed and its tendency to fall into local optimization. It is 

possible to see how the BP neural network is structured in the Figure 1. 

The back propagation neural network’s mathematical model is: 

 
𝑦𝑗=𝑓 ∑ 𝑊𝑖𝑗𝑋𝑗−𝜗𝑗=𝑓(𝑛𝑡𝑒𝑗)

𝑂𝐼=𝑓 ∑ 𝑊𝑖𝑗𝑋𝑗−𝑖
𝑗 𝜗𝑗=𝑓(𝑛𝑡𝑒𝐼)

 (2) 

 

 

 
 

Figure 1. The BP neural network’s structure 

 

there are three floors nodes: the output node is xi Ol and input node is xi, then between this nodes there have a 

one hidden nodes is yj. In neural networks, the weights between hidden nodes and input nodes are wij  the 

thresholds are θj. There is a threshold value wlj for the weights between output nodes and hidden nodes in 

neural networks is: 

 

𝜗𝐼𝑛𝑒𝑡𝑗 = 𝑤𝑖𝑗𝑥𝑖 − 𝜗𝑗 , 𝑛𝑒𝑡𝐼 = 𝑊𝐼𝑖𝑦𝑗 − 𝜗𝐼  
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3.2.  Ant colony optimization that been adjustment 

3.2.1. The fundamental of ant colony optimization 

The ant colony optimization algorithm, a particular number of ants are randomly placed in N cities 

and the pheromone of every route is meant to be equal at this moment [19], [20]. Ants pick their next city based 

on the pheromone concentration of each route as they go across the countryside. ants pick their transfer routes 

according to the transfer probability between adjacent ant colonies [21], [22]. As soon as one round of 

circulation is complete, ants release a little amount of pheromone throughout the paths. Once the ants had 

established a path of travel, the mystery of how they got there had been solved. The best solution is found once 

all of the ants have completed their circuits [23], [24]. 

As you can see, the essential ant colony optimization formulae are as: 

 

𝑃𝑟
𝑘(𝑡) =

𝜏𝑗
𝑘(𝑡)

∑ 𝜏𝑔(𝑡)𝑁
𝑔=1

 (3) 

 

𝜏𝑗(𝑡) = (1 − 𝜌)𝜏(𝑡) + 𝜌∆𝜏𝑗(𝑡) (4) 

 

∆𝜏𝑗(𝑡) = ∑ ∆𝜏𝑗
𝑘(𝑡)ℎ

𝑘=1  (5) 

 

∆𝜏𝑗
𝑘(𝑡) = 𝑄 𝐿𝑁⁄  (6) 

 

at no. (pheromone) concentration LN is the distance between two places and t time at 𝐿𝑁 is 𝜏𝑗(𝑡). 𝑃𝑟
𝐾 is the 

chance that ant No. 𝑘 will transmit his pheromone at t time at 𝐿𝑁. Volatility coefficient 𝜌 and constant 𝑄 are 

used to describe the rate at which a pheromone adjusts to a new environment.  

 

3.2.2. Adaptive ant colony optimization that has been modified (ant colony optimization) 

Increasing the volatility coefficient ρ will lower the global search capability of the approach in the 

context of multiple cities [25]. With a reduction in ρ, the method’s global searching power increases as a result. 

However, the rate of constricting will be slowed as a result of this. 

Ant colony optimization may easily reach its apex if 𝐿𝑁 ≥ 𝐿𝑚𝑖𝑛 is true. As a result, we may alter the 

value of the volatility coefficient, which is an adaptive ant colony optimization algorithm (ant colony 

optimization) [26], [27]. After the changes, To do a certain task (p): 

 

0.95𝜌(𝑡), 𝑖𝑓 0.95 𝜌(𝑡)  >  𝜌 𝑚𝑖𝑛𝜌 𝑚𝑖𝑛 (7) 

 

if 𝐿𝑁 < 𝐿𝑚𝑖𝑛 As a rule, all parameters remain the same.  

 

3.2.2. Ant colony optimization on the basis of weight-rank (ant colony optimization) 

The underlying principle of ant colony optimization-rank-weight is to rank the routes obtained after 

each ant completes a single cycle in terms of length. It is the length of the routes taken in the process of 

circulation that determines how much each ant contributing to pheromone regeneration can do. The more the 

ant contributes, the shorter the journey is. According to ant circumference system model, a weight coefficient 

is to be regenerated based on the changes in the pheromone concentration and the ant No.𝑘 is the best No.𝑘. 

So we’ve dubbed it the ant circumference system model. A worldwide approach to rebuild ant colonies is 

achieved by each individual ant participating. The same superior outcome may be achieved with fewer 

iterations. Solving large-scale problems becomes much easier with this approach, which may save a significant 

amount of computational effort. Using the revised: 

 

∆𝜏𝑗
𝑘(𝑡) = 𝜆𝑘. 𝑄/𝐿𝑁 (8) 

 

the pheromone change that ant No. 𝑘 released at t instant along route 𝐿𝑁 , and the weight coefficient lambda 

are represented by ∆𝜏𝑗
𝑘(𝑡). 

 

3.3.  The ant colony optimization rw neural network 

The ant colony optimization rw algorithm is a global optimization method. The weight coefficient and 

the concept of global regeneration were both used. There are several issues with the back propagation neural 

network algorithm, and therefore we utilize it as a training method for neural networks. For example, if there 

are m parameters in the neural network and the components of ants in the ant colony; this means that the neural 
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network has all conceivable weights and thresholds values, and each of these parameters has m parameters. Set 

the neural network parameter 𝑞𝑖(1 ≤ 𝑖 ≤ 𝑚) to a m random nonzero value and create a set first 𝐼𝑞𝑖. Weights 

and threshold values are selected by each individual, assuming that the ant in the group is free to determine 

transfer probability and concentration are factors that affect the parameters. Finally, they make it to their food 

supply and replenish the concentration of pheromones and parameters in order to get back on track. In the 

following table, the formulae have been changed: 

 

∆𝜏𝑘(𝐼𝑞𝑖) = 𝜆𝑘. 𝑄/𝑒𝑘 (9) 

 

𝑒𝑘𝑗 = (𝑂𝑠 − 𝑂𝐼)2/2 (10) 

 

Δ𝜏𝑗
𝑘(𝐼𝑞𝐼) is the change in pheromone concentration that ant k chooses No. 𝑗 element in set 𝐼𝑞𝐼; 𝑄 is constant, 

which is used to the adjustment speed of pheromone; 𝑒𝑘 is the O/P error of the neural network, 𝑂𝑠 is the actual 

O/P of neural network, 𝑂𝐼) is the expectation O/P of neural network; 𝜆 is weight index. The transfer probability 

will be used to renew the the global optimization path and individual optimization path. Once and for all, bring 

back the days of iteration. Figure 2 depicts the algorithm’s flow chart.  

 

 

 
 

Figure 2. The new ant colony optimization-BP flow diagram 

 

 

4. EXPERIMENT IN SIMULATION 

4.1.  Setup of the simulation parameters 

Because of the variable nature of the hidden layer in BP neural networks, the value of the amount m 

of nodes can only be determined by trial and error. The experience formula may be used to determine the 

starting value 0 of the hidden layer nodes. To fine-tune the output error of neural networks, the hidden layer 

nodes may be added or removed during training. Many investigations have shown that the three-layer 𝑀 =
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30, 𝜆 =  0.5, and 𝜌 = 0.2 have a large number of buried layer nodes, indicating that the claimed accuracy is 

0.005. The starting state has a significant impact on the algorithm in this kind of search. In other words, we 

need to choose a good starting point. There is no practical purpose for this information in the DTC system since 

it is utilized in the ant colony optimization algorithm. MATLAB/Simulink is required to set up implement the 

sample cycle system and the DTC system simulation platform : It is important to note that the parameters of 

an AC motor are as follows: power rating: 𝑃𝑁=1.5 kw, voltage rating: 𝑉𝑁=380 v, frequency rating: 𝑓𝑁=50 Hz, 

inductance rating: 𝐿𝑠=0.0025 H, inductance rating: 𝑅𝑠=4.25 Ω and rotor resistance: 𝑅𝑟=3.24 Ω 𝐽=0.085 kg.m2. 

 

4.2.  Algorithm to algorithm comparison 

In training, a total of 2,000 sets of data are used as training samples. The maximum number of training 

sessions is set at 2,000, while the lowest possible level of error is set at 0.005. Table 1 shows the results of 

comparing the the ant colony optimization-BP with the single back propagation neural network employed in 

this work.  

 

 

Table 1. Errors in the algorithum training 
Name of algorithm Predicted durations of training The amount of time spent iterating Error 

BP 2005 1998 0.3980 

Ant colony optimization -BP 2005 530 0.0040 

Ant colony optimization rw-BP 2005 120 0.0039 

 

 

When look at Tabel 1, have been notice that the single back propagation neural network training is 

taking a long time to attain its expected accuracy. Accuracy is achieved, however the ant colony optimization-

BP takes longer to run than the ant colony optimization rw-BP used in this research. As a result, the redesigned 

ant colony optimization NN not only has a faster convergence speed, but also shorter iteration periods, and its 

accuracy is clearly improved. 

A spike and burr can be seen in the single back propagation neural network ’s training track curve by 

comparing Figure 3 with Figure 4, Figure 5, and Figure 6. Although the ant colony optimization-surge BP’s 

and burr have been decreased, there is a time delay in the speed track curve and the track impact is negative. 

A superior track effect is achieved by using ant colony optimization rw-training BP’s track curve, which does 

not have any burr. The foregoing findings show that ant colony optimization rw-capacity BP’s to achieve the 

optimization effect is superior than that of both ant colony optimization-BP and single back propagation neural 

network , as seen from the data shown. 

 

 

  
  

Figure 3. A single back propagation neural 

network’s off-line training curve 

Figure 4. Ant colony optimization-off-line back 

propagation neural network’s training curve 

 

 

4.3.  Internet-based training 

In the DTC system of sensor less, we can retrieve the online track curve of flux linkage and speed by 

running the modified ant colony optimization rw-back propagation neural network, the single back propagation 

neural network into the simulation platform to run online and the ant colony optimization -back propagation 

neural network. According to Figures 6 to 11, they are From the graphs, we can observe that the single back 

propagation neural network’s online identification curve has burr and spike. Online identification of the ant 
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colony optimization-back propagation neural network has no surge or burr, but the identification effect is not 

optimal and there seems to be a time delay clearly. This paper’s updated ant colony optimization rw-back 

propagation neural network speed identification is more accurate at tracking the real speed of a vehicle than the 

original. In 𝛼 −  𝛽 coordinate, the flux linkage track also has a smoother surface. This means that the ant colony 

optimization rw-back propagation neural network utilized in this research has excellent capability, and the speed 

identification built using the ant colony optimization rw-back propagation neural network has accomplished the 

DTC system of speed sensorless. The system’s dynamic and static capabilities have been significantly 

improved.in the Figure 7 and Figure 8 the result proved the accuracy of speed by using -back propagation neural 

whereas Figure 9 and Figure 10 depicts back propagation neural network in the linkage flux.  

 
 

  
  

Figure 5. Updated ant colony optimization rw-off-line 

back propagation neural network ’s training path 

curve 

Figure 6. Cradle of one back propagation neural 

network ’s online velocity identification 

 

 

  
  

Figure 7. Identification curve for the online speed 

of the ant colony optimizatio -back propagation 

neural network 

Figure 8. The ant colony optimization rw-back 

propagation neural network speed identification 

curve has been updated 
 

 

 
 

Figure 9. The single back propagation neural network’s flux linkage curve 
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Figure 10. Linkage flux curve for ant colony optimization and back propagation neural network 

 

 

 
 

Figure 11. Linkage curve of the modified ant colony optimization rw-back propagation neural network flux 

 

 

5. CONCLUSION 

In this work, have been present the ant colony optimization rw-back propagation neural network 

model. Using the ant colony optimization rw-back propagation neural network in DTC highlights the fine 

capabilities of this method in recognizing non-linear functions, while also demonstrating the ant colony opti- 

mization ’s capacity to speed up the back propagation neural network’s avoid the local minimum point and 

convergence speed. The simulation results revealed that the speed sensor replaced with the ant colony 

optimization rw-optimized back propagation neural network -speed identification. Consequently, a useful 

project for the implementation of DTC speed sensor less has been created. 
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