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Abstract 
In this paper, an efficient residue to binary converter design for the new high dynamic range 

moduli set {2n-1,2n+1,22n,22n+1,22n-1-1} is presented. The reverse conversion in the four-moduli set {22n, 
22n+1, 2n+1, 2n-1} has been proposed in literature. Hence, the converters are based on the new moduli set 
{22n-1-1, (2n-1)(2n+1)(22n+1)22n} and propose its residue to binary converter using New Chinese Remainder 
Theorem 2 ( New CRT 2). The new moduli set are proposed with a dynamic range 8n-1 bits and has the 
same features of the popular one. When compared to the common five moduli reverse converters, this 
enhanced moduli set has more dynamic range, and it useful for high performance computing. 
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1. Introduction 

The conventional weighted number system has carry propagation among arithmetic 
operations, resulting in performance degradation in hardware computing systems. The residue 
number system (RNS) is an efficient alternative number system which has been an important 
research field in computer arithmetic for many decades. One of the key advantages of RNS is a 
carry-free number system, which can represent number in a non-weighted form. High speed 
and less hardware complexity could be achieved by decomposing a large binary number into a 
set of smaller residues [1-3]. RNS has drawn widespread attention for increasing performance 
of communication system, Digital Signal Processing such as Fourier transform (FFT), digital 
filter, and image processing. 

The basic building blocks for a RNS needed residue arithmetic unit, binary-to-redidue 
converters, and residue-to-binary converters [4, 5]. Choice of the moduli set that includes 
relatively prime integers and designs of the reverse converter are important because these 
issues have basic effects on reverse converter’s performance, they have long been the 
performance bottleneck for RNS [8-15]. Another important arithmetic problem is converting 
residue to binary number, which is the crucial for a RNS application. The traditional algorithms 
of reverse converter are Chinese Remainder Theorem (CRT) and Mixed-radix conversion 
(MRC). However, the use of CRT is unprofitable since it is involve a large modulo M operation, 
where M is the product of all moduli [6]. The MRC is a sequential process which requires times 
[7]. Recently, Wang has proposed New Chinese Remainder Theorem 1 (New CRT I) and New 
Chinese Remainder Theorem 2 (New CRT II), which are based on CRT and MRC [8]. The New 
CRTs algorithm eliminates the drawbacks of traditional CRT and MRC, resulting in notable 
improvement in hardware.   

By far, many different moduli sets have been proposed, which have different properties, 
whicn according to dynamic range (DR), arithmetic operations and hardware implementation. In 
some high-performance computation systems, they demand more parallelism with larger 
dynamic range. A few of five-moduli set have been reported, Skavantzos proposed a five-moduli 
set {2n-1,2n,2n+1,2n+2(n+1)/2+1,2n-2(n+1)/2+1} [9],  Mathew et al. also proposed a five-moduli set 
{23n-1,23n,2n+1,23n+2(3n+1)/2+1,23n-2(3n+1)/2+1} [10], they have the same disadvantages that all the 
moduli are not in the form of 2n or 2n±1 , the multiplicative inverses are in poor formats, resulting 
in the speed of the arithmetic unit is restricted. Skavantzos and Stouraitis proposed a five-
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moduli set {2n+1, 2n-1, 2n+1, 2n+1-1,2n+1+1} [11], Cao et al. also proposed a relatively balanced 
five-moduli set { 2n-1,2n, 2n+1, 2n+1-1,2n-1-1} [12], though all the moduli are in the form of 2n or 
2n±1 with this two moduli sets, they are only co-prime for even values of n and dynamic range 
are only 5n bits , larger dynamic range moduli sets are necessary for large number 
computations. A few of larger dynamic range moduli sets have proposed, which comprises non 
co-prime moduli [13]. 

In this paper, we propose a residue to binary converter design based on New CRT I and 
New CRT II with our new moduli set {2n-1,2n+1,22n,22n+1,22n-1-1}, which is valid any value of n. 
These involving moduli of this moduli set are in the form of 2n or 2n±1, this makes the converter 
design in less hardware complexity. The proposed moduli set is derived from the moduli set 
{22n, 22n+1, 2n+1, 2n-1} [14], while the dynamic range has raised to 8n-1 bits. A two-level design 
of reverse converter for the proposed moduli set based on combination of New Chinese 
Remainder Theorem 1 (New CRT I) and New Chinese Remainder Theorem 2 (New CRT II) is 
presented. 

The rest of the paper is organized as follows: In section 2, we provide a brief 
introduction for the RNSs and New CRTs. In section 3, the new 5-moduli set is proposed, and 
an efficient reverse converter algorithms for the new five-moduli set that based on New CRTs is 
provided. Hardware implementation is presented in section 4. Evaluating the proposed reverse 
converter and compare the result in terms of conversion delay and hardware cost with other 
similar reverse converters in section 5. The paper is concluded in section 6 
 
 
2. Background 

In a residue number system (RNS), an integer X can be defined by a moduli set 
{m1,m2,...,mn}, which is consisted of a set of pairwise relatively prime integer numbers, i.e., gcd 

(mi, mj)=1 for i≠j. The dynamic range (DR) M is the product of the moduli,
1

n

ii
M m


 , A 

weighted representation X can be represented as X=(x1,x2,...,xn), where: 
 

mod 1, 2, 0
i

i i i im
x X X m i n x m    

                     (1) 
 

Then integer X has a unique n-tuple represention:  1 2, , 0RNS
nX x x x X M   .            

New Chinese Remainder Theorem 1 (New CRT I) [8]: For a moduli set {m1,m2,...,mn}, 
the weighted number X can be converted from its a set of residue number (x1,x2,...,xn), it is 
presented using New CRT I as: 

 

2 3 1

1 2 1 2 2 3 2
1 1

1 2 3 1 1

( ) ( )

( )
n n

n n n n m m m m

k x x k m x x
X x m

k m m m x x


  

   
 

 





     (2) 

 

Where
2 3 1 3 1 3 1

1 1 2 1 2 2 1 21, 1, , 1
n n n n n nm m m m m m m m m m

k m k m m k m m
  

  
  

          

New Chinese Remainder Theorem 2(New CRT II) [8]: For a 2-moduli set {m1,m2}, 
where m1<m2 . the weighted number X can be converted from its residue representation (x1,x2), 
it can be represented by New CRT II as follows: 

 

1
2 2 0 1 2( )

m
X x m k x x  

                                                                                (3) 
 

1
0 2 1

m
k m 

                                                                                                          (4) 
 

Where, ki is the multiplicative inverse. 
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3. Reverse Converter to 5-Moduli Set {2n-1,2n+1,22n,22n+1,22n-1-1} 
In this section, we apple the New CRT-I and the New CRT-Ⅱ to the proposed superset 

{2n-1,2n+1,22n,22n+1,22n-1-1} to achieve a high-performance residue to binary converter, its 
dynamic range is 8n-1 bits. We denote the residues corresponding to this moduli set (m1, m2, 
m3, m4, m5) as (x1, x2, x3, x4, x5).  

A two-level conversion algorithm for the residue to binary conversion is presented. The 
moduli set S={2n-1,2n+1,22n,22n+1,22n-1-1} is decomposed into two subsets. i.e., S1={22n, 22n+1, 
2n+1, 2n-1} and S2={22n-1-1,22n(2n-1)(2n+1)(22n+1)}. From [14], the moduli set S1={22n, 22n+1, 
2n+1, 2n-1} are pairwise prime when n is valid for any value. Therefore, it is necessary that 
prove the all moduli of S1 are all pairwise prime to the moduli of 22n-1-1 for any value of n.  

Theorem 1: The number of 2n-1,2n+1,22n,22n+1,and 22n-1-1 are pairwise relatively prime 
for any value of n. 
Proof:  According to the Euclid’s Theorem gcd (a,b)=gcd(b,a mod b), it is easy to find. 
              

     
     
   
   

2 1 1 1

2 1 1 1

2 1 2 2

2 2 1 2 1

gcd 2 1, 2 1 gcd 2 1, 2 1 gcd 2 1,1 1

2 1, 2 1 2 1, (2 1) (2 1), 2 1

2 1, 2 2 , 1 1

2 1, 2 1, 2 1, 3 1

n n n n n

n n n n n

n n n

n n n

gcd gcd gcd

gcd gcd

gcd gcd

  

  



 

       

         

   

    

          (5) 

 
It can be seen that all the greatest common divisors are equal to 1, therefore the four 

numbers 2n-1,2n+1,22n,and 22n+1 are relatively prime to the modulo 22n-1-1. 
At the beginning, we assume that an integer X1 is represented as (x1, x2, x3, x4) based on the 
four-moduli set S1={22n, 22n+1, 2n+1, 2n-1}. The final weighted X can be calculated from the 
residues (X1, x5) correspond to the second moduli set S2={22n-1-1, (2n-1)(2n+1)(22n+1)22n}. 
In the first level of the converter, According to the conversion algorithm of [14], the weighted 
X1=(x1, x2, x3, x4) can be obtained by: 
 

2
1 1 2 nX x Z                                                                                           (6) 

 
Z is the output of moduo 24n-1 adder, therefore Z is a 4n-bit integer, then X1 has 6n bits. 

In the second level of the reverse converter, by applying (3) to the moduli set S2, S2 can be 
rewritten as: 

 
 2 2 2 1 2 4 2 1

2 2 ( 2 1) ( 2 1) ( 2 1) , 2 1 ( 2 ( 2 1) , 2 1)n n n n n n n nS            (7) 
 

X can be calculated by New CRT-Ⅱ. 
 

2 1
2 4

1 0 5 1 2 1
2 (2 1) ( ) n

n nX X k x X  
   

                                             (8) 
 

Lemma 1: The multiplicative inverse of the number 22n(24n-1) modulo 22n-1-1 is k0. 

 
2 1 2 2

0

1
2 (2 1) 1 2

3
n nk       

                                                                    (9) 
 

Proof: According to (4), we have
2 1

2 4
0 2 1

2 (2 1) 1
n

n nk  
   。                                                                          

Then, (8) can be rewritten as: 
 

2 1

2 4 2 1 2 2
1 5 1

2 1

1
2 ( 2 1) 2 ( 2 1) 1 2 ( )

3 n

n n n nX X x X


 



        
  (10) 

 
Its original form of k0 is not amenable to hardware design, then it is expanded into geometrical 
series. 
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2 1 0 2 4 6 2 21
[2(2 1) 1)] 2 2 2 2 2

3
n n        

                               (11) 
 
Finally, the weighted X can be represented as follow: 
 

 2 1

2 4 0 2 4 6 2 2 2 2
1 5 1 2 1

2 (2 1) (2 2 2 2 2 ) 2 ( )
n

n n n nX X x X 

 


         

 (12) 
 
 

4. Hardware Realization of Reverse Converter 
Hardware frame of the proposed 5-moduli set S={2n-1,2n+1,22n,22n+1,22n-1-1} reverse 

converter is shown Figure 1. 
 

 
 

Figure 1. Frame of the Proposed 5-moduli Set Reverse Converter 
 
 

Hardware implementation for integer X1 from the residues (x1, x2, x3, x4) correspond to 
the four-moduli set S1={22n, 22n+1, 2n+1, 2n-1} has completed by [14]. The aim of this section is 
to implement the hardware architecture of X from the residues (X1, x5) correspond to the second 
moduli set S2={22n-1-1, (2n-1)(2n+1)(22n+1)22n}. Figure 2 shows the architecture of the residue to 
binary converter for the 2-moduli set S2. 

 
 

 
 

Figure 2. Architecture of Reverse Converter for the 2-moduli set S2 
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The (12) can be rewritten as: 
  

2 4
1 2 (2 1)n nX X R                                                                            (13) 

 

Where: 
 

2 1 2 1

2 1 2 1

0 2 2 2 2 2 0 2 2 2
5 1 1 22 1 2 1

2 2 2 2
1 5 2 12 1 2 1

(2 2 2 ) 2 ( ) (2 2 2 )( )

2 , 2 ( )

n n

n n

n n n

n n

R x X r r

r x r X

 

 

  

 

 

 

          

  

 
  (14) 

 
Now, we consider Equation (13) and (14), and simplify them for efficient hardware 

implement. First, we show two Lemmas, they can be used to implement modulo 2n-1 adder by 
simply circular shift. 

Lemma 2: 
2 1

2
m

nx


is equivalent to circular lef shift a m-bits binary namber x by n bits [12]. 

Lemma 3: 
2 1

2
m

nx


 is equivalent to circular lef shift a m-bits binary namber x by n bits , then  

complement of result [12]. 

Lemma 4: 
2 1

2
m

ms i


 is equivalent to 

2 1
2

m

i


 

Where, n and m are any natural numbers. 
Since X1 is a 6n-bits number and x5 is a (2n-1)-bits number, they are represented in 

their binary forms as follows: 
 

 

1 1,6 1 1,6 2 1,1 1,0

6

n n

n

X X X X X  


           

5 5,2 2 5,2 3 5,1 5,0

2 1

n n

n

x x x x x 



 


                                                    
Where, xi,j denote the jth of xi.Then, r1 and r2 can be furthermore simply by lemma 2 and 

lemma 3. 
 

2 1

2 2
1 5 5,0 5,2 2 5,2 3 5,12 1

2 1

2
n

n
n n

n

r x x x x x


 



  


                                             (15) 

2 1

2 1

2 2
2 1 2 1

6 3 6 1 6 2 4 2 6 4 6 5 4 1
2 4 2 2 1

2 1 4 3 4 4 2 0 2 2 2 3 1

2 1 2 1 2 1

2 ( )

11 11

n

n

n

n n n n n n n
n n

n n n n n n

n n

r X

X X X X X X X

X X X X X X X X









      
 

    

  

 

      

    
        

  

 
 

21 22 23 2

（ ）+（ ）

r r r r
（ ）（ ）

2 12 1n 4

  (16) 

 

Where, ix  is the complement of ix , and r21, r22, r23, r24 can be represented in their binary forms . 

By substituting (15) and (16) into (14), R can be calculated by: 
 

2 1

0 2 4 2 2
1 21 22 23 24 2 1

(2 2 2 2 )( )
n

nR r r r r r 




                                   (17) 

By applying Lemma 2, Lemma 3 and Lemma 4 in Equation (15), (16) and (17), they can 
be simplified to decrease the hardware complexity. The Operand Preparation Unit (OPU) 
includes simply manipulating the routing of the bits and inverters of the residues that prepares 
the operands for modulo adder. The implementation of R requires a 5n-operand carry save 
adder (CSA) with end-around carry (EAC) [15] tree followed by a modulo 22n-1-1 adder that is 
one (5n, 22n-1-1) Multi-Operand Modular Adder (MOMA). In the paper, we considered modular 
adder that is the carry propagate adder (CPA) with end around carry (EAC) [16]. Furthermore, 
(13) can be rewritten as: 

 
2 4 6 2 2

1 12 (2 1) X 2 2 2n n n n nX X R R R Y R                (18)  
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 Where: 
 

6
1 2 2 2 3 1 0 1,6 1 1,6 2 1,1 1,0

2 1 6

2 n
n n n n

n n

Y X R R R R R X X X X   



     
 

        (19) 
 

It should be noted, because X1 is a 6n-bits number, (19) can be realized by simple 
concatenation without additional hardware and computation cost.  

Finally, by substituting (19) in (18), we have: 
 

2
1 1 2 2 2 3 1 0

4 22 1

2 1 1 1 1 1 1 1 1 1n
n n

n nn

X Y V Y V V V V 



            
                 (20) 

 
Realization of X relies on a (8n-1)-bits binary subtracter, which can be implemented rely on a 
(8n-1)-bits regular CPA with ‘1’ carry-in and (2n-1 ) NOT gates. 

Example 1：For n=8，the proposed 5-moduli set is S=(65536,65537,255,257, 
32767），the weighted number X can be calculated from its RNS representation 
(121,165,2741,1056,30125), the residues have binary representation x1=(0000101010110101), 
x2=(00000010000100000), x3=(01111001), x4=(010100101) and x5=(111010110101101). For 
the first level of the proposed reverse converter, the 4-moduli set S1=(65536,65537,255,257), its 
equivalent weighted number X1=(11944497348884)10 that we can obtained by (6). For the 
second level of the proposed reverse converter, the 2-moduli 
S2=(32767,255×257×65536×65537), according to (14)-(19), we have R=(30804) 10 and 
Y1=(8670674627568536245) 10 , finally, X=(8670674625549765301) 10 can be obtained by (20). 
 
 
5. Performance Evaluation 

In this section, the area and delay of proposed reverse converter for the new five-moduli 
superset are evaluated. According to Figure 1 and Figure 2, the proposed 5-moduli residue-to-
binary converter consists of one four-moduli set converter, one (5n, 22n-1-1) MOMA for the 
calculation of R, one (8n-1)-bit binary subtracter and some inverters. The estimated hardware 
costs according to full adder (FA), and modular adder (mod add), subtractor (sub) and some 
logic gates. Full adders (FA’s) with constant bits of 1’s or 0’s are reduced to pairs of XOR/AND 
or XNOR/OR gates. The total conversion delay and hardware costs are the sum of the residue-
to-binary converter for the 4-moduli set S1 and 2-moduli set S2. Table 1 shows the hardware 
costs and conversion delays of the proposed 5-moduli set reverse converters, where tFA denote 
the delay of an FA and L denote the number of levels in an CSA tree, respectively. 

 

 

Table 1. Hardware Characterization of Each Part of the Proposed Reverse Converer  
Mod set part FA NOT XOR/AND XNOR/OR Delay 

S1 

OPU - 6n+3 - - tnot 
CSA1 2n+1 - 2n-1 - tFA 

CSA2 2n+2 - 2n-2 - tFA 
CSA3 2n+3 - - 2n-3 tFA 
CPA 4n - - - (8n)tFA 

Area 
(10n+6)AFA+(4n-3)Axor+(4n-3)Aand+(2n-3)Axnor+(2n-3)Aor 

+(6n+3)Anot 
Delay (8n+3)tFA+tnot 

S2 

OPU1 - 6n - - tNOT 
CSA 10n2-9n+2 - - -- L1 

CPA 2n-1 - - - (4n-2)tFA 
OPU2  2n-1 - - tNOT 
8n-1 bit sub 8n-1 - - - (8n-1)tFA 
Area (10n2+n)AFA+(8n-1)Anot 
Delay L1+2 tNOT+(12n-3)tFA 

S 
Area (10n2+11n+6) tFA+(4n-3) txor+(4n-3) tand+(2n-2) txnor+(2n-2) tor+(14n+2)tnot 
Delay 3tNOT+20ntFA+ L1

 
 
The dynamic range of the proposed 5-moduli set has 8n-1 bits. Up to now, it is difficult to find a 
existing moduli sets that has the same dynamic range as the proposed 5-moduli set. Moduli 
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sets of [10] and [12] have the same numbers of channels as our proposed moduli set, but have 
different dynamic range. We compare our moduli set with [10] and [12]. For a fair comparison, 
n-bit CPAs with EAC are considered for the implementation of the modulo 2n-1 adder for all 
converters. Table 2 shows the hardware costs and conversion delays of the proposed 5-moduli 
set reverse converters, [10] and [12]. It is clear from the table that proposed 5-moduli set 
reverse converters has a significant superiority in high dynamic range moduli set with efficient 
reverse converter. L1 and L2 are number of the levels of the CSA tree with (5n) input and 
((n/2)+1) input respectively. 

 
 

Table 2. Hardware Complexity and Conversion Delay Comparison 
converter DR n area Delay 
 [10] 15n odd >( 36n2+144n) AFA >(27n+9) tFA 

 [12](n=6k) 5n even 
1

6
(5n2+145n－12) AFA  n=6k (18n+ L2+7) tFA 

Proposed 8n-1 any 
(10n2+11n+6) AFA +(4n-3)Axor+ 
(4n-3)Aand+(2n-2)Axnor 

+(2n-2)Aor+（ 14n+2） Anot

(3tNOT+20ntFA+ L1) tFA 

 

 
6. Conclusion 

This paper introduced the new high dynamic range 5-moduli set {2n-1,2n+1,22n, 
22n+1,22n-1-1}, where n is any positive integer. The efficient reverse converter for the moduli set 
is presented that is based on the NEW CRTs and the converse algorithm for the four-moduli set 
{2n-1,2n+1,22n,22n+1}. The overall speed of the arithmetic unit of RNS systems based on the 
moduli set S1 and S is restricted to the 22n+1 channel, but the proposed 5-moduli set reverse 
converter that its dynamic range has raised to 8n-1 bits. 
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