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 Hand position recognition is very significant for human-computer interaction. 

Different kinds of devices and technologies can be used for data acquisition; 

each has its specification and accuracy, one of these devices is Kinect V2 

sensor. A three-dimensional location of the skeleton joints is taken from the 

Kinect device to create three types of data, the first is joint position raw data, 

the second is angles between joints, the third is combined of both types. These 

three types of data are used to train four classifiers, which are support vector 

machines, random forest, k nearest neighbors, and multilayer perceptron. The 

experiments are done on the datasets of 30,480 frames from 127 volunteers 

with saved trained models are used to predict and classify the eight positions 

of hand in a real-time system. The results show that our proposed approach 

performs well with highly efficient and accuracy reaching up to 99.07% in 

some cases and an average time spent on checking frame by frame 

sequentially very short period, and some cases, it reaches 0.59*10-3 seconds. 

This system can used in many applications such as controlling robots or 

devices, comparing physical exercises, or even monitoring elderly and 

patients, and more. 
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1. INTRODUCTION  

The Microsoft Kinect sensor V2 device is used in many scientific fields because of its specification 

like being cheap, very accurate [1], [2], easy to set up technology, and fast. To extract position skeleton data, 

Kinect provides to us the locations of 25 virtual anatomical joint trajectories which can be extracted from depth 

map with a per-pixel semantic segmentation algorithm [3], with the ability to track 6 people, the Kinect sensor 

provides a powerful software development kit (SDK). Its technology allowed many applications to be 

developed beyond the original scope of gaming, covering several categories like detection of the human body 

or a part of it, such as the face, hands, or legs, and distinguishing movements and gestures in the field of sign 

language, gait recognition as in research [4]-[9]. Also, to monitor patients and the elderly for healthcare or 

from falling and alert those concerned where one or several devices are used [10]-[12]. To monitor exercises 

with the design of an avatar to teach and display movements and compare the correctness of their 

implementation [10], [13]. Controlling the robot as a whole or as an arm through gestures or imitation of 

movements [6], [14], it has the possibility of implementation in real-time application [15], can be used as a 

scanner for 3D printing [16], and because artificial intelligence has a large income in controlling these areas. 

We apply multiple classification algorithms on three types of data extracted from the second version of the 
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Kinect to study, compare the effectiveness and accuracy of each classification method and apply used the best 

classifiers in an online test model.  

Kinect V2 Sensor is a device developed by Microsoft, where it is initially launched with the Xbox 

game console, and then a new version of it was released for Windows, Figure 1. The powerful Kinect features 

like two cameras: one that is color RGB and the other that is depth (with varying resolutions). The color camera 

has a resolution of 1920×1080 pixels, while the depth camera has a resolution of 512×424 pixels. At any given 

moment, Kinect can monitor up to six skeletons, each with 25 joints as shown in Figure 2(a). The joints are 

labeled with numbers ranging from 0 to 24 which are color (x, y), depth (x, y), camera coordinates (x, y, z), 

and orientation (x, y, z), these are the 11 attributes of each joint (x, y, z, w) as shown in Figure 2(b). Figure 3. 

represent output data of Kinect v2 and summarize point cloud computation. 

The Kinect's camera coordinates employ the infrared sensor to locate 3D locations in space where the 

joints are. These are the coordinates to utilize in 3D projects for joint placement. It's worth remembering that 

the Kinect skeleton returns "joints" rather than "bones" [17], what matters to us is the raw data represented by 

the three-dimensional locations of the skeletal joints, as we use it in the first type of data and we also use it to 

calculate the angles, which is the second type of data. 

 

 

   
 

Figure 1. The face of the Kinect V2 sensor shows the placements of the cameras and emitters [18] 

 

 

 
 

(a) (b) 

  

Figure 2. Information of joints data the Kinect V2 sensor's (a) joint map of a human skeleton, and 

(b) an example of one Kinect joint's 11 features [19] 

 

 

 
 

Figure 3. Schematic representation of the output data of Kinect v2 and summary of point cloud  

computation [20] 
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Different classifiers are used in this research to classify the types of hand positions. In this research, 

we decided to detect and classify eight positions, which  are: “hands up," “right hand up," “left hand up," 

“hands-on head," “arms open," “stand up straight," “hands-on waist," and “hands forward". By applying the 

following classifiers: (support vector machines (SVMs) [21],[22], k-nearest neighbors (kNN) [23], random 

forests (RF) [24], multilayer perceptron (MLP) [25]). The goals of this research are: 

 Finding the best accurate classifier and using it in the system to distinguish movements that can be applied 

in simulators and robotics control. 

 Discover what kind of data derived from the skeleton provided by the Kinect device that can be used with 

classifiers and gives the best results in terms of speed and accuracy. 

 More efficient method of storing and retrieve trained model to reduce the time of training system. 

 Designed and implemented a fast system to use classifier on real-time recognition. 

 

 

2. RELATED WORKS 

Many researches have there attempts and approaches in this field, we present some of the recent 

researches related to the used classifiers in this paper. Adama, et al [26], offered an activity recognition learning 

system for use in assistive robots that uses an SVM classifier to learn everyday activity from 3D skeletal data. 

Byun and Lee [27], presented a survey for the use of SVMs in various applications. It was successful in 

applying it to several problems, including voice discrimination with knowledge of the speaker's identity, 

distinguishing faces with knowledge of his identity, knowing handwriting, and distinguishing numbers, and 

most results showed that RBF kernels were usually better than linear or polynomial kernels. 

Manzi et al. [28], described an activity detection system that uses machine learning techniques (a 

multiclass SVM trained using sequential minimal optimization (SMO)) to identify actions based on skeletal 

data taken from a depth camera. Li et al. [29], developed a system for action identification based on the skeleton 

by mining important skeleton postures using latent SVM. The research revealed that distinguishing human 

actions requires only a few frames with crucial skeletal postures.  

Arai and Andrie [30], created a 3D skeleton model, the Kinect sensor and Ipisoft motion capture 

program are used. Ipisoft is a specifically designed tool that allows users to design skeletons for their computer-

generated characters. The knee angle feature will be extracted from the skeleton and used to quantify the gait 

disable quality. Anjum et al [31], created feature vectors based on the 3D location of these joints during the 

course of the activity, which are then utilized for SVM-based training and testing of activity identification for 

genuine human-robot interaction.  

Piyathilaka and Kodagoda [32], offered the notion of a spatial affordance map, which uses geometric 

aspects of the environment to learn about human context. Rather than watching real individuals in the 

environment, the suggested affordance mapping approach models interaction between the environment and 

humans using virtual humans. The spatial affordance map learning issue is stated as a multi-label classification 

problem that may be learned using SVM-based learners. Experiments on an actual 3D scene dataset yielded 

good results, demonstrating the use of the affordance-map for mapping human context.  

Elforaici et al. [33], created an automatic posture recognition system using an RGB-D camera 

(Kinect). They present two supervised algorithms for learning and detecting human poses using an RGB-D 

camera's multiple types of visual input. One method takes advantage of a three-dimensional configuration of 

body joints. The posture recognition is subsequently performed using the SVM classification of 3D skeleton-

based properties.  

Han et al. [34], to reduce the potential injury caused by falls, this study proposes a two-stage fall 

detection system based on human postural features. They produced additional crucial characteristics for 

preprocessing in this study: deflection angles and spine ratio, to describe changes in human posture based on 

the human skeleton, and we classified using both SVM and kNN. Ubalde et al. [35], represented skeletal 

sequences as a bag of time-stamped descriptors, and they provide a new framework for action categorization 

based on the kNN approach. Ramirez et al. [36], this paper proposes a fall detection system based on camera 

vision that extracts features using a KNN classifier. 

Seungryul et al. [37], researched the challenge of activity recognition in a 24-hour monitoring scenario 

of patient actions in a hospital, the objective was to identify both static and dynamic actions successfully. They 

suggest using a kinematic-layout-aware random forest to encode scene layout and skeleton information as 

privileged information, collecting more geometry and kinematic-layout information, and improving action 

classification discriminative power. Laraba et al. [38], introduced a novel motion sequence representation that 

projects movement sequences into the RGB domain. Action classification becomes an image classification 

issue since the 3D coordinates of joints are transferred to values of red, green, and blue. Methods for classifying 

images at a basic level, such as SVM, kNN, RF, as well as CNN, were used to evaluate this representation. 
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Canavan et al. [39], suggested combining a random regression forest with a unique set of features 

descriptors built from bone data received from the leap motion controller to recognize automated hand gestures. 

Boissiere and Noumeir [40], proposed an end-to-end trainable network for human action identification utilizing 

skeleton and infrared data, with 2D CNN as a pose module extracting features from skeleton data and 3D CNN 

as an infrared module extracting visual characteristics from clips. Using a multi-layer perceptron, both feature 

vectors are then merged and explored together. Zhao et al. [41] describe a technique that uses various classifiers 

to identify people. By using static characteristics taken from Kinect skeletal data, and used classfiers (KNN, 

decision tree, Gaussian Naive Bayesian, MultiLayer perceptron, and SVM) to predect the conclution. 

 

 

3. PROPOSED METHOD 

Figure 4. show the diagram of proposed approach. That Use the Kinect v2 sensor and the above 

classifiers to represent following steps:  

 Build dataset (collect datasets using the Kinect skeleton). 

 Calculate angles. 

 Save data in three separate CSV files containing different types of data.  

 Train classifiers. 

 Store trained models by use the pickle method. 

 Real-time recognition using saved models.  
 

 

 
 

Figure 4. Diagram of the proposed approach 

 

 

3.1.  Build dataset 

The database we collected for eight fixed positions came from 127 volunteers (men and women), 

whose ages ranged from 20 to 41, with different heights (1.45–1.91 m) and different body sizes. Each person 

from the volunteers imitates or performs the eight positions or poses: “hands up”, “right hand up”, “left hand 

up”, “hands-on head”, “arms open”, “stand up straight”, “hands-on waist" and “hands forward” as shown in 

Figure 5, interspersed with a simple movement that falls under the same position. For each person, we record 

240 frames (each frame contains 15 joint camera coordinates in X, Y, and Z, and 6 angles). The record total 

frames are 30,480 frames. 72% are used for training data and 28% are used for testing data. 

 

 

 
 

Figure 5. Eight hand positions 
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3.2.  Calculate angles  

If we have space coordinate positions of their joint points, we can calculate an angle by using three 

3D points to make space vectors between them. Like vector (ER-SR) (SR-SS), where ER represents the joint 

point of the elbow right, SR represents the joint point of the shoulder right, and SS represents the joint point of 

the shoulder spine. As shown in Figure 6. 

 

 

 
 

Figure 6. Diagram of joint angle 
 

 

By assuming the coordinates of the elbow-right joint point are (x1, y1, z1), the coordinates of the 

shoulder-right joint point are (x2, y2, z2), and the joint point coordinates of the spine-shoulder are (x3, y3, z3), 

then the vector a=(x2−x1, y2−y1, z2−z1), vector b=(x3−x2, y3−y2, z3−z2), Assume (a, b) included angle is α, then: 

 

cos 𝛼 =  
𝑎.𝑏

|𝑎||𝑏|
  (1) 

 

𝑎. 𝑏 = (𝑥2 − 𝑥1)(𝑥3 − 𝑥2) + (𝑦2 − 𝑦1)(𝑦3 − 𝑦2) + (𝑧2 − 𝑧1)(𝑧3 − 𝑧2)  (2) 

 

|𝑎| =  √(𝑥2 − 𝑥1)2 +  (𝑦2 − 𝑦1)2 +  (𝑧2 − 𝑧1)2 (3) 

 

|𝑏| =  √(𝑥3 − 𝑥2)2 +  (𝑦3 − 𝑦2)2 +  (𝑧3 − 𝑧2)2 (4) 

 

to get the angle between the vectors created by the three essential bone joint sites joined in pairs, substitute the 

following equations into (1)-(4). This strategy was used by Liu et al. [12]. 

 

3.3.  Save data 

This research is based on distinguishing the upper half of the body, specifically the location of the 

hands, we focused on the 15 upper joints and the angles that determine the movement of the hands. For this, 

the lower half does not affect the determination of the movements adopted in the search, to reduce processing 

operations we saved data in three separate files. First file used to save joints coordinate (X, Y, Z) of upper 

joints (head, nick, spin shoulder, spin mid, spin base, shoulder (left, right), elbow (left, right), wrist (left, right), 

hand (left, right), hip (left, right)), second file to save calculate six angles shown in Figure 7 which is shoulder 

angle calculated using points (spine shoulder–shoulder-elbow), elbow angle calculated using points (shoulder-

elbow-wrist), wrist angle calculated using points (elbow–wrist -hand) for right and left side, The third file is 

used to save data by combining the first and second files, meaning we use both joints and angles to train the 

algorithm. 

 

 

 
 

Figure 7. Positions of the six calculated angles 
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3.4.  Train the classifiers 

Three types of data to are used to train the classifiers: the first comes from the Kinect device 

represented by the skeleton joint coordinate position; the second is the calculation of six angles shown in Figure 

7 which are calculated by using the aforementioned method and the third type of data used for training is by 

using the joints and angles together. These datasets are used to train a set of classifiers (SVM, random forest, 

k-nearest neighbors, multilayer perceptron), as mentioned above 72% from the dataset are used for training the 

classifiers. 

 

3.5.  Store models 

It is known that training any algorithm takes a longer time than the rest of the steps. To shorten the 

time and not have to repeat the training of the classifier at each run of the real-time system, we used a method 

to save the module after it has been trained and load them when needed. Using Python’s built-in persistence 

model, namely pickle, and use the models in real-time classifiers as shown in Figure 4. 

 

3.6.  Real-time detection and classification 

After training the classifier and saving it as a pickle, the stage of using the classifier to distinguish 

patterns begins with running a special program written in visual basic by C++ language to choose the type of 

classifier and the type of data Figure 8 that used in real-time detection system. After that, loading the saved 

model based on the choice and starting the Kinect device to track the person and send his data to a Python 

script that extracts the data from each frame individually and stores it in the form of a list.  

According to the type of data to be classified, if it is of the first type the data of the skeleton joints 

shall be placed in the list. And if it is of the second type the required angles shall be placed after calculating 

them, and if it is the third type each of the previous two types is placed and sent. Then the classifier makes the 

prediction and displays it on the screen as shown in Figure 9. 
 

 

 
 

Figure 8. Online hand position detection and classification system; the main window 
 

 

 
 

Figure 9. An example of real-time recognition 
 

 

4. EXPERIMENTAL RESULTS 

Applying the classifiers using our written code with Python version 3.9 and the scikit-learn version 

1.0.1 libraries [42]. These tests were done on a computer with following specifications: Software (Microsoft 

window 10 Pro 64-bit version 21H2). Hardware (processor: Intel Core i7-4510U 2000 GHz, memory: 16 GB, 

harddisk: 1 TB SSD). From the implementations of the classifiers, the following experimental results are 

examined to determine which one is the best classifier based on the accuracy and the kind of the used data. As 

we can see in Tables 1-2, the classifiers achieve the best performance on point data, except for random forests, 
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which have the best accuracy on the third type of data. The most important thing is that the accuracy of 

classifiers, in some cases, exceeded 93 percent and reached 99 percent in MLP and SVM with the poly kernel.  
 

 

Table 1. The classifier test result of SVM types on three types of data 

Data 
Type 

Position Name 

SVM with Linear kernel SVM with Polynomial kernel SVM with RBF kernel 

Preci

sion 

Reca

ll 
F1-score Precision Recall F1-score 

Precisi

on 
Recall 

F1-

score 

Angles 

Dataset 

hands up 0.31 0.28 0.3 0.41 0.42 0.41 0.52 0.4 0.45 

right hand up 0.62 0.61 0.61 0.55 0.53 0.54 0.64 0.57 0.61 

left hand up 0.48 0.39 0.43 0.45 0.4 0.42 0.52 0.39 0.44 
hands on head 0.86 0.93 0.89 0.9 0.89 0.9 0.89 0.93 0.91 

arms open 1 0.93 0.96 0.97 0.97 0.97 0.99 0.94 0.96 

stand up straight 0.44 0.79 0.57 0.53 0.74 0.62 0.5 0.76 0.6 
hands on waist 0.8 0.85 0.83 0.91 0.87 0.89 0.91 0.86 0.88 

hands forward 0.54 0.24 0.34 0.57 0.45 0.5 0.57 0.63 0.6 

Accuracy 62.72% 65.76% 68.54% 

Points 

Dataset 

hands up 0.98 0.94 0.96 0.98 0.99 0.99 0.96 0.98 0.97 

right hand up 0.93 1 0.96 0.99 1 1 1 1 1 

left hand up 0.99 0.99 0.99 1 1 1 1 0.99 1 
hands on head 1 0.95 0.98 0.99 0.99 0.99 0.98 0.97 0.97 

arms open 0.98 0.99 0.98 1 0.99 1 0.97 0.99 0.98 

stand up straight 0.94 1 0.97 0.97 0.99 0.98 0.97 0.99 0.98 
hands on waist 1 0.97 0.98 0.99 0.97 0.98 0.99 0.96 0.98 

hands forward 1 0.96 0.98 1 0.99 0.99 1 0.97 0.98 

Accuracy 97.48% 99.07% 98.26% 

Both 

Dataset 

hands up 0.96 0.99 0.97 0.43 0.34 0.37 0.37 0.27 0.31 

right hand up 0.99 0.99 0.99 0.67 0.62 0.64 0.64 0.57 0.6 

left hand up 0.99 0.98 0.99 0.57 0.46 0.51 0.56 0.43 0.48 
hands on head 0.99 0.96 0.98 0.84 0.95 0.89 0.86 0.95 0.9 

arms open 0.95 0.99 0.97 1 0.93 0.96 1 0.93 0.96 

stand up straight 0.85 1 0.92 0.46 0.83 0.59 0.42 0.85 0.57 
hands on waist 1 0.86 0.92 0.79 0.89 0.84 0.8 0.89 0.84 

hands forward 1 0.92 0.96 0.6 0.29 0.39 0.57 0.26 0.36 

Accuracy 96.16% 66.41% 64.34% 

 

 

Table 2. The classifier test result of k-NN, RF, and MLP on three types of data 
Data 
Type 

Position Name K Nearest Neighbors Random Forests Multilayer Perceptron 
Precision Recall F1-score Precisi

on 

Recall F1-score Precision Recall F1-

score 

Angles 

Dataset 

hands up 0.39 0.37 0.38 0.45 0.35 0.4 0.28 0.32 0.3 

right hand up 0.55 0.58 0.57 0.59 0.63 0.61 0.63 0.53 0.58 
left hand up 0.5 0.45 0.47 0.52 0.47 0.5 0.45 0.39 0.42 

hands on head 0.89 0.91 0.9 0.92 0.93 0.92 0.75 0.9 0.82 

arms open 0.98 0.93 0.95 1 0.94 0.97 0.9 0.91 0.91 
stand up straight 0.49 0.72 0.58 0.61 0.65 0.63 0.51 0.72 0.6 

hands on waist 0.86 0.85 0.85 0.9 0.85 0.87 0.81 0.66 0.73 

hands forward 0.63 0.42 0.5 0.56 0.72 0.63 0.54 0.4 0.46 

Accuracy 65.33% 69.27% 60.35% 

Points 

Dataset 

hands up 0.81 0.72 0.76 0.85 0.88 0.86 0.98 1 0.99 
right hand up 0.99 0.96 0.97 0.99 1 0.99 1 1 1 

left hand up 1 0.96 0.98 0.98 1 0.99 1 0.99 1 

hands on head 0.69 0.81 0.75 0.95 0.78 0.86 0.99 0.99 0.99 

arms open 1 0.94 0.97 0.75 0.99 0.85 1 0.99 1 

stand up straight 0.74 0.52 0.61 0.9 0.85 0.87 0.95 1 0.97 

hands on waist 0.58 0.83 0.68 0.83 0.89 0.86 0.99 0.94 0.97 
hands forward 0.96 0.87 0.91 0.96 0.75 0.84 0.99 0.99 0.99 

Accuracy 82.67% 89.19% 98.79% 

Both 

Dataset 

hands up 0.55 0.5 0.52 0.92 0.87 0.9 0.93 0.82 0.87 
right hand up 0.67 0.7 0.68 0.99 1 0.99 0.99 0.98 0.98 

left hand up 0.63 0.57 0.6 0.98 1 0.99 0.94 0.98 0.96 

hands on head 0.89 0.91 0.9 0.89 0.94 0.91 0.83 0.93 0.88 
arms open 0.96 0.93 0.94 0.89 0.99 0.94 1 0.93 0.96 

stand up straight 0.6 0.8 0.69 0.93 0.99 0.96 0.96 0.99 0.97 

hands on waist 0.86 0.87 0.87 0.98 0.95 0.97 0.9 0.96 0.93 
hands forward 0.72 0.56 0.63 0.99 0.82 0.9 0.96 0.91 0.93 

Accuracy 73.07% 94.29% 93.63% 
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We also noticed that the classifiers do not work correctly when using angles data in some actions, 

specifically in the movements of hands forward, some errors occur, as shown in the confusion matrix in Tables 

3-5. We also noticed when using angles data, the accuracy is lower than the rest. The reason may be the fact 

that the ranges of these angles are not large enough. Furthermore, the values are similar in most of the 

movements or contain more noise. 

 

 

Table 3. Confusion matrix of SVM with Linear kernel and SVM with Poly kernel classifiers on three types of 

data 

Data 

type 

True 
position 

label 

SVM with Linear kernel SVM with Polynomial kernel 

Angl 

es 

Datas

et 

hands up 298 144 107 91 0 281 102 27 438 133 92 55 1 232 31 68 

right 
hand up 

59 636 103 30 0 150 13 59 117 555 139 0 0 138 0 101 

left hand 

up 
177 98 409 6 0 290 7 63 159 168 419 5 0 225 7 67 

hands on 
head 

0 0 6 977 0 7 21 39 43 5 20 935 1 0 18 28 

arms 

open 
27 2 1 0 977 0 43 0 14 1 3 0 1015 0 15 2 

stand up 
straight 

89 18 85 0 0 825 0 33 98 32 92 2 0 776 2 48 

hands on 

waist 
113 22 2 8 0 14 890 1 62 16 0 6 0 10 917 39 

hands 
forward 

199 105 137 30 1 291 30 257 135 108 167 32 29 90 20 469 

Points 

Datas-

et 

hands up 983 31 12 0 24 0 0 0 
103

6 
0 3 11 0 0 0 0 

right 

hand up 
0 1050 0 0 0 0 0 0 0 1050 0 0 0 0 0 0 

left hand 
up 

0 0 1040 0 0 10 0 0 0 0 1050 0 0 0 0 0 

hands on 

head 
8 40 0 1002 0 0 0 0 7 0 0 1043 0 0 0 0 

arms 

open 
8 0 0 0 1042 0 0 0 9 0 0 0 1041 0 0 0 

stand up 
straight 

0 0 0 0 0 1047 3 0 0 0 0 0 0 1044 6 0 

hands on 

waist 
0 0 0 0 0 33 1017 0 0 0 0 0 0 31 1019 0 

hands 

forward 
0 13 0 0 0 29 0 1008 0 9 0 0 0 2 0 1039 

Both 

Datas-

et 

hands up 1036 0 14 0 0 0 0 0 352 120 102 103 0 262 87 24 
right 

hand up 
0 1036 0 0 0 14 0 0 67 646 77 30 0 166 19 45 

left hand 
up 

0 0 1034 2 0 14 0 0 42 75 484 11 0 319 42 77 

hands on 
head 

38 0 0 1012 0 0 0 0 1 0 0 1001 0 4 17 27 

arms 

open 
6 2 1 0 1041 0 0 0 50 0 0 0 976 0 24 0 

stand up 

straight 
0 0 0 0 0 1048 2 0 51 16 73 0 0 875 3 32 

hands on 
waist 

0 0 0 0 0 144 904 2 92 1 1 9 0 7 938 2 

hands 

forward 
0 11 0 8 50 14 0 967 173 111 109 35 1 263 51 307 

Predic

ted 

positi-

on 

label 
  

han- 
ds up 

right 

hand 

up 

left 

ha 
nd 

up 

han-

ds 
on 

head 

ar 

ms 

open 

stand 

up 
straig-

ht 

hands 

on wai- 

st 

hands 

forw-

ard 

han-

ds 

up 

right 

hand 

up 

left 

ha 
nd 

up 

han
ds 

on 

he 
ad 

ar

ms 
op 

en 

sta

nd 

up 
stra

ig 

ht 

han
ds 

on 

wai
st 

han 

ds 
forw

ard 
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Table 4. Confusion matrix of SVM with RBF kernel and kNN classifiers on three types of data 

Data 

type 

True 

positi-

on 

label 

SVM with RBF kernel KNN 

Angl

es 

Data

set 

hands 

up 

421 123 51 75 0 247 36 97 389 161 62 66 1 219 77 75 

right 
hand up 

78 603 85 0 0 149 15 120 95 610 150 0 0 150 5 40 

left 

hand up 

63 120 408 8 14 344 3 90 110 134 476 2 17 251 9 51 

hands 
on head 

0 0 8 978 0 0 9 55 23 0 3 956 0 0 25 43 

arms 

open 

11 0 16 0 982 0 9 32 23 32 15 0 975 0 3 2 

stand 
up 

straight 

78 26 88 1 0 798 0 59 103 60 109 0 0 753 6 19 

hands 
on 

waist 

63 12 6 5 0 2 906 56 90 9 0 21 3 12 890 25 

hands 

forward 

94 56 124 30 0 62 22 662 162 100 141 35 0 148 25 439 

Poin

ts 

Data

set 

hands 

up 

1032 0 0 18 0 0 0 0 755 0 0 278 0 0 0 17 

right 

hand up 

0 1050 0 0 0 0 0 0 12 1008 0 0 0 0 30 0 

left 
hand up 

0 0 1044 6 0 0 0 0 0 0 1011 9 0 15 15 0 

hands 

on head 

36 0 0 1014 0 0 0 0 144 0 0 853 0 30 0 23 

arms 

open 

9 0 0 0 1041 0 0 0 25 0 0 8 985 2 30 0 

stand 
up 

straight 

0 0 0 0 0 1044 6 0 0 0 0 0 0 551 499 0 

hands 
on 

waist 

0 0 0 0 0 37 1011 2 0 0 0 30 0 147 873 0 

hands 
forward 

0 3 0 0 29 0 0 1018 0 11 0 59 0 0 71 909 

Both 

Data

set 

hands 

up 

280 132 82 84 0 330 113 29 525 172 63 71 5 97 66 51 

right 

hand up 

63 594 84 27 0 216 15 51 45 735 82 0 0 135 14 39 

left 
hand up 

68 63 448 13 0 373 16 69 104 38 596 3 17 237 8 47 

hands 

on head 

0 0 0 997 0 4 21 28 28 1 4 955 0 0 24 38 

arms 

open 

38 4 0 0 976 0 22 10 19 38 8 0 975 0 8 2 

stand 
up 

straight 

52 18 60 0 0 897 4 19 58 41 76 0 0 845 8 22 

hands 
on 

waist 

89 2 1 8 0 7 937 6 38 8 1 16 20 17 917 33 

hands 
forward 

166 114 132 29 1 292 40 276 135 71 112 31 0 86 25 590 

Pred

icted 

posit

ion 

label 
  

han

ds 
up 

rig

ht 

ha 
nd 

up 

left 
ha 

nd 

up 

han

ds 

on 
he 

ad 

ar
ms 

op 

en 

sta

nd 
up 

stra

ig 
ht 

han

ds 

on 
wai

st 

han

ds 

for
wa

rd 

han

ds 
up 

rig

ht 

ha 
nd 

up 

left 
ha 

nd 

up 

han

ds 

on 
he 

ad 

ar
ms 

op 

en 

sta

nd 
up 

stra

ig 
ht 

Han 

ds 

on 
wai 

st 

han 
ds 

forw

ard 

 

 

It is worth noting that the use of any classifier model saved in real-time testing will work without 

problems or delays in the presentation, Table 6 The table shows the average time taken to test each frame and 

show the results. We note that the best classifier is MLP in terms of speed, then SVM with Linear kernel 

follows, and the slowest classifier is random forest, but all falls within the real-time of the test. 
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Table 5. Confusion matrix of RF and MLP classifiers on three types of data 

Data 

type 

True 

position 

label 

RF MLP 

Angl 

es 

Datas

et 

hands 

up 

370 169 93 45 0 163 60 150 180 214 100 108 36 222 90 100 

right 

hand up 

82 657 165 0 0 57 0 89 57 687 115 0 14 103 0 74 

left hand 

up 

89 129 496 9 0 157 0 170 44 137 438 10 33 285 1 10

2 

hands 

on head 

12 0 4 977 0 2 13 42 15 6 12 895 0 1 77 44 

arms 

open 

10 0 31 0 987 0 14 8 1 3 41 0 974 4 19 8 

stand up 

straight 

109 78 99 2 0 682 1 79 18 49 81 0 0 853 1 48 

hands 

on waist 

53 17 1 7 0 20 894 58 79 31 2 19 46 0 822 51 

hands 

forward 

97 59 65 25 2 34 12 756 84 124 153 32 2 88 47 52

0 

Poin-

ts 

Datas

et 

hands 

up 

920 0 15 39 60 0 0 16 1047 0 0 3 0 0 0 0 

right 

hand up 

0 1050 0 0 0 0 0 0 0 1050 0 0 0 0 0 0 

left hand 

up 

0 0 1050 0 0 0 0 0 0 0 1045 5 0 0 0 0 

hands 

on head 

156 0 0 820 61 0 0 13 10 0 0 1040 0 0 0 0 

arms 

open 

8 0 0 0 1042 0 0 0 10 0 0 0 1040 0 0 0 

stand up 

straight 

0 0 0 0 0 888 162 0 0 0 0 0 0 1047 3 0 

hands 

on waist 

0 0 0 0 9 104 937 0 0 0 0 0 0 52 990 8 

hands 

forward 

0 11 5 0 217 0 32 785 0 2 0 0 0 0 0 1048 

Both 

Datas

et 

hands 

up 

918 0 15 117 0 0 0 0 973 1 18 57 1 0 0 0 

right 

hand up 

0 1050 0 0 0 0 0 0 0 1050 0 0 0 0 0 0 

left hand 

up 

0 0 1050 0 0 0 0 0 0 0 1011 0 0 39 0 0 

hands 

on head 

68 0 0 982 0 0 0 0 62 14 3 970 0 0 0 1 

arms 

open 

9 0 0 0 1036 0 0 5 11 0 0 0 1039 0 0 0 

stand up 

straight 

0 0 0 0 0 1044 6 0 0 0 0 0 0 1038 12 0 

hands 

on waist 

0 0 0 0 0 52 998 0 0 0 0 3 0 151 890 6 

hands 

forward 

0 13 4 0 127 28 13 865 0 29 0 27 0 0 1 993 

Predi

cted 

positi

on 

label 
  

han

ds 

up 

Ri-

ght 

hand 

up 

left 

ha 

nd 

up 

hands 

on 

head 

ar

ms 

op- 

en 

stand 

up 

straig

ht 

han

ds 

on 

wai

st 

hands 

forwa

rd 

han

ds 

up 

rig

ht 

ha 

nd 

up 

left 

h 

and 
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ms 
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en 
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str
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on 
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hands 
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Table 6. Average time to test one frame in online test 

Classifier Data type 
Average time 

(second) 
Classifier Data type 

Average time 
(second) 

SVM with Linear 
kernel 

Angles 0.00232 

kNN 

Angles 0.00255 

Points 0.00088 Points 0.01190 

Both 0.00082 Both 0.01518 

SVM with Polynomial 

kernel 

Angles 0.00164 

RF 

Angles 0.02546 

Points 0.00124 Points 0.02549 

Both 0.00316 Both 0.03023 

SVM with RBF kernel 

Angles 0.00424 

MLP 

Angles 0.00078 

Points 0.00325 Points 0.00072 

Both 0.00677 Both 0.00059 

 

 

5. CONCLUSION 
In this research, we tested three types of data extracted from the skeleton of the Kinect device on four 

classifiers with the presentation of the results. The classifier that achieved the best performance on points data 

is random forests, which had the best accuracy on the third type of data. It is observed that high results achieved 
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up to 99% in SVM with polynomial kernel and 98.79% in MLP by using points data. Post-training classifiers 

can be used to save in the model, and the saved model can be used for real-time detection and classification. 

In the test procedure, results demonstrated that human position can be recognized by only one frame of data, 

by examining the incoming data sequentially for each frame. Numbers of problems or difficulties occurred, 

including the inability to train some classifiers, such as SVM with the polynomial kernel, which failed to 

classify data above the 4th degree, and the time it takes to train SVM is longer than other classifiers. In future 

work, we will study the use of other algorithms with the possibility of linking them with devices to execute 

orders, or even using raspberry pi instead of PC. 
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