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 The aim of this paper is the design and development a new English-Arabic 

neural machine translation (NMT) called DIA translation system. The main 

purpose of the designing system is to study translator limited sulfur industry 

domain as a stand-alone tool in order to improve the translation quality. 

Machine translation (MT) are very sensitive to the domains they were 

trained on and can be integrated with general (English-Arabic) MT systems. 

The proposed system has mainly four directions: supports chemical symbols, 

terms, phrase, and text and it is evaluated by using (1,200) various English 

declarative sentences which written by English language experts. The 

obtained results indicate that this system is high effective and has an 

accuracy of 79.33% in comparison with Google translator which has 38.67% 

for the same test samples. 
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1. INTRODUCTION  

English is a universal language that is widely used in the science [1] as well as in the technology 

fields. English-to-Arabic neural machine translation (NMT) is particularly important and is mainly based on 

the transfer classification. Comparatively little work has been done on machine translation (MT) systems 

involving Arabic language as the source or target language [2]. MT method based on neural networks has 

several advantages over the other approaches, which is one of the most widely explored areas in MT system 

[3]. The system of MT are considered as very sensitive to domains that they are trained on because each 

domain has its specific style, terminology and sentence structure [4]. Ambiguity of words is often a problem 

in machine translation systems [5]. For example, the English word “frequency” must be translated differently 

if it occurs in a technical or economic context. The main idea of our work is based on the fact that the neural 

models can benefit from domain information to select the most appropriate sentence terms and structures, 

while using information from all areas to improve basic translation quality.  

Hadla et al. [6] reported that MT technology in the field of neural network throughput in machine 

translation systems is an important area of research to optimize [7] the efficiency and modesty of the sulfur 

industry through side barriers. We've extended this idea to domain management. Our goal is to enable models 

with different training data to produce translations within the domain [8]. This means extending general 

https://creativecommons.org/licenses/by-sa/4.0/
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NMT models to specific areas and their specific concepts and styles [9] without compromising the quality of 

translation of more general information. 

Previous work has shown that the NMT model can investigate attention distributions that intuitively 

explain the reasonable correlation between source and target languages [10]. Literature in this area indicates that 

a little works have been conducted in the Arabic language as a target language. Statistical machine translation 

(SMT) has been the main translation paradigm for decades [11]. Even before the advent of direct machine 

translation of neurons, neural networks were successfully used as a component of SMT systems. Perhaps one of 

the most significant experiments involved the use of a common language model to study sentence presentation 

[12], which led to a dramatic improvements in sentence-based translation and extended sentence systems. 

Many new techniques have been proposed to improve MT for example manage the results of rare 

words, various attention mechanisms [13] and minimize sentence loss. Some tecent works also have 

especially dealt with domain adaptation for NMT by providing meta-information to the neural network. The 

present work is in line with this kind of approach, and translation accuracy of this system is gratifying, recent 

work has focused on adapting NMT domains in particular by providing metadata to neural networks [14]. So, 

the topic of this paper is a part of this approach. The power of the neural network in issues related to the 

decoder; the topics are varied and consist of product categories labeled with people [15]. Include thematic 

modeling of encoder and decoder components. The number of standard items is automatically extracted from 

the linear discriminant analysis (LDA) training model; each word in the sentence gets its own thematic 

vector. In our work, we also provide metadata and information about the domain [16]. 

 

 

2. METHOD 

NMT is a technique based on neural networks and conditional probability of a sentence translated 

from the source language into the target sentences [17] which is widely used in the area of deep learning for 

MT. Sequence-by-sequence architecture is used in machine translation models to find the relationship 

between two different language pairs [18]. The system architecture (NMT) is shown in Figure 1. The 

algorithm used for performing English to Arabic translation can be explained with the help of the diagram 

shown [19]. Figure 2 illustrates the architecture of of the proposed DIA translator system. 
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Figure 1. Architecture of the neural translation machine system 
 

 

2.1.  Encoder model 

The source language analysis (English language) and data entry methods are appropriately prepared 

for machine translation. The input is a raw material for the whole system; a text file contains a well-

structured collection of sentences written in English language. The effectiveness of source language analysis 

can be increased in the three steps applied to the morphological analysis, syntax analysis (parser tree) and 

semantic analysis [20].  

The original words are first drawn with word vectors and then inserted into a double neural network 

(RNN) that reads the input letter S = {w1, w2, w3, …, Wn}; receives one element of the input string at each 

step, processes, collects, and disseminates information about that element. The coding part contains information 

that connects string chains with vector spaces to perform neural network calculations. Since words also have a 

meaningful sequence, a repetitive neural network is suitable for this task, the problem with this method is that it 

does not completely solve grammatical complexity, especially when translating the word nth into ocular 

language, RNN considered only (1..n)-word in the original sentence, but the grammatical meaning of the word 

also depends on the order of the words before and after the sentence: Using a two-dimensional model allows us 

to enter the meaning of past and future words to create an exact vector for the encoder output: but then it 

becomes a challenge, which word should we focus on? [21]. prepared a document showing that we can learn 

words in the language of the eye to focus by storing the previous result in long short-term memory (LSTM) 

units, then sorting according to each appropriate and selecting words with the highest scores. 
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Figure 2. Architecture of the DIA translator system 

 

 

2.2.  Attention decoder model 

Encoder-decoder models with attention have been proposed and then become a de-facto standard in 

the neural machine translation [22]. This part explains target language generation (Arabic language) and how 

output texts are appropriately translate on machine translation system. The effectiveness of generate 

equivalent target language can be increased in the two steps applied to the sentence reorder and semantic 

[23]. Assume B as a target sentence, in the decoding process, the following word is assumed using predefined 

words and units of (1) Target objects A = {A1, A2, A3,…., Time}. Using a chain rule, the distribution of 

expressions can be subtracted from left to right, since the focusing system is part of the neural network. 

Determine the components of the eye that are most important for each step of the decoder. At this point, the 

encoder does not need to squeeze the entire eye into a vector, it provides an indication of all flashing signals. 

 

𝑃(𝑦 = y|𝑥 = x) = ∏ 𝑝(𝑦𝑡|𝑦0, … , 𝑦𝑡 − 1, 𝑥1, … , 𝑥𝑠)𝑇
𝑡=1   (1) 

 

NMT models which conform the (1) is referred to as L2R autoregressive NMT [24]-[26], for the 

prediction at time-step t is taken as a input at time-step t+1. The model uses the attention of a series of 

coding, and the weights determine the attention of relationships that combine information from different 

places. This framework is very appropriate for our current study because we emphasize the ability of NMT to 

collect contextual dependencies from a broader context beyond sentence boundaries.  

Focus is chosen to target a subset of the hidden encoder states per target word. The model first 

generates a p (t) alignment position for each target word at time t, while learning the alignment positions in 

attention. In other words, it enables efficient GPU-based training and decoding with a mini series and 

determining whether the translation order is different from the original sentence (original word 1 can be 

words 4in a translated sentence). 

The following algorithm includes three main steps used in the machine translation (MT) system: 

1st step: encoder network. 

- Input (source text). 

- Semantic source text. 

2nd step: attention-decoder network. 

- Target text generation. 

- Optimize the target text. 

3rd step: evaluation and rank. 

- Evaluation DIA translator with Google translator. 

- Rank DIA translator and Google translator from best to worst evaluation. 
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Each step for the encoder or decoder is inputs and generating output for that time step. In this resides the 

limitation of classic sequence to sequence models; the encoder is “forced” to send only a single vector, 

regardless of the length of input source and the model over fits with all sequences. 

 

 

3. RESULTS AND DISCUSSION  

This study has been conducted on bases of the data set constructed by (sulfur production company 

catalogs), the (1,200 sentences) of the previous dataset, that are divided by each reference translation of the 

sentences of all English-Arabic in the dataset of (4) main sentence functions, (text, terms, phrase, general text) 

with each of all English-Arabic sentence reference translations in the data set. The results of average precision 

for each phrase in the corpus of DIA translator and Google translator and are illustrated in Table 1 and Figure 3. 
 

 

Table 1. Human evaluation average precision for each type 
MT/Criterial Terms by domain Phrase by domain Text by domain Text without domain Average precision 

DIA MT system 0.85 0.80 0.73 0.61 0.793 

Google translator 0.33 0.44 0.39 0.75 0.387 

 

 

 
 

Figure 3. Average precision of evaluation systems 
 

 

Research evaluation is most vital in considering success and failure of research work done so, this study 

uses sulfur industry domain by evaluation its system by specialized English-Arabic translation center at university 

of Tikrit vs. Google translator. The comparison between DIA translator with Google translator indicate that:  

− Google translator doesn't support chemical symbols, while the (DIA translator) system supports 

chemical symbols in detail. 

− In case of the (terms), it was stated that DIA translator scheme is much better than the Google 

translator. The reason for this is that the DIA translator system database contains translation file of 

English-Arabic terms. 

− In case of the (phrase by sulfur industry domain), it can be seen that the Google translate system is 

capable of displaying the MT DIA navigation system in most cases. 

− In the sulfur web industry, it can be seen that the Google transfer system is in most cases inferior to the 

MT DIA navigation system; Results testing from Google's translation system shows that the most 

sought-after analysis of these items is genuine and irreparable. 

− It should also be noted that while Google translator cannot translate complex sentences with sulfur energy 

with accuracy, the 100 DIA translator interpreter can interpret some of these sentences on the phone. 

− In general texts (texts that do not use sulfur energy), we note that the precision is the same in some 

simple sentences. Google's translation system is a much wider application than the Arabic machine 

translation system for multiple articles. Composite sentence structure. 

Finally, it can be seen that the Google translate system is capable of displaying the MT DIA 

navigation system in most applications, as illustrated in Table 1. From the obtained results, we can conclude 

that the DIA translator is produces optimized outputs better than Google translator for sulfur industry domain 

(0.387 for Google and 0.793 for DIA translator) in the tests conducted. 

 

 

4. CONCLUSION  

In this work, the domain sulfur industry into a NMT for one of the most difficult language pairs 

(English-Arabic) has been used. From the results above obtained, it can conclude that the domain with byte pair 

encoding and pre-trained word embedding can performs better translation than the English-Arabic languages 
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general translation techniques. The results obtained also indicate that the DIA MT system accuracy is 

approximately 79.3% compared with the submission accuracy for the Google translator which is approximately 

38.67% in case of using domain sulfur industry. Finally, from all the results obtained, we can conclude that the 

DIA translator is fairly good accuracy and able to outperform many baseline translation systems.  

 

 

FUTURE WORK 

Since domain classification is a document level task, it would be interesting to extend the current 

study to document level translation. 
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