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Abstract 
Order release is the key premise for the semiconductor wafer fabrication system to perform well, 

which is also one of the paramount significant components in the scheduling strategies. Most order release 
strategies merely have focused on the workload but failed in considering the remarkable influence on cycle 
time of common orders that is brought by unexpected rush ones. In this paper an on-line mechanism 
based on Theory of Constraintsfor lot releaseusingself-Adaptive Neural Fuzzy Inference System models 
was presented which is able to adjust the release rhythm dynamically according to dynamics of fabs. In our 
approach, an ANFIS model was established to predict the ratio between hot and common lotsin wafer 
fabto perform adjustments on the order release schedule in advance. Simulated experiments based on the 
HP24 model were carefully performed and experimental results proved a better performance of common 
lots than original TOC on a large scale, especially when it comes to the situation of disturbance. 
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1. Introduction 

Semiconductor wafer fabrication system (SWFS) is considered to be one of the most 
sophisticated manufacturing systems of high-tech, which is known for multiple re-entrants, long 
production cycletime, complicated manufacturing steps, high cost of investment, and huge 
uncertainties [1-4]. Therefore, an efficient and effective strategy oforder release is paramount 
significant for the reason that an efficient strategy will lead to reducing cost and living up 
tocustomers’ expectations; otherwise it even can curtail the market share [5, 6]. Especially, rush 
orders caused by variation of real market demands subject manufacturing enterprises to a huge 
range of pressure and risks of profits reducing for the reason that rush orders are able to disrupt 
the stability of fabrication system, increase inventory level, rise cost and decrease throughput 
which can result in failure of meeting customers’ demands [7]. 

Early researches of scheduling strategies for the semiconductor wafer manufacturing 
system date back to the late 80s of the 20th century. Uzosy et al. ventured that researches of 
scheduling strategies are mainly consisting order releasing and dispatching [8]. As for order 
release, constant level of Work-In-Process (CONWIP) [9] regulation is a simple approach based 
on the amount of lots in processing, which has positive effect on cycle time. Extended from WIP 
control, Workload Control (WLC) release strategies such as workload regulation (WR) [10] and 
constant load (CONLOAD) [11] have attracted much attention which decide lot release 
according to the fab workload. 

Though it is of great significance to cope with rush orders in job shops in reality, this 
topic hasn’t received quite enough attention as it should have in semiconductor research field, 
which holds true for order release control. A precious contribution made by Wu and Chen was a 
model to calculate the production cost of a rush order in an assemble-to-order context [12]. 
Wang and Chen advocated the application of ANFIS into forecasting rush orders for regulating 
the capacity reservation mechanism in advance [13]. However, few embedded rush orders into 
their release control policies, which is right what our work did. 

In this paper, we presented an on-line control strategy for order release concerning hot 
lots that is consisted of an self-adaptive neuro-fuzzy inference system (ANFIS) [14] and Theory 
of Constraints (TOC) [15-17]. An ANFIS model was built for predicting the ratio of hot lots of 
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next five release episodes through Matlab Fuzzy Toolbox. TOC was utilized to identify and 
elevate the bottlenecks of a simulated semiconductor wafer fabrication system-the Hewlett- 
Packard-24(HP24) model from Hewlett-Packard Technology Research Center Silicon Fab [10]. 
The ODBC interface connected to the SQL Server 2005was utilized to implement data 
exchange between Matlab 2008a and eM-Plant 8.1 for the purpose of updating the ANFIS 
parameters on-line. 

This paper is organized as follows. Related methods used in this paper are introduced 
in Section 2. The detailed structure of the combined strategy for release control will be 
presented in Section 3 and Section 4 will cover the simulated experiments performed to check 
and verify the scheduling strategy with corresponding results and analysis. In the end, 
conclusions will be given in Section 5. 
 
 
2. Methods 
2.1. ANFIS 

This section covers a typical adaptive network with a fuzzy inference system[14]. 
Sugeno model is one of the most widely used fuzzy inference models. For a first-order Sugeno 
fuzzy inference system with two inputs, a common set rule set with two fuzzy if-then rules is the 
following: 
Rule 1：if ݔ isܣଵand ݕisܤଵ, then  ଵ݂ ൌ ݔଵ݌ ൅ ݔଵݍ ൅  ଵݎ
Rule 2：if ݔ isܣଶand ݕ isܤଶ, then  ଶ݂ ൌ ݔଶ݌ ൅ ݔଶݍ ൅  ଶݎ
 
 

 
 

Figure 1. (a) A Two-input First-order Sugeno Fuzzy Inference System with Two Rules, (b) An 
Equivalent ANFSI Architecture 

 
 

AnANFIS networkof five layers is demonstrated in Figure  1 with the equivalent Sugeno 
fuzzy inference system above. Learning of ANFIS applied in this paper consists of structure-
learning in the first place and then parameters-learning. Structure-learning includes space 
classifying of fuzzy input and rule-extracting. According to the statistical distribution fuzzy c-
means (FCM) clustering by extracting a set of rules that models the data behavior was utilized 
to classify the training sample space. If the space is clustered into ݊௜ classes, then there will be 
corresponding ݊௜fuzzy rules. Therefore, initial input parameters of membership functions for 
each class are determined by the clustered center coordinates and its radius length [18]. 

ANFIS parameters are divided into two parts: antecedent parameters and consequent 
parameters, so ANFIS Parameters-learning is surely a procedure made up of identification and 
adjustment of the two kinds of parameters. As the ANFIS model was established through Matlab 
Fuzzy Toolbox, a hybrid learning method was applied to configure ANFIS parameters: Least 
Squares (LS) method for the learning of consequent parameters and Gradient Descent method 
for antecedent parameters. 

 
2.2. Procedure of Building ANFIS Prediction Model 

Initially, simulate HP24 Fab with eM-Plant for anadequate long time so that it is enough 
for the fab stabilizes and works well. At the same time, properties of the operating fabwill be 
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collected for training and learning parameters of the ANFIS prediction model and evaluation as 
follows: 
a) ݖଵ,௜: mean order release interval in ݅ week; 
b) zଶ,୧: mean amount of lots before the constraint device in ݅ week; 
c) zଷ,୧: mean WIP level in ݅ week; 
d) zସ,୧: total input amount of common lotsin ݅week; 
e) zହ,୧: total input amount of urgent lots in ݅ week; 
Input parameters are 7 in all:ln∑ zଵ,୨

୧
୨ୀ୧ିସ , zଶ,୧ିସ, zଶ,୧ିଷ, zଶ,୧ିଶ, zଶ,୧ିଵ, zଶ,୧, zଷ,୧ିସ; Output parameter 

is∑ zହ,୨
୧ାସ
୨ୀ୧ /∑ zସ,୨

୧ାସ
୨ୀ୧ . 

Then, through training of input and output data a Sugeno Inference System which is 
able to simulate the given data behavior will be established with the least number of fuzzy rules 
required. In our work, Matlab Fuzzy Toolbox was used to finish that job, the detailed steps are 
below. 
a) Load the input and output data which has been normalized 
b) Classify the data set through fuzzy c-means clustering (structure-learning) 
c) Select the hybrid learning method and set training cycle and limits of error 
d) Train the ANFIS model with the data set (parameters-learning) 
e) Test the ANFIS model 

The experiments performed in our work divided into two parts: building ANFIS 
Prediction Model and testing the on-line release control mechanism. Both building and testing 
were carried out coherently under two conditions: without and with disturbance of ratio between 
common and urgent lots. Dynamic Bottleneck Dispatching (DBD) [19] was used for dispatching 
during simulation. 

 
2.3. Our Approach 

As shown in Figure 2, the HP24 fab transmits input data consisting of production 
properties that are exactly needed for the trained ANFIS model firstly. Then, the model predicts 
the ratio of next five weeks and sends it back to the running fab. At the same time, the ANFIS 
model trains itself so as to keep up with the updating data behaviors of fab. In the end, the fab 
adjusts its release interval according to the forecasted ratio. The adjustment value is computed 
as following: 

 
௜݈ܽݒݎ݁ݐ݊ܫ∆ ൌ ܥ ൈ ሺܴܽ݋݅ݐ௜ାଵ െ ଴ሻ݋݅ݐܴܽ ൈ  ௜     (1)ܤܤ
 

 ;௜: The incremental value of the adjusted release interval݈ܽݒݎ݁ݐ݊ܫ∆
 ;The incremental coefficient of the adjusted release interval according to the fab :ܥ
 ;௜ାଵ: The predicted ratio between urgent and common lots of next five week݋݅ݐܴܽ
 ;଴: The set ratio between urgent and common lots݋݅ݐܴܽ
 .௜: The work time before the first constraint deviceܤܤ
 
 

 
Figure 2. Data Flow Structure of ANFIS Model 

 
 

3. Experimental Design 
Experiments were carried out under two conditions: without and with disturbance of the 

ratio between urgent and common lots. Under the circumstance of none disturbance, the ratio 
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between two types of lots was set 20%.On the other hand, the ratio under disturbance floated 
from 15% to 25% according to Gaussian distribution with the mean value of 20%. The following 
three approaches of order release control are implemented and will be compared with each 
other under two conditions coherently: 
a) TOC: TOC regulation is based on TOC concerning the working ability of Capacity 

Constraint Resources (CCRs). 
b) CONWIP: CONWIP regulation is simply based on the WIP level in the fab, which is a 

representative of Workload Control. 
c) On-line ANFIS based on TOC: Adjust the release interval on-line that is based on TOC 

according to the forecasted value provided by the ANFIS model. 
As the HP24 fab only produces one particular type of lot, each of the three approaches 

above has been tested considering: total amount of lots in and out, mean throughput per day, 
mean cycle time of common and urgent lots, and mean WIP level. The key results we 
concentrated on were mean throughput per day and mean cycle time of two types of lots. Mean 
throughput per day illustrates the performance of lots after release and allows us to evaluate the 
performance of the fab. Mean cycle time, which incorporates the pool delay, describes the 
whole performance of lots across the fabrication system and captures working percentages of 
lots. According to the Little’s Law, WIP level is strongly proportionally connected with cycle time. 
Thus, WIP level allows us to estimate the performance of fab and mean cycle time of lots in 
another way. Each experiment is consisting of 10 simulation years of running: results are 
collected per week unit; the warm-up period is set 15 week units to avoid start-up effects. 
 
 
4. Results 
4.1. Building ANFIS Prediction Model 

Results of training and testing of the ANFIS prediction model for the HP24 fab are 
shown as Figure 3 and Figure 4. Figure 3 depicts the built fuzzy inference system (FIS) 
architecture; Figure 4 demonstrates training results of the ANFIS model. As shown in Figure  3, 
the data set was clustered into 10 classes responding to 10 fuzzy rules in ANFIS and the total 
amount of fuzzy rules was 70(10 ݅݊ݏ ൈ 7). Therefore, initial values of input parameters of 
membership functions for each class (initial values of the antecedent parameters) are 
determined by the clustered center coordinates and its radius length. Depicted in Figure 4, after 
1000 episodes of training, training errors reached the expected limits and test output values of 
the ANFIS model kept in pace with fab test values. Through computing prediction results of the 
test values, total mean error was 0.0348016 within the range of permissible errorand output of 
the ANFIS model is stable. 

 
 

 
 

 

Figure 3. Built FIS Architecture Figure 4. Training Error of the ANFIS Model 
 

 
4.2. On-line Order Release Control 

The on-line feed control was operating with three other strategies: CONWIP, Fixed 
Interval and DBR. Each type of strategy ran twenty-four hours a day for3655 days in simulation 
units with properties of the wafer fab being collected and written into eM-Plant tables. Simulation 
results are shown in Figure 5 to Figure  11 revealing that our proposed on-line release control is 
of possibilities to perform better than original TOC mechanism, especially contending with 
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common lots under certain perturbation which may be applied in a real wafer fab for better 
achievements in further future somehow as well. 

 
 

  
 

Figure 5. Mean Cycle Time of Common and 
Hot Lots 

Figure 6. Average Throughput and Lots 
Working Ratio 

 

 
 

Figure 7. WIP Level and Buffer Lots Amount before CCR 
 
 

 
 

Figure 8.Trend of Average Cycletime of 
Common Lots in Fab without Disturbance 

Figure 9. Trend of Average Cycletime of Hot 
Lots in Fab without Disturbance 

 
 

  
 

Figure 10. Trend of Average Cycletime of 
Common Lots in Fab with Disturbance 

Figure 11.Trend of Average Cycletime of Hot 
Lots in Fab with Disturbance 
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As shown in Figure 5 and Figure  7, average cycle time of common lots under ANFIS 
regime is much lesser than that of TOC and CONWIP under both conditions, which also holds 
true for buffer lots before CCR. Average cycle time of common lots of ANFIS is 93139 seconds 
(1.078 days) lesser than that of TOC under the condition without Gaussian disturbance and 
138641 seconds (1.605 days) lesser under the condition with Gaussian disturbance. Though 
average cycle time of hot lots under ANFIS regime is slightly higher than that of TOC under the 
condition without Gaussian disturbance, when it comes to situation with disturbance, its 
performance is better than that of TOC. 

Figure 6 shows that the three approaches of order release control approximately share 
the same throughput and output ratio under both two different conditions meaning that 
production capacity under each approach is almost equal; that is to say that our approach is 
able to produce an equal number of lots in the same time which could be proven in Figure 7. 
However, Figure 5 and Figure 6 show that average cycle time of both common and hot lots and 
average throughput under ANFIS are more stable than those under either TOC or CONWIP. 
Especially, average cycle timeof common lots in the TOC fab rises up when Gaussian 
disturbance is added in, while that in the ANFIS fab almost does not fluctuate at all. That means 
performances of common lots in the ANFIS approach are much less prone to variations of the 
fabrication system caused by rush orders to some degree .Figure 8 to Figure  11 capture that, 
as simulation goes, average cycle time of common lots in the ANFIS fab decreases more than 
that in the TOC fab and stabilizes, meaning that our approach behaves better than the original 
TOC in the aspect of average cycle time of common lots under two different conditions in the 
long run. 

Compared to the original order release control based on TOC with concerning almost 
the same WIP level and average throughput per day, our approach reduces 1.52% of average 
cycle time of common lots under the condition of none disturbance and 2.26% under condition 
of disturbance with Gaussian distribution. Besides, the variation of average cycle time of hot lots 
under two different conditions under ANFIS mechanism is much smaller than that under original 
TOC mechanism: 8221 seconds for the former and 26859 seconds for the latter, revealing that 
our approach holds better performances of stability against disturbance with Gaussian 
distribution. 

 
 

5. Conclusion 
This paper presented an on-line order release control strategy based on ANFIS for 

handling rush orders in SWFS. An ANFIS model was built for predicting the ratio of hot lots of 
next five episodes through Matlab Fuzzy Toolbox with its parameters being updated on-line and 
real-time. TOC was utilized to identify and elevate the bottlenecks of the HP24 fab, and decide 
order release interval as well. We compared the fab performance under the regime of ANFIS, 
TOC or CONWIP in two conditions of ratio between hot and common lots: without and with 
Gaussian disturbance. ANFIS outperforms the other strategies with respect to achieving the 
desired level of average throughput. The reason lying in the good performance of our approach 
is that: when the predicted ratio between hot and common lots is lower than 20% more common 
lots will be released; otherwise, lesser common lots will be released; as a result, through 
adjusting the number of common lots to be released in advance, average cycle time of common 
lots won’t rise and stabilize under variations brought by hot ones with maintaining the expected 
WIP level in all. Simulation results show that this on-line strategy is of possibilities to perform 
better than contemporary ones which neglect the variation of rush orders, especially contending 
with common lots under acceptable disturbance of hot lots. 
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