
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 26, No. 3, June 2022, pp. 1502~1511

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v26.i3.pp1502-1511  1502

Journal homepage: http://ijeecs.iaescore.com

Analysis of rank-based latency aware fog scheduling using

validating internet of things at large scales

J. Geetha, Shaguftha Zuveria Kottur, Riya Ganiga, D. S. Jayalakshmi, Tallapalli Surabhi
Department of Computer Science and Engineering, M. S. Ramaiah Institute of Technology, Bangalore, India

Article Info ABSTRACT

Article history:

Received Aug 6, 2021

Revised Mar 8, 2022

Accepted Mar 22, 2022

 With the increase in internet of things (IoT) applications' range and scale, it

is essential to test the applications before deploying them in the real world.

Most common approaches utilize simulations and testbeds; however, these

methods lack real-time failure scenarios and the capability to scale,

respectively. A virtual environment is a suitable approach that overcomes

these drawbacks further, IoT applications using cloud computing have

evolved to shift some computing and storage capabilities to the edge

networks for ensuring adherence to strict latency constraints for real-time
applications. This led to the emergence of fog computing which provides

lower latency and better security, among other advantages. As for any

processing tasks, scheduling becomes a critical concern for matching the

tasks with the devices having appropriate resources. This paper analyzes a
hybridized fog scheduling algorithm based on a ranking approach

considering latency as the main parameter. It builds a software layer for

scheduling on top of the validating internet of things at large scales

(VIoLET) infrastructure. The results are compared with the round-robin
scheduling algorithm, and it is found that the hybridized algorithm provides

closer actual latency values to the expected one.

Keywords:

Fog computing

Internet of things

Latency

Rank based scheduling

VIoLET

This is an open access article under the CC BY-SA license.

Corresponding Author:

J. Geetha

Department of Computer Science and Engineering, M. S. Ramaiah Institute of Technology

Bangalore, India

Email: geetha@msrit.edu

1. INTRODUCTION

Internet of things (IoT) is a network of computable devices that are connected via the internet. This

has enabled sharing of information collected through such devices and performing computations on the

collected data on the cloud. The cloud is utilized as remote storage and computational platform and is one of

the significant enablers of IoT on a large scale which has allowed IoT to be used for a wide range of

applications such as smart devices, smart grids [1]-[3], smart campuses [4], [5], and smart supply chains [6],

[7]. It allows devices to interact, collaborate and share their data over the internet, increasing connectivity

and intelligence.

There are many security concerns related to the use of IoT [8], [9] and the communication of data.

Integrating fog computing alleviates some of these concerns [10], [11] as it acts as an added layer of security

between the server and IoT devices. Since the fog network can monitor smaller and simpler devices, it can be

relied upon to handle the bulk of the security responsibilities. It also allows monitoring of distributed systems

and can respond to breaches without shutting down essential system elements. Thus, there are many

advantages of integrating fog computing into real-time IoT applications [12].

Fog scheduling also performs a key role in reducing latency and energy consumption by allocating

resources efficiently [13]-[15]. Depending on the considerations like homogeneity of the fog environment,

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Analysis of rank-based latency aware fog scheduling using validating internet of things at … (J. Geetha)

1503

ability to share communication and computational bandwidth [16], and the parameters for scheduling, the

scheduling algorithms vary in their methodologies.

Validating internet of things at large scale (VIoLET) provides a virtual environment for testing IoT

deployments which overcomes the drawbacks of simulation environments and testbeds, namely scalability

and lack of real-time failure scenarios [1]. Currently, VIoLET provides only the virtual IoT network and does

not have the functionality for applications over IoT, which becomes the users’ responsibility. VIoLET lacks

efficient scheduling strategies for testing applications over IoT. So, the paper focuses on analyzing a

hybridized fog scheduling algorithm based on a ranking approach considering latency as the parameter of

importance and it uses VIoLET to do so. The objectives of this paper are i) to review fog scheduling

algorithms and practices, ii) to implement the proposed algorithm over the virtual hardware architecture of

VIoLET, and iii) analyze the performance of the algorithm.

2. RESEARCH METHOD

2.1. Literature survey

Maximal energy-efficient task scheduling (MEETS) can be used to examine the trade-off

association between energy cost and performance gain [17]. MEETS is an algorithm for task scheduling that

considers energy consumption due to circuits, computation of fog, and offloading energy. Clouds are logical

partitions of cloudlets that are partially ordered, with each division having an upper and lower bound that is

thought to affect the rank of cloudlets by n divisions. Depending on the job requirements and the bounds of

each division, the scheduler selects the appropriate cloudlet for task assignment [18].

In a heterogeneous fog computing environment, dispersive stable task scheduling (DATS) provides

a scheduling technique. Tasks can be offloaded via distributed computing while being executed concurrently

by the cloud and various dispersed fog nodes in a broad multi-user paradigm. The performance of DATs is

compared to that of iterative and random task scheduling [19].

The environment of distributed computing has changed dramatically as a result of fog computing.

New components have been added to the Storm architecture to enable a distributed, quality of service (QoS)-

aware scheduler and self-adaptation capabilities. The custom scheduler outperforms the usual Storm,

improves application performance, and increases adaptability [20].

Network congestion, minimal bandwidth consumption, security, and fault tolerance are all

difficulties that cloud computing faces. This paper's architecture is divided into three layers: cloud, fog, and

client. The fog layer is made up of Fog Server Masters and Coprocessor Servers that are spread across

numerous locations [21].

Rahbari and Nickray [22] point out that storage, processing power, and cloud latency are all issues

that the wireless sensor network (WSN) (IoT infrastructure) faces. Fog computing (FC) reduces bandwidth

usage and delivers data to clients rapidly, which is critical for applications. Fog devices (FDs) are small

processing units that can execute resource management algorithms and are located near edge client sensors.

A knapsack-based greedy scheduling strategy is given in this paper for mapping computer resources to fog

network modules. IoT applications are organised as modules in the fog network. A module in FD conducts

data processing operations including applying data labels and removing unnecessary items. Microdata centres

provide resources to application modules.

On distributed clusters, a technique to decrease inter-fog computing-based radio access points (FAP)

interference [23]. FAPs' signal processing and complete cache usage capabilities reduce the front-end load.

The proposed scheme achieved over 94% throughput and greatly beat the baseline scheme Fog is a hyper-

heuristic algorithm that is used in fog networks to schedule and distribute resources. It has a number of

advantages, including reduced latency time, reduced network traffic, and increased energy efficiency.

The fundamental concept is to combine the benefits and compensate for the shortcomings of single

heuristics [24].

In iFogsim, a knapsack-based scheduling algorithm was optimised as a standard test technique for

Fog computing by symbiotic organisms. Symbiotic organisms Search is based on two paired relationships of

organisms that are easily found across the environment in three steps: mutualism, commensalism, and

parasitism [25]. They can accommodate a larger number of IoT devices thanks to energy minimization

scheduling (EMS) [26]. Idle energy first (IEF) and dealing energy first (DEF) are two main EMS techniques

(WEF). Except for ILP solution, all methods are performed in under 0.1 seconds for various workloads.

Suggest a to enable responsibility for QoS, job classification, resource scheduling, and allocation functions

have been established. This is accomplished by scheduling computing resources and classifying IoT

applications. Based on QoS criteria and resource constraints, a resource allocation plan is created [27].

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 26, No. 3, June 2022: 1502-1511

1504

2.2. Proposed system
During the literature review, Algorithms 1 for Fog scheduling were studied, and their assumptions

were analyzed. The scenarios considered homogeneous or heterogeneous fog environments, computational

offloading, sharing communication and computation spectrum, and prior energy consumption knowledge.

The scenario considered for this paper was a homogeneous environment without computational offloading or

shareable spectrum for communication and computation and with prior knowledge about the requirements of

the task. The user can define how many tasks are required for scheduling, and an arbitrary latency

requirement is assigned to those tasks. This simulates the latency constraints for real-time applications. A

Coremark set of programs are used as workloads. The scheduling algorithm matches the task to the division

with the appropriate latency thresholds, and then the device which has the lowest coremark value and is not

currently executing another task is selected. If no such device is available, the task is queued. After task

execution, the latency for the task is measured, and this is used to update the score of the device using

harmonic mean.

Algorithm 1. Bootstrap scheduler
Input: number of divisions

Output: devices assigned to each division

If number_of_divisions are null or non-positive or greater than number_of_fog_devices, then

returnerror_message

end if

read device_listfrom deployment_output. json

read vm_detailsfrom vm_config. json

initialize max and min latency to default values

for each device in device_list do

connect to the host_vmwhich has the device via SSH

execute standard task on the device

measure the latency for task execution

measure coremark value for each device

update max and min latency measured

end for

divide the range between max and min latency into number_of_divisionsintervals

sort devices in device_list according to coremark value

for each device in device_list do

check under which division threshold it falls

assign it to the threshold and update division_details

end for

store device_detailswith latency and coremark value

store division_detailswith thresholds and assigned device_list

Initially, a bootstrap scheduler as per the Algorithm 1 listed above is programmed with the number

of divisions to which the fog devices in the architecture will be assigned. The algorithm takes the number of

divisions as command line input from the user and initializes the divisions with latency thresholds, and

assigns fog devices to them. It also stores division details with threshold and assigned device list.

The division thresholds are calculated dynamically using the execution of a standard task/workload, and this

is also utilized to assign an initial score to each device which is used to allocate it to divisions. The parameter

of importance according to which the thresholds are created depends on the requirement, but for the paper, it

is considered as the latency, keeping in mind strict latency requirements necessary for real-time applications.

A ranking algorithm, as shown in Algorithm 2 is designed to run in the background at specified time

intervals. It recalculates the score of each device and reassigns devices to divisions if required. The frequency

of execution of this algorithm depends on the user.

Algorithm 2. Ranking algorithm
Input: number of tasks

Output: latency and division details

read device_details which has latency and coremark values for fog devices

read division_details which has threshold value and assigned devices

for each device in device_details do

if the device_latency does not lie between the assigned division_thresholds then

if the division has the lowest threshold and device_latency is lower or

higher threshold and device_latency is higher then

modify the threshold to include the latency of the device

else

reassign device to another division

end if

end if

end for

update division details

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Analysis of rank-based latency aware fog scheduling using validating internet of things at … (J. Geetha)

1505

The ranking algorithm is used in the proposed latency optimizing scheduler. The algorithm is

described in Algorithm 3. The proposed scheduler accepts the number of tasks from the user, schedules and

executes them on the fog devices, and updates device latency information.

Algorithm 3. Latency optimizing scheduler
Input: number_of_tasks
Output: latency values

read device_detailswhich has latency and coremark values for fog devices.

read division_detailswhich has threshold value and assigned device

read vm_details

ifnumber_of_tasks are non positive integer then

returnerror_message

end if

for each task in tasks do

assign arbitrary latency requirements

determine division with appropriate thresholds

for each device in division sorted in ascending order of coremark do

ifdevice is free, then

assign task

else ifall devices are occupied, then

queue task

end if

end for

end for

consolidate the schedule for all tasks

for each task in tasks do

connect to host_vm of assigned device

execute task on device

update latency detail of device using harmonic mean

end for

display rank algorithms latency values

for each task in tasks do

assign to devices in round robin fashion

connect to host_vm of assigned device

execute task on device

measure latency

end for

display round robin latency values

2.3. Experimental setup and implementation

2.3.1. Virtual environment
VIoLET is used to examine the proposed scheduling method. VIoLET is a large-scale virtual

environment for defining and launching large-scale internet of things deployments in could virtual machine

(VMs) [1]. It provides a declarative model for specifying Docker-based compute resources that match the

performance of native edge, fog, and cloud devices. VIoLET is simple to set up and use, balancing ease and

flexibility. It sets bandwidth and latency restrictions for containers and makes it simple to define various

network topologies. VIoLET is based on cloud VMs and hence has the ability to scale to hundreds or

thousands of devices. It enables the creation of virtual sensors that generate data from a variety of

distributions within containers. This provides firsthand knowledge of the user's performance, scalability, and

metrics.

VIoLET is a platform built for creating and testing IoT deployments in a scalable virtual

environment. It builds the functionality of the hardware devices and their networks and allows the user to

deploy any application over the virtual IoT network. Scheduling, an essential aspect in reducing latency and

optimizing other specific constraints like energy, is required to ensure that resource allocation is done

efficiently. VIoLET utilizes a rank scheduling algorithm to match the incoming task's latency requirements.

The VioLET code repository is available in [1]. Setting up VioLET is relatively more

straightforward if a paid account for a cloud service provider is used since it has higher resource availability

than free tier accounts, which have restrictions on resources. For this implementation, two Google Cloud

platform free tier accounts were used. The basic setup concerning the number of virtual machines used

depends upon the IoT deployment that needs to be tested and the coremark values of all the devices in the

deployment and the virtual machines themselves. These values can be used to find the number of containers

VMs required for the deployment [1].

2.3.2. Algorithm implementation
The proposed latency-aware fog scheduling algorithm was implemented on VIoLET architecture

[1], and its performance was compared against the standard round-robin scheduling algorithm. The algorithm

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 26, No. 3, June 2022: 1502-1511

1506

implementation is as shown in Figure 1. The Coremark program is used as tasks to be executed on the nodes

to ensure a standardized workload.

The IoT deployment was added to the file infra_gen. json with the device specifications in

device_types. Json and vm_config. Json respectively. All the VMs should have RSA keys associated with

them which can be done by running ssh-keygen on the terminals. The Metis graph partitioning does the

allocation of the virtual IoT devices to the VMs. Once this is done, Docker should be started on the admin

and host VMs. This creates a key-store datastore on the admin VM, which stores the information of the host

VMs required for communication amongst them. If this is not done properly, overlay network creation will

fail.

Next is running infra_config.py, which creates the Docker overlay networks, the device containers,

attaches the containers to the networks, and performs the necessary network access setting to operate like an

IoT network. This completes the creation of the virtual hardware layer for the IoT deployment, and any

application using it needs to be coded separately. If the deployment requires sensors, another file in the code

repository [1] addresses this need. It requires that the VIoLET repository be present in all the Docker

containers and the presence of specific commands. This can be achieved by adding a Docker file with these

specifications on each VM.

Figure 1. Flowchart of the proposed scheduling algorithm implementation

3. RESULTS AND DISCUSSION

The proposed latency-aware fog scheduling algorithm was implemented on VIoLET architecture,

and its performance was compared against the standard round-robin scheduling algorithm. The Coremark

program was used as tasks to be executed on the nodes to ensure a standardized workload. The tasks have a

required latency threshold according to which the proposed algorithm chooses which division to assign the

task to, as shown in Figure 1. The scheduling algorithms are executed serially for the same set of tasks. The

measurements are obtained by executing a set of tasks multiple times to reduce the effect of outliers.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Analysis of rank-based latency aware fog scheduling using validating internet of things at … (J. Geetha)

1507

3.1. Criteria for evaluation

The main parameter for reduction was the overall latency for the incoming tasks. The focus was on

matching the tasks to devices with similar latencies to prevent the non-availability of devices when a task

with a really low latency requirement comes in. Another consideration made was to match tasks with the

devices, which would result in the lowest energy consumption-because the paper utilized virtual machines for

execution, accurate measurements for these criteria are not available and will be discussed in detail in the

discussion future work section.

3.2. Results

This section details the findings when two and three divisions were considered for runs of five and

ten tasks. A run denotes the execution of multiple tasks. Any measurement made against a run refers to the

average value obtained from executing all the tasks in that run.

3.2.1. Number of divisions=2

Figure 2 shows the latency requirements of the tasks versus the achieved latencies by using the

proposed and round-robin algorithm. Here N denotes the number of divisions. It can be deduced from Figure

2 that the proposed algorithm does not necessarily achieve lower latency than round-robin algorithm, but the

latency achieved by the algorithm is much closer to the required latency of the tasks. This observation is

displayed more clearly in Figures 3 and 4, where the standard deviations of the achieved latency of the

proposed and round-robin algorithm are shown.

Figure 2. Actual latency vs the required latency for both ranking algorithm and Round Robin for 2 divisions

Figure 3. Standard deviation for 2 divisions and 5 tasks is shown for both ranking algorithm and

Round Robin

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 26, No. 3, June 2022: 1502-1511

1508

Figure 4. Standard deviation for 2 divisions and 10 tasks is shown for both ranking algorithm and

Round Robin

In Figures 3 and 4, the average standard deviation of the proposed algorithm is 71.16% and 75.46%

lower than round-robin, respectively. For each run, the average of the task latency requirements and the

average of the achieved latencies of a particular algorithm are used to calculate the standard deviation. Thus,

it can be observed from Figures 3 and 4 that the proposed latency-aware algorithm matches the tasks' latency

requirements more closely compared to the round-robin algorithm.

3.2.2. Number of divisions=3
Figure 5 shows a similar trend to Figure 2, where the required latency of the task is closely matched

by the achieved latency of the proposed algorithm compared to round-robin. Figure 6 and Figure 7 show the

standard deviation of the achieved latencies with respect to the latency requirements. Figure 6 and Figure 7

that the standard deviation of the proposed algorithm is 74.69% and 66.22% lower than round-robin,

respectively, which supports the trend in Figure 2.

It can be seen in Figure 6 that for the last run, the measured values are almost the same, which can

also be observed for tasks 8, 9, and 10 in Figure 5. This highlights the fact that round-robin is a randomized

algorithm which in some instances, can perform as well as or even better than the proposed algorithm, but as

observed, the proposed latency aware rank-based algorithm generally outperforms Round Robin. The focus

on decreasing the standard deviation is to reduce the probability that when a task with a low/strict latency

requirement enters the environment, the node that can satisfy that requirement is not busy with a task that can

handle larger delays.

Figure 5. Actual latency vs the required latency for both ranking algorithm and Round Robin for 3 divisions

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Analysis of rank-based latency aware fog scheduling using validating internet of things at … (J. Geetha)

1509

Figure 6. Standard deviation for 3 divisions and 5 tasks is shown for both ranking algorithm and

Round Robin

Figure 7. Standard deviation for 3 divisions and 10 tasks is shown for both ranking algorithm and

Round Robin

4. CONCLUSION
When it comes to real-time IoT applications, fog scheduling can help reduce latency. Because

processing is done closer to the edge device rather than entirely on the cloud, which would increase the delay,

it allows co/mputation to be offloaded from resource-constrained edge devices. There are a variety of

techniques for both homogeneous and heterogeneous fog settings that allow work offloading to neighbouring

nodes based on their bandwidths, especially in heterogeneous environments. Based on the incoming process,

traditional optimization techniques such as Knapsack, stable matching theory, and heuristic algorithms such

as genetic algorithms and ant colony optimization are used. Another popular solution is to provide

architectural layers that assist in assigning incoming workflow to the appropriate previously categorised fog

instances based on their resource bandwidth. Based on the characteristics and limits of the installed

application. The proposed algorithm is a rank-based latency-aware algorithm that enables a software

scheduling layer on top of the VIoLET architecture. The results show that it performs a better job at matching

the tasks to devices in terms of latency requirements but may not reduce the overall latency for a set of tasks

when compared to an algorithm like round-robin, which does not consider latency as a parameter for

scheduling, possibly due to randomness.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 26, No. 3, June 2022: 1502-1511

1510

REFERENCES
[1] S. Baheti, S. Badiger, and Y. Simmhan, “VIoLET: An emulation environment for validating IoT deployments at large

scales,” ACM Transactions on Cyber-Physical Systems, vol. 5, no. 3, pp. 1–39, Jul. 2021, doi: 10.1145/3446346.

[2] Y. Li, X. Cheng, Y. Cao, D. Wang, and L. Yang, “Smart choice for the smart grid: Narrowband internet of things (NB -

IoT),” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1505–1515, Jun. 2018, doi: 10.1109/JIOT.2017.2781251.

[3] F. Al-Turjman and M. Abujubbeh, “IoT-enabled smart grid via SM: An overview,” Future Generation Computer Systems,

vol. 96, pp. 579–590, Jul. 2019, doi: 10.1016/j.future.2019.02.012.

[4] B. Valks, M. H. Arkesteijn, A. Koutamanis, and A. C. den Heijer, “Towards a smart campus: supporting campus decisions

with internet of things applications,” Building Research and Information, vol. 49, no. 1, pp. 1–20, Jan. 2020, doi:

10.1080/09613218.2020.1784702.

[5] H. Liu, “Smart campus student management system based on 5G network and internet of things,” Microprocessors and

Microsystems, p. 103428, Nov. 2020, doi: 10.1016/j.micpro.2020.103428.

[6] K. Pal and A. U. H. Yasar, “Internet of things and blockchain technology in apparel manufacturing supply chain data

management,” Procedia Computer Science, vol. 170, pp. 450–457, 2020, doi: 10.1016/j.procs.2020.03.088.

[7] A. Rejeb, S. Simske, K. Rejeb, H. Treiblmaier, and S. Zailani, “Internet of things research in s upply chain management

and logistics: A bibliometric analysis,” Internet of Things (Netherlands), vol. 12, p. 100318, Dec. 2020, doi:

10.1016/j.iot.2020.100318.

[8] F. A. Alaba, M. Othman, I. A. T. Hashem, and F. Alotaibi, “Internet of things security: A s urvey,” Journal of Network and

Computer Applications, vol. 88, pp. 10–28, Jun. 2017, doi: 10.1016/j.jnca.2017.04.002.

[9] M. Stoyanova, Y. Nikoloudakis, S. Panagiotakis, E. Pallis, and E. K. Markakis, “A survey on the internet of things (IoT)

forensics: Challenges, approaches, and open issues,” IEEE Communications Surveys and Tutorials , vol. 22, no. 2, pp.

1191–1221, 2020, doi: 10.1109/COMST.2019.2962586.

[10] K. Tange, M. De Donno, X. Fafoutis, and N. Dragoni, “A Systematic survey of industrial internet of things security:

Requirements and fog computing opportunities,” IEEE Communications Surveys and Tutorials, vol. 22, no. 4, pp. 2489–

2520, 2020, doi: 10.1109/COMST.2020.3011208.

[11] A. V. Dastjerdi and R. Buyya, “Fog computing: helping the internet of things realize its potential,” Computer, vol. 49, no.

8, pp. 112–116, Aug. 2016, doi: 10.1109/MC.2016.245.

[12] R. O. Aburukba, M. AliKarrar, T. Landolsi, and K. El-Fakih, “Scheduling internet of things requests to minimize latency

in hybrid fog–cloud computing,” Future Generation Computer Systems, vol. 111, pp. 539–551, Oct. 2020, doi:

10.1016/j.future.2019.09.039.

[13] M. R. Alizadeh, V. Khajehvand, A. M . Rahmani, and E. Akbari, “Task scheduling approaches in fog computing: A

systematic review,” International Journal of Communication Systems , vol. 33, no. 16, p. e4583, Aug. 2020, doi:

10.1002/dac.4583.

[14] X. Yang and N. Rahmani, “Task scheduling mechanisms in fog computing: review, trends, and perspectives,” Kybernetes,

vol. 50, no. 1, pp. 22–38, Mar. 2021, doi: 10.1108/K-10-2019-0666.

[15] K. Matrouk and K. Alatoun, “Scheduling algorithms in fog computing: A survey,” International Journal of Networked and

Distributed Computing, vol. 9, no. 1, pp. 59–74, 2021, doi: 10.2991/IJNDC.K.210111.001.

[16] A. Hazra, M. Adhikari, T. Amgoth, and S. N. Srirama, “Joint computation offloading and scheduling optimization of IoT

applications in fog networks,” IEEE Transactions on Network Science and Engineering, vol. 7, no. 4, pp. 3266–3278, Oct.

2020, doi: 10.1109/TNSE.2020.3021792.

[17] Y. Yang, K. Wang, G. Zhang, X. Chen, X. Luo, and M. T. Zhou, “MEETS: maximal energy efficient task scheduling in

homogeneous fog networks,” IEEE Internet of Things Journal, vol. 5, no. 5, pp. 4076–4087, Oct. 2018, doi:

10.1109/JIOT.2018.2846644.

[18] D. P. Abreu et al., “A rank scheduling mechanism for fog environments,” in Proceedings - 2018 IEEE 6th International

Conference on Future Internet of Things and Cloud, FiCloud 2018, Aug. 2018, pp. 363–369, doi:

10.1109/FiCloud.2018.00059.

[19] Z. Liu, X. Yang, Y. Yang, K. Wang, and G. Mao, “DATS: Dispersive stable task scheduling in heterogeneous fog

networks,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3423–3436, Apr. 2019, doi: 10.1109/JIOT.2018.2884720.

[20] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “On QoS-aware scheduling of data stream applications over fog

computing infrastructures,” in Proceedings - IEEE Symposium on Computers and Communications , Jul. 2016, vol. 2016-

February, pp. 271–276, doi: 10.1109/ISCC.2015.7405527.

[21] M. Verma, N. Bhardwaj, and A. K. Yadav, “Real time efficient scheduling algorithm for load balancing in fog computing

environment,” International Journal of Information Technology and Computer Science , vol. 8, no. 4, pp. 1–10, Apr. 2016,

doi: 10.5815/ijitcs.2016.04.01.

[22] D. Rahbari and M. Nickray, “Low-latency and energy-efficient scheduling in fog-based IoT applications,” Turkish Journal

of Electrical Engineering and Computer Sciences , vol. 27, no. 2, pp. 1406–1427, Mar. 2019, doi: 10.3906/elk-1810-47.

[23] Y. Sun, T. Dang, and J. Zhou, “User scheduling and cluster formation in fog computing based radio access networks,” in

2016 IEEE International Conference on Ubiquitous Wireless Broadband, ICUWB 2016 , Oct. 2016, pp. 1–4, doi:

10.1109/ICUWB.2016.7790393.

[24] S. Kabirzadeh, D. Rahbari, and M. Nickray, “A hyper heuristic algorithm for scheduling of fog networks,” in Conference

of Open Innovation Association, FRUCT, Nov. 2018, pp. 148–155, doi: 10.23919/FRUCT.2017.8250177.

[25] D. Rahbari and M. Nickray, “Scheduling of fog networks with optimized knapsack by symbiotic organisms search,” in

Conference of Open Innovation Association, FRUCT, Nov. 2018, pp. 278–283, doi: 10.23919/FRUCT.2017.8250193.

[26] H. Y. Wu and C. R. Lee, “Energy efficient scheduling for heterogeneous fog computing architectures,” in Proceedings -

International Computer Software and Applications Conference , Jul. 2018, vol. 1, pp. 555–560, doi:

10.1109/COMPSAC.2018.00085.

[27] Y. C. Chen, Y. C. Chang, C. H. Chen, Y. S. Lin, J. L. Chen, and Y. Y. Chang, “Cloud -fog computing for information-

centric internet-of-things applications,” in Proceedings of the 2017 IEEE International Conference on Applied System

Innovation: Applied System Innovation for Modern Technology, ICASI 2017 , 2017, pp. 637–640, doi:

10.1109/ICASI.2017.7988506.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Analysis of rank-based latency aware fog scheduling using validating internet of things at … (J. Geetha)

1511

BIOGRAPHIES OF AUTHORS

J. Geetha is working as an Associate Professorin Computer Science and

Engineering Department of Ramaiah Institute of Technology, Bangalore. Her areas of interest

include cloud computing, big data, semantic web, graph theory and web design. She has 17

years of teaching experience and has 21 publications, the most recent one being

“Implementation and Performance Comparison of Partitioning Techniques in Apache Spark”.
Dr. Geetha is also a member of IEEE and ISTE. She can be contacted at email:

geetha@msrit.edu.

Shaguftha Zuveria Kottur is a student who completed her B.E. at MSRIT

Bangalore. She is currently pursuing M.E at IIIT Delhi and is working as a teaching assistant

for an undergraduate algorithms course. Her areas of interest include algorithms, data plane

programming, SDN and network security. She can be contacted at email:
shagufthazk98@gmail.com.

Riya Ganiga is working at VMware as a Kubernetes Application Developer. She

has expertise in various containerization platforms like Kubernetes, Openshift and Docker. She

is proficient in networks, unix, operating systems and cloud platforms. She has a patent to
herself from VMware pending USPTO (United States Patent and Trademark Office) approval.

She has completed her B.E. at MSRIT Bangalore. She can be contacted at email:

riyaganiga25@gmail.com.

D. S. Jayalakshmi is working as an Associate Professor in Computer Science and

Engineering Department of Ramaiah Institute of Technology, Bangalore. She became a

member of IAENG in 2020, member number: 139594. Her areas of interest include cloud

computing, big data, computer graphics. She has 27 years of teaching experience and has 30
publications, the most recent one being “Simulation of MapReduce Across Geographically

Distributed Datacentres Using CloudSim”. Dr. Jayalakshmi is also a life member at ISTE. She

can be contacted at email: jayalakshmids@msrit.edu.

Tallapalli Surabhi is working at Amazon as a Software Development Engineer -

II for Automating Infrastructure of Amazon Go. Proficient in various programming languages

and great team player. Her areas of interest include backend programming, algorithms. She has
completed her B.E. at MSRIT Bangalore. She can be contacted at email:

tallapallisurabhi15@gmail.com.

https://orcid.org/0000-0003-1207-2178
https://scholar.google.co.in/citations?user=uEh6zRUAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55317720400
https://orcid.org/0000-0002-3378-8311
https://orcid.org/0000-0002-2550-8084
https://orcid.org/0000-0002-2534-7209
https://scholar.google.co.in/citations?user=fgVuzuMAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=23985350300
https://orcid.org/0000-0002-8912-6480

