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Abstract 
 Computer simulation is a more convenient and faster method obtaining photon correlation 

spectroscopy (PCS) signal. Based on orthogonal inverse wavelet transform (OIWT), a new simulation 
method is developed. This method considers that PCS signal of a single scale is composed of several sub-
band signals with different characteristic. According to the relationship of power spectrum of PCS signal 
and orthogonal wavelet coefficients of every scale, using OIWT, PCS signal can be obtained by simulation 
of several different sub-band signals. Using this method, PCS signals of 90nm, 600nm and1000nm are 
respectively simulated. Mean square errors of the power spectrums of the simulation signals and their 
theoretical power spectrums are e-5 order of magnitude. The relative errors of particle size inverted from 
simulation signals are less than 2.47%. Comparison of simulation and experiment proves that that OIWT is 
feasible for simulation of PCS signal. In addition, by analyzing the influence of simulation parameters on 
simulation accuracy, we get relationship of particle size, decomposition scale and sampling frequency. 
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1. Introduction 

Photon Correlation Spectroscopy (PCS) is the most useful techniques for measuring 
size of nanoparticles and submicron particles in liquids, which often gets size information based 
on the measure of the temporal autocorrelation function (ACF) of scattered light intensity. 
Nowadays, this technique has applied in chemistry, physics and biological systems [1, 2]. In 
order to research characteristic of PCS signal, it is necessary to carry out extensive and 
accurate testing. Usually, the procedures are rigidly performed by using calibrated samples of 
latex spheres of different diameters. Although this procedure is well established, it presents 
several limitations and may lead to wrong or unclear results. 

Compared with experiment method, PCS signal obtained by the computer simulation is 
more convenient, more flexible and faster. Although the generation of simulation signal of PCS 
has scarcely been investigated in the literature, the studies can be traced back to 1973. 
Hughes[3] firstly used the Gaussian–Markovian noises to simulate the scattered electric field, 
and then Shen and Ye [4-5] generated the PCS signal by the power spectrum. Later, based on 
the maximum likelihood principle, Lomakin [6] simulated the electric field scattered. Recently, 
WANG [7] also implemented the simulation of PCS signal by AR model. However, above all the 
simulation methods see PCS signal as a signal of single scale which is same characteristic. 
Therefore, simulation signals of these methods are coarser.  

We consider that the PCS signal of a single scale is composed of several sub-band 
signals of multi-scale with different characteristics. Thus, PCS signal simulation of a single scale 
can be realized by simulation of several different sub-bands signal. Wavelet transform can 
decompose the signal into a few frequency bands, which is a new signal processing methods of 
good time-frequency characteristic. This method has been widely used for various engineering 
fields [8-10]. In addition, inverse wavelet transform also provides an effective method of 
reconstruction signal. In view of these causes, this paper proposes a simulation method of PCS 
signal based on orthogonal inverse wavelet transform (OIWT), which can simulate the light 
intensity fluctuations of nanoparticles and submicron particles. 
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2. Characteristic Of PCS Signal 

If the light field is a Gaussian distribution, its intensity is expressed as (t)Is . (t)Is is a 

random process which fluctuates around the average value.The light intensity fluctuation is 

expressed as  (t)sI ,which is a random process with zero means and relates to the particle 

size. The power spectrum of is expressed as [5]: 
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Where relates to particle size and is called decay linewidth, is angular frequency. 

The relations of decay linewidth and the particles size is expressed as [11]: 
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Where d is the radius of the particles, Bk is the Boltzmann constant, T  is the temperature in 

Kelvin degrees,   is the viscosity of the solvent,  is the wavelength of the incident light in 

vacuum, n  is the refractive index of the solvent and  is scattering angle. 
 
 
3. Simulation Principle of OIWT 
3.1. Wavelet Transform Theory 

Giving )()( 2 RLt  , )( is Fourier transform of )(t . If )(  satisfies 
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shifted and can be expressed as: 
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Where )(, tba is called wavelet basis, a  and b  are the scaling parameters and shifting 

parameters, respectively.  
Then the continuous wavelet transform of continuous function )(tx is be expressed as: 
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In practice, in order to reduce the redundancy of the wavelet transform coefficients, 

discrete wavelet transform of multi-resolution [12] is widely used. Its theory diagram is shown in 
Figure 1. Setting signal 0)( Vtx  , )(tx  can be decomposed into 1A  and 1D . 1A  corresponds to 

an approximation part of signal, which reflects low-frequency of signal. 1D  corresponds to detail 

part of signal，which reflects high-frequency of signal. Then, approximation part 1A  continues to 

be decomposed into 2A  and 2D . This process continues repeatedly until the decomposition 

scale reaches J  scale, continuous signal )(tx  can decomposed into a few frequency bands 

and is expressed as: 
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Figure 1. The Diagram of Wavelet Transform of Multi-resolution 
                          
                                   

Or )(tx is written as:  
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Where )(, tkj  

is scale function, c and d  are the approximate coefficient and the detail 

coefficient, respectively. Formula (6) is called inverse wavelet transform. When the wavelet 
basis function )(, tkj  is the orthogonal basis and J , )(tx  is only expressed by the details 

part as, 
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3.2. Relationship of Wavelet Coefficients and Power Spectrum 

The average power of )(tx can be expressed as: 
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Form Parseval theorem, we know: 
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where )( fX is Fourier transform of )(tx . According to formula (8) and (9) , formula (8) can be 

written as: 
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 is the power spectral density of )(tx . 

According to multi-resolution ideas, the PCS signal of M2  points can be approximately 

equal to approximation coefficient of the th1  scale (most fine). When the sampling frequency is 

sf , the number of coefficient and frequency range of the th2 scale are 12 M and  2,4 ss ff
,respectively. Accordingly, the number of coefficient and frequency range of the 3th scale are

22 M and  4,8 ss ff , respectively. So repeatedly, decomposition scale reaches J . Then, )(tx
is composed of the detail signals of all scales and approximation signal of most rough scale. For 
stationary random signal )(tx , the average is zero, when J  is very large, the approximation 

signal of thJ  scale tends to zero. Therefore, the signal )(tx can be approximately expressed by 

the details signal of all scales. The signal )(tx can be approximately expressed as: 
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For orthogonal wavelet transform, on any thj  scale, the relationship of power spectrum 

and wavelet coefficients can be expressed as: 
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Where 1f , 2f  are low and upper limit of thj  scale frequency, respectively. 

When the light field is Gaussian distribution, random fluctuations of light intensity )(tI  is 

the stationary random Gaussian process. For stationary random Gaussian process, on each 
scale, its wavelet coefficients is also the stationary random Gaussian process with zero means 
[13]. According to formula (12) and formula (1), we can be obtained the standard deviation of 

wavelet coefficients of every scale ( M

k
kjdVar 22

, ). Having standard deviation and mean 

of wavelet coefficients, wavelet coefficients of every scale can be easily generated by Gaussian 
white noises. According to wavelet coefficients of every scale, PCS signal satisfying target 
spectrum can be carried out by the inverse wavelet transform. 

 
3.3. Simulation Algorithm 
Steps of simulation algorithm are summarized as follows:  
Step 1. Initializing particle radius d , sampling frequency sf , decomposition scale J , simulation 

signal length dataN , experiment parameters T , , , n  , . 

Step 2. According to the experiment parameters and formula (2), power spectrum )( fP is 

calculated by formula (1) or formula (3). 
Step 3. According to formula (13), the standard deviationVar  of wavelet coefficients is 
calculated on every scale. 
Step 4. According to Var  of every scale, the wavelet coefficients of every scale are generated 
by Gaussian random noises. 
Step 5. According to the wavelet coefficients of all scales, the signal is simulated by formula 
(12) 
 
 
4. Signal Simulation and Analysis 

In simulation experiments, simulation parameters are as follows: wavelength of incident 
beam is 632.8nm, refractive index of scattering medium is 1.331, scattering angle is 90°, 
temperature is 25 , Botlzman constant is 1.3807×10-23 J·K-1, viscosity coefficient of water is 
0.89×10-3 N·S·m-2, orthogonal wavelet basis is “db10”. 

 
4.1. Signal Simulation 

At the same sampling frequency of 20kHz, the same simulation data length of 219, 
decomposition scale of 6, 12 and 17, respectively, the three kinds of PCS signals of 90nm, 
600nm and 1000nm were performed by above the simulation method. The simulation signals 
with time range 0.1s are respectively shown in Figure 2. The power spectrum of every simulated 
signal were estimated by auto-regressive model [14]. Power spectrums of simulation signals 
and their theory power spectrums are shown in Figure 3. For every particle, mean square errors 
(MSE) of simulation power spectrums and their theory power spectrums are shown in Table1. 
According to Equation (1), three power spectrums of simulation signals were fitted by 
Levenberg-Marquardt algorithm [15]. Particles sizes were inverted from fitness results. The 
inverted results are also shown in Table1. 
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Figure 2. Simulation Signal of Particles (a) 90nm, (b) 600nm, (c) 1000nm 

 
 

 
 
 

Table 1. Inverted Particles Size and MSE 

Particle/nm Inverted Size/Nm Error％ MSE 

90 91.17 1.30 5.1302e-5 
600 590.76 1.54 1.9030e-5 

1000 975.34 2.47 4.5120e-5 

 
 
As can be seen from the Figure 2-3 and Table 1, the power spectrum of simulated 

signal performs a good agreement with its theoretical value. All MSE are e-5 order of 
magnitude. The size inversion relative errors of 90nm, 600nm and 1000nm are less than 2.47%. 
These results are shown that the simulation method based on OIWT is feasible for PCS signal. 

 
4.2. Parameters Influence Analysis 
4.2.1. Influence of Decomposition Scale  

At two kinds of simulation parameters with sf =10kHz, dataN =218, J =6; sf =10kHz, 

dataN =218, J =17, PCS signal with particles sizes 100nm, 300nm and1000nm were simulated 
respectively. The power spectrums of simulation signals and their theory power spectrums are 
shown in Figure 4-5. For every case, MSE of two power spectrums and inverted particle sizes 
from the power spectrums of simulation signals are shown in Table 2. 

 

 
Figure 4. Power Spectrums of Simulation Signals and their Theory Power Spectrums 

with Parameters sf =10kHz， dataN =218， J =6 (a) 100nm (b)300nm(c)1000nm 
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Figure 3. Power Spectrums of Simulation Signals and their Theory Power 
Spectrums 
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From Figures 4-5 and Table 2, we can find out that, at same sampling frequency and 

the data length, when decomposition scale increases, the power spectrums of three simulated 
signals doesn’t always agree with its theoretical value very well, at smaller decomposition scale, 
the MSE and errors of the small particles of 100nm are smaller, corresponding simulation signal 
has higher simulation accuracy. On the contrary, for the big particles of 300nm and 1000nm, 
simulation accuracy is higher at the bigger decomposition scale. Reason of this phenomenon is 
as follow: particle size information mainly contains in the decay part of power spectrum. For big 
particles, decay part of power spectrum is in the narrower low frequency band, when 
decomposition scale is too small, according to simulation principle of OIWT, theory power 
spectrum of simulation signal is divided into less number of frequency bands, at same sampling 
frequency, width of every frequency band is bigger, thus decay part of power spectrum relating 
to particle size contains few sampling points, particle size information is lost a lot and leads to 
poor simulation accuracy. For small particles, decay part of power spectrum is wider frequency 
band, when decomposition scale is very large, power spectrum contains enough sampling 
points, however, distribution of these sampling points is very uneven, a large number of 
sampling points are near zero frequency of power spectrum, decay part relating to particle size 
has fewer sampling points, accordingly leads to poor simulation accuracy. Therefore, in 
simulation of PCS signal, we should choose the bigger decomposition scale for big particles and 
the smaller decomposition scale for small particles. 

 
4.2.2. Influence of Sample Frequency 

PCS signals of 100nm were simulated at same data length of 218, same decomposition 
scale of 6, different sampling frequencies sf =10kHz, sf =20kHz, sf =5kHz, respectively. The 

power spectrums of simulation signals and their theory power spectrums are shown in Figure 6-
7. MSE of two power spectrums and inverted particle size from the power spectrum of 
simulation signal are shown in Table 3. 

 

 

Table 2.  Inverted Particles Size and MSE 

Particle/nm 
J=6  J=17 

Inverted 
Size/Nm 

Error％ MSE 
Inverted 
Size/Nm 

Error％ MSE 

100 101.92 1.92 6.1321e-5 107.15 7.15 8.0423e-4 
300 280.17 6.61 7.5679e-4 308.46 2.82 9.2822e-5 

1000 875.23 12.48 4.6125 e-3 976.29 2.37 4.3017e-5 
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Figure 6. Power Spectrums of Simulation Signals and their Theory Power Spectrums of 
100nm at Different Sample Frequencys (a) sf =5kHz  (b) sf =10kHz，(c) sf =20kHz 
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Figure 5. Power Spectrums of Simulation Signals and their Theory Power Spectrums with 
Parameters sf =10kHz, dataN =218， J =17 (a) 100nm, (b) 300nm, (c)1000nm 
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As can be seen from Figure 6-7 and Table 2, at same data length and decomposition 

scale, when sampling frequency is too large or too small, MSE of two power spectrums and 
corresponding inversion size errors are bigger. Only at appropriate sampling frequency of 
10kHz can simulation signals have higher accuracy. When sampling frequency is too small, 
decay part of power spectrum can’t be completely sampled and lost a lot of particle size 
information, simulation accuracy is poor. When sampling frequency is too large, frequency band 
of every scale is very wide at same decomposition scale, decay part of power spectrum 
contains few sampling points and simulation accuracy is also poor. Therefore, the appropriate 
sampling frequency should be chosen in the simulation. Generally speaking, different particle 
have different appropriate sampling frequency, appropriate sampling frequency is related to 
particle size. For big particles, decay part of power spectrum is narrower, appropriate sampling 
frequency is smaller, for small particles, it is contrary. 

In practice, the two parameters are mutually constraints. We should synthesize 
influence of two parameters to choose the appropriate sampling frequency and decomposition 
scale 

 
 

5. Simulations and Experiment 
In order to test effectiveness of simulation signal obtained by OIWT method, we 

compare the experimental statistics of field scattered by particles system with that resulting from 
our simulation method. The experiment setup implemented by our research groups [16] is 
shown in Figure 8, which mainly involves a He-Ne laser with a wavelength of 632.8nm, FPGA 
chip of digital signal processing. Experimental photon signal and correlation function can get by 
FPGA chip. The experiment materials were standard polystyrene latex spheres which were 
suspended in purified water. The measurements were implemented at sample time of 50μs, 
scattering angle of 90° and temperature of 298 2. The simulation signals of particles size 
200nm were obtained by OIWT method. In simulation experiment, experiment parameters are 
the same as the section 4 and simulation parameter are sf =20kHz, dataN =218 and J =12, 

respectively. After obtaining simulation and measurement signal, we calculated power spectrum 
of two signals, and compared them. Two power spectrums are shown Figure 9. From Figure 9, 
an excellent accord between experiment power spectrum and simulation power spectrum is 
found. The decay part and the temporal ranges of two power spectrums are obvious agree 
completely. Furthermore, two power spectrums were inverted. The inverted average sizes of 
simulation power spectrum and measurement power spectrum are 203.95nm and 204.52nm. 

Table 3. Inverted Particles Size and MSE 

Particle/nm 
100nm  300nm 

inverted size/nm error％ MSE 
inverted 
size/nm 

error％ MSE 

5Hz 108.41 8.41 6.0294e-004 296.47 1.17 1.1036e-005 

10kHz 98.12 1.88 8.0874e-005 283.16 5.61 7.4087e-004 

20kHz 115.87 15.87 2.6720e-004 256.36 14.54   0.0026 

Figure 7. Power Spectrums of Simulation Signals and their Theory Power Spectrums of 
300nm at Different Sample Frequencys  (a) sf =5kHz  (b) sf =10kHz  (c) sf =20kHz 

(b) (c) (a) 
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Two inverted results also agree. In summary, these results are certainly encouraging. It 
indicates that OIWT method can be used for PCS signal simulation of nanoparticles and 
submicron particles system.  

 

 
 
6. Conclusion 

According to the relationship of power spectrum of fluctuating light intensity and wavelet 
coefficients of every scale, based on OIWT, this paper proposes a simulation method of PCS 
signal.This method considers characteristics of different sub-band signals, and is multi-scale 
method which overcomes the shortcomings of coarse simulation in the general single scale 
method. By this method, the PCS signals of particles with particles sizes 90nm, 600nm and 
1000nm were respectively simulated. The power spectrums of simulative signals perform great 
agreement with their theoretical values. MSE of two power spectrums is e-5 order of magnitude. 
The inversion size errors of simulation signals are less than 2.47%.  Therefore, OIWT method is 
feasible for simualtion of PCS signal. In addition, this paper studies the influence of simulation 
parameters of decomposition scale and sample frequency on simulation accuracy. Research 
shows that the small particles need smaller decomposition scale and sampling frequency, big 
particles have contrary conclusion. Comparison of simulations and experiment prove that OIWT 
method can be used for PCS signal simulation. 
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