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Abstract 
One of the most important targets of routing algorithm for Wireless Sensor Network (WSN) is to 

prolong the network lifetime. Aimed at the features of WSN, a new routing optimization approach based on 
cloud adaptive particle swarm optimization algorithm is put forward in this paper. All paths appear at the 
same time in one round are fused in one particle, and the coding rule of particle is set down. The particle 
itself is defined as its positions, the number of replaceable relay nodes in paths is defined as the velocity of 
particle. Cloud algorithm is used to optimize the inertia weight of particle. Optimize rules are laid out, and 
both residual energy of nodes and variance of all paths’ length are considered in objective function. 
Simulations find out the best value of balance factor in objective function, also prove that this approach 
can control the energy consumption of network, enhance the viability of nodes, and prolong the lifetime of 
network. 
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1. Introduction 

Detect traffic incident promptly and solve it correctly are the essential of improving traffic 
safety and raising transportation efficiency. As a new generation of adhoc network, WSN is 
applied in traffic incident detection [1-3], its structure is showed in Figure 1. 

 
 

 
 

Figure 1. Structure of WSN in Traffic Incident Detection 
 
 

Once traffic incident occurs, monitor nodes deployed on the wayside send incident 
information to sink node with the help of several relay nodes deployed in particular area. But the 
energy of relay nodes is limited, and the dead of single node will accelerate the dead of whole 
network [4-6], so how to construct efficient and energy-saving routing algorithm to prolong the 
lifetime of nodes and network is the key to traffic incident detection. 
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Cloud adaptive particle swarm optimization algorithm(CAPSO) [7] combines cloud 
theory [8, 9] and particle swarm algorithm [10], divides particles in one swarm into three classes 
based on the size of particle fitness value, and takes cloud theory adjust the inertia weight of 
middling particles, so it can both raise the velocity of convergence speed and secure the 
diversity of swarm. Reference [11] optimizes the path between cluster heads utilizing CAPSO in 
order to cut down the energy consumption of cluster heads and prolong the lifetime of network, 
but its objective function only considers residual energy of nodes. As the balance of energy 
consumption of every path has important influence to network lifetime, the algorithm in 
reference [11] has room for improvement. 

This paper puts forward a new routing algorithm for WSN based on CAPSO, constructs 
the objective function considering both nodes’ residual energy and balance of paths’ energy 
consumption, fuses all paths appear at the same time in one round as a particle, defines the 
position and velocity of particle, and optimizes particle position by cloud theory. This algorithm 
can cut down energy consumption of WSN and prolong the lifetime of network in traffic incident 
detection and information transmission. 

 
 

2. Cloud Adpative Particle Swarm Optimization Algorithm 
Supposing that there are D paths in WSN at the same time, that is the particle swarm 

exits in D dimensional searching space. There are N particles in a swarm, in the kth iteration, the
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Where is the inertia weight; 1c and 2c are nonnegative accelerate constant; 1r and 2r are 

random number between 0 and 1. 
Adjust rule of particle velocity is as follows: 
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Supposing in the kth iteration, fitness of iX is k
if , average fitness of all particles in particle 
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average fitness of particles whose fitness are inferior to k
avgf is avgf  , the best fitness in particle 

swarm is k
bestf , CAPSO determines the value of by the size of particle fitness: 

1. If avg
k

i ff  , the fitness of iX is close to k
bestf , so in order to accelerate local 

convergence,  is assigned as 0.4; 

2. If avg
k

iavg fff  , the fitness of iX is not good, needs to optimize the value of .  

Firstly, determines the expected value: 
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Secondly, determines the entropy of particle: 
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Thirdly, determines the hyper entropy of particle: 
 

2/ cEH ne                                                                                                        (6) 
 
Fourthly, determines the value of : 
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normrnd  is the generator of normal random number.  

3. If avg
k

i ff  , the fitness of iX is poor, in order to accelerate global search,  is 

assigned as 0.9. 
 
 
3. Network Model 

Suppose that there is a square monitor area, D monitor nodes are deployed on the 
boundary of the square, N relay nodes are deployed in the square, sink node is deployed in the 
center of the square, and its ID is 1 ND , monitor nodes send information to sink node by 
prompt relay nodes. Communicate radius of all nodes are adjustable.  

The distance between sending node and receiving node d has a threshold of 0d . 
Sending node’s energy consumption is shown in (9) [12]: 
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Receiving node's energy consumption is shown in (10)：  
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Where l is the bits of message; elcE is the energy consumption of sending/receiving 1 bit  

message; fsE and ampE are amplifier’s energy consumption of transmitting 1 bit message in unit 
area. 

 
 
4. Routing Optimization for WSN Based on CAPSO 
4.1. Routing Constraint Condition 

In order to balance energy consumption of nodes and simplify the amount of 
calculation, this paper supposes that path constructing satisfies two conditions: 

1. All monitor nodes can’t act as relay nodes; 
2. Every relay node alive can only exit in one path or in sleep state. 
Supposing that there are M living nodes in paths one round, modeling above two 

constraint conditions, we can get constraint model as follows: 
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Where, ),( jiarc  represents the arc from starting node i to end node j . Equation (15) 

represents there is only one starting node connecting to end node in every arc, and all starting 
node of every path can’t be the end nodes of any arc. Equation (16) represents that only one 
end node connecting to starting node in every arc, and all end nodes of every path can’t be the 
starting nodes of any arc. S is the set of starting nodes of paths, T is the set of end node of 
paths, just sink node. 

 
4.2. Particle and its Position 

In order to optimize routing for WSN utilizing CAPSO, particle and its position must be 
defined firstly. Because of the particularity of routing, traditional definition of particle position 
can’t satisfy the optimization needs. This paper fuses all path occur at the same time into one 
particle, and takes itself as its position. 

Supposing that a particle is a round number S with the length of L , which can be divided 
into D parts. The first number of every part is the ID of different monitor node, the last number of 
every part is the ID of sink node, and the middle numbers of every part are the ID of relay nodes 
in every path, so every part of one particle represents one path from any monitor node to sink 
node. For example, Figure 2 is a particle and its position, there are 3 paths appear at the same 
time, so the particle is divided into 3 parts, the first part of the particle represents the path from 
monitor node with the ID 1 to sink node with the ID 21 containing relay nodes with ID of 5, 7, 
and 10. 

 
 

 
 

Figure 2. Particle and its Position 
 
 
4.3. Particle Velocity 

Velocity is used to improve the position of particle, so particle velocityV contains D  
dimensional variables. Every path in iX adjusts itself in the kth iteration, if the fitness of new iX is 

the best one in its history, k
iX is taken as k

ipbest . The best particle in the particle swarm is taken 

as kgbest . k
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idP and k

gdP , let k
idq represents the numbers of different relay nodes between

k
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relay nodes between k
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Figure 3 represents the best position of iX in the kth iteration. 
Figure 4 represents the best position in particle swarm in the kth iteration. 
 
 

  
Figure 3.  The Best Position of iX in History Figure 4.  Particle and its Position 

 
 
In the first path, except for monitor node and sink node, there are two different relay 

nodes between 1iX and 1iP , and also two different relay nodes between 1iX and 1gP . So the 

number of replaceable relay nodes in the thk )1(  iteration of 1iX is 22111
1

1 22 rcrcVV k
i

k
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4.4. Particle Optimization 

Because of the process of optimization of iX is the process of iX be close to gbest

continuously, in the thk )1(  iteration, this paper uses 1k
idV different relay nodes from k

gdP to replace 

corresponding nodes in k
idX , and form a new particle 1k

iX : 
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4.5. Objective Function 

In iX , if one path’s length is longer or shorter than other’s, the nodes in longer paths will 
die quicker. So in order to balance energy consumption of nodes and prolong the lifetime of 
network, the objective function must consider both nodes’ residual energy and variance of all 
paths’ length. In addition, because energy consumption of node in sleep state is less than it in 
work state, every living node is set in only one path or in sleep state. The objective function is as 
follows: 
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0E is the initial energy of relay node, cE is residual energy of relay node,  is the 

balance factor, ijC is square of the distance between node with ID i and node with ID j , iS is the 
sum of path length square. 

 
4.6. Steps of Optimization 

The lifetime of network is divided into several rounds, in every round, the algorithm in 
this paper optimizes initial paths after several iterations based on CAPSO, and the steps of the 
algorithm are as follows: 

Step 1: Initializes network, determines initial value of parameters, such as the initial 
energy, balance factor, and initial velocity. Lets round=1. 

Step 2: Generates D paths, each path contains different stating node (monitor node) 
and sink node, on the basis, fuses D paths into one particle. Repeats this process to generate 
several particles and form a particle swarm. 

Step 3: Starts iterations.  
1. Lets iteration=1. 

2. Computes the fitness of every particle in kth iteration by (20), determines k
iq and k

ig , 

uses cloud theory optimizing the inertia weight of every particle, computes 1k
iV by (17), and 

adjusts iX by (18). Lets iteration=iteration+1. 
3. Judges the end condition of iteration is satisfied or not. If yes, saves gbest and 

transmitter information through paths in gbest . If no, moves to 2. 
Step 4: Computes energy consumption of every node by (9) and (10), judges the end 

condition of stop of network is satisfied or not. If yes, stops working. If no, lets round=round+1, 
and moves to Step 2. 

 
 

5. Simulations and Analysis 
150 relay nodes are deployed in 100m×100m square area randomly, 4 monitor nodes 

are deployed on the apexes of the square, sink node is in the center of the square. Initial energy 
of every monitor node is 5J, initial energy of every relay node is 0.5J, and the energy of sink 
node is not limited. In every round, network generates 4 different paths to send information from 
4 monitor nodes to sink node. The parameters’ value in (9) and (10) are taken from paper [7], 

4926.121  cc , the variation range of velocity is [0, 3], there are 20 particles in one particle 
swarm, the number of iteration times in every round is 50, and simulation carries out 3600 
rounds.  

Figure 5 shows the comparison of residual energy of the network in RO (the algorithm 
put forward in this paper) and OA (the algorithm put forward in [6]) separately. In Figure 5, the 
gradient of RO with 7.0 is the smallest one, and the gradient of OA is almost the same as 
gradient of RO with 3.0 and 5.0 . This represents that energy consumption of RO with 

7.0 is the lowest one, so as it is more energy-saving than OA. 
 
 

  

 
Figure 5. Comparison of Residual Energy in 

RO and OA 
Figure 6. Comparison of Number of Dead 

Nodes in RO and OA 
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Figure 6 shows the number of dead nodes in RO and OA separately. In Figure 6, the 
network appears the first dead node in round 3326, and only has 3 dead nodes until round 3600 
in RO with 7.0 ; the network appears the first dead node in round 3206, and appears the 
fourth dead node in round 3551 in OA. This represents that RO with 7.0  can balance nodes’ 
residual energy and paths’ length well. 
 
 
6. Conclusion 

This paper optimizes routing for WSN based on CAPSO, defines particle, its position 
and its velocity, designs the optimize rule, adjusts the inertia weight by cloud theory, and 
constructs object function fusing nodes’ residual energy and variance of paths’ length, thus 
cutting down the energy consumption and prolonging the lifetime of network. On the basis of 
theory model, this paper finds the best balance factor in objective function, and proofs the 
effectiveness of RO by simulations. 
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