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 Autonomous mobile robots developed using metaheuristic algorithms are 

increasingly becoming a hot topic in control and computer sciences. 

Specifically, finding the shortest route to the goal and avoiding hurdles are 

current subjects of autonomous mobile robots. The modified grey wolf 

optimization (MGWO) is demonstrated in this work using two approaches: 

first, the adaptive adjustment approach of the control parameters, and 

second, the adaptive variable weights method. Those two methods are 

utilized for updating the wolf position, accelerate convergence, and cut down 

on time. The proposed online optimization approach is used in three 

different environments including an environment with unknown static 

obstacles, dynamic obstacles, and an environment with a dynamic target. 

The online optimization method is performed using two phases which are 

the sensors reading phase and the path calculation phase. The proposed 

approach can solve a local minima problem in the static obstacles.  

A comparison study result between the proposed method and two other 

algorithms revealed that the proposed algorithm performed better in 

avoiding obstacles, which include the situation with the local minima. 

Finally, when put to comparison with hybrid fuzzy-wind driven optimization 

and adaptive particle swarm optimization the average improvement rates in 

route length are 2.86% and 4.70391%, respectively. 
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1. INTRODUCTION 

Route planning problem of the mobile robots has lately been a popular topic of research in mobile 

robots [1], [2]. The necessity to systematically design the route becomes a requirement for automated 

processes [3], [4]. Motion planning is a procedure for obtaining an intelligent and feasible path between the 

starting point and the destination. Planning the mobile robot's locomotion in an uncommon environment is 

typically divided into three categories. The first depends on information regarding potential obstacles, which 

may or may not be known [5]. The second is a reference to time [6], [7], which includes both offline and 

online planning. The third is determined by the sort of obstacles present in the environment, which could be 

moving or stationary [8], [9]. In navigating a differential wheel mobile robot (DWMR), various researchers 

have employed different methods. Supriya and Joshy [10] used the ant colony optimization (ACO) technique 

to determine a potential route in an unfamiliar environment with static obstacles. It can't be used on a 

continuous map or in complex settings. In an uncertain environment, Pandey and Parhi [11] proposed a 

type1-fuzzy control controller and evolutionary method (fuzzy-wind driven optimization algorithm). The 

flaw with this method is that it is incapable of resolving the local minima problem in a U or L style setting. 

https://creativecommons.org/licenses/by-sa/4.0/
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The whale optimization algorithm, which was utilized to discover the safest possible route, was modified by 

Chhillar and Choudhary [12]. The suggested approach was put to the test in a number of different search 

spaces. In serried situations, on the other hand, the algorithm does not guarantee a collision-free route. 

Hosseininejad and Dadkhah [13] show how the adaptive particle swarm optimization (APSO) approach with 

the adaptive weight factor can improve the path planning of the mobile robots. However, this algorithm is 

prone to early convergence and cannot avoid local ex-tremity. Oleiwi et al. [14] utilized fuzzy logic control 

for avoiding collisions with dynamic obstacles in the cases of the partially unknown environments, and they 

utilized A-star technique in order to discover the route off-line. This method is incapable of dealing with 

completely unknown or maze-like settings. An intelligent APSO technique for robot path planning in 

unpredictable situations was suggested in another paper [15]. Yet, in order to work in dynamic or multi-robot 

systems and avoid early convergence in local minima, this approach must be adjusted. 

From previous studies, it was note that various optimization approaches produce low-quality 

solutions. These trouble are observed  in particle swarm optimization (PSO) [15], ant colony [8], and grey 

wolf optimization (GWO) [15], therefore there is a need to study and improve these methods to overcome 

their limitations. This article exhibits a development path planning approach that utilizes the modification of 

grey wolf optimization for navigations of the mobile robots in static and dynamic unknown environments 

with a dynamic target. The proposed online optimization approach is used in three different environments 

including an environment with unknown static obstacles, unknown dynamic obstacles, and a dynamic target. 

The proposed approach can solve a local minima problem in the environment with static obstacles and has 

fast convergence in finding the shortest path taking less time compared with other methods. 

 

 

2. PROBLEM STATEMENT  

Finding the best route between the robot’s starting position and the goal is one of the most important 

topics in the field of search and rescue applications that use robots or quadcopters. In this work, develop the 

GWO algorithms to solve the drawbacks of the original GWO algorithm such as low solving accuracy, the 

disappointing capacity of local searching, and slow convergence rate, and employed in an online procedure to 

adaptively handle three different environments that include unknown static obstacles, unknown dynamic 

obstacles, and a dynamic target. 

 

 

3. METHOD AND MODELLING  

In this section, the methodology of the work and the modeling of environments are described 

considering a two-dimensional (X, Y) square map. Then molding the mobile robots and senser. Finally 

described the modification of the algorithm. In particular, the modeling stage includes the following parts. 

 

3.1.  Obstacles  

This section describes the architecture of the obstacles. There are N obstacles in the environment, 

O1, O2,..., ON. The obstacles’ coordinates are shown as (XO1, YO1), (XO2, YO2),..., (Xein, Yein) and this 

presentation includes static and dynamic obstacles. In particular, in the case where an obstacle is stationary, 

hen its speed becomes zero, and when it moves, its velocity (v) is over X and Y axles. Each obstacle's speed 

is determined at random and can be large than, less than, or equal to the speed of robot. The robot is unaware 

of the obstacle vectors' speed and position (velocity and direction). 

 

3.2.  Robot and sensing 

Generally, when faced with a local path planning problem, the robot tries to set the next safest 

position in the indefinite environment in steps from start to finish. As illustrated in Figure 1, the robot 

location utilized in the present paper has been based upon a relative location, in which the robot calculates its 

next location depending on its present corner, position, and speed over a period of time. In specifically, (1) 

and (2) formulate the robot's next place [16], [17]. 

 

𝑋𝑛𝑒𝑥𝑡 = 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑉𝑙𝑛 ∗ 𝐶𝑜𝑠 (𝜃𝑖) (1) 

 

𝑌𝑛𝑒𝑥𝑡 = 𝑌𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑉𝑙𝑛 ∗ 𝑠𝑖𝑛 (𝜃𝑖),  (2) 

 

Where 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡  𝑎𝑛𝑑 𝑌𝑐𝑢𝑟𝑟𝑒𝑛𝑡  represent coordinates regarding existing, position and 𝑋𝑛𝑒𝑥𝑡  𝑎𝑛𝑑 𝑌𝑛𝑒𝑥𝑡  are the 

next position coordinates to nth robot in Cartesian coordinate system. In addition to that, the speed of a robot 

can be specified by Vln and 𝜃𝑖. 
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Figure 1. Positions of the mobile robot 

 

 

The robot, which recognizes the obstacle within its range, determines the space between the obstacle 

and the robot and estimates the direction of the moving obstacle [18], [19]. If the position of the obstacle 

does not change, the obstacle is static. Otherwise, the obstacle is dynamic. Figure 2 shows the path-finding 

procedure of the mobile robot [20]. 

 

 

 
 

Figure 2. The path finding model of the mobile robot 

 

 

3.3.  Target-pursuing behavior 

This section explains how the mobile robot detects the position of the goal, as illustrated in Figure 3. 

We can compute the minimum distance between the robot and its goal (dRG) which is defined by (3). 

Specifically, if the robot reaches the target, this means the distance (dRG) is equal to or near to zero, in which 

case the robot must be stopped [21]. 

 

𝑑𝑅𝐺 = √(𝑋𝑟 − 𝑋𝑔)2 + (𝑌𝑟 − 𝑌𝑔)2  (3) 

 

Where Xg & Yg represents target coordinates in the environment, and Xr & Yr represent existing robot 

coordinates in the environment. 

 

 

 
 

Figure 3. Distance between the robot and its goal  
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3.4.  Obstacle-pursuing behavior 

When an obstacle is found using the sensors, as depicted in Figure 4, the online optimization method 

can estimate the maximum distance between robot and the obstacle (dRo), which is defined by (4). 

Particularly, if the robot detects an obstacle, it tries to avoid it and then continues to reach the target: 

 

𝑑𝑅𝑜 = √(𝑋𝑟 − 𝑋𝑜)2 + (𝑌𝑟 − 𝑌𝑜)2 (4) 

 

where Xo and Yo represent obstacle’s coordinates in environment, and Xr & Yr represent current robot’s 

position coordinates in the environment. 

 

 

 
 

Figure 4. Distance between robot and obstacle 

 

 

3.5.  Objective function (cost function)  

For the safety of the robot, the space between obstacle and the robot has to be as large as possible, 

while the space between the target and the robot must be as small as possible. Depending on these two 

perspectives, the cost function must ensure the best route. The cost function equation is used in particular in 

(5) [15]:  

 

𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = [𝛼1 × 𝑑𝑅𝐺 + 𝛼2 ÷ 𝑑𝑅𝑂 + 𝛼3 × 𝜃]  (5) 

 

in this equation, parameter α1 has been set so that the robot covers minimal distance then reaches a point of 

the target [15]. Similarly, α2 is responsible for controlling space between robot and obstacles [15]. α3 

represents parameter of path smoothing for avoiding the sharp turning [15]. dRO and dRG are utilized for the 

calculation of space between robot and obstacle, and space between robot and its point of destination, 

respectively with the use of distance formulas (4) and (5). Moreover, θ in the corner of the variation is 

wanted by robot for the detection of the next iteration location in an environment. In particular, θ has been 

represented by (6). 

 

𝜃 = tan−1 𝑌𝑔−𝑌𝑟

𝑋𝑔−𝑋𝑟
 (6) 

 

3.6.  Path planning optimization algorithms  

This section explained the detail the classical GWO work. Then explained modification grey wolf 

optimization one (MGWO). In particular, the algorithm stage includes the following parts: 

 

3.6.1. Grey wolf optimization (gwo) 

GWO has been inspired by the natural leadership structure of the grey wolves as well as their 

hunting method. Four sorts of wolves are employed to simulate the leadership hierarchy: beta (β), alpha (α), 

omega (w), and delta (δ). In addition, the three basic processes of hunting are built: searching for prey, 

encircling it, and then attacking target. There are mathematical models for social hierarchy, also pursuit, 

encircling, and striking the target [22].  

 

a. Mathematical model of prey encircling 

In the case when hunting, wolves bound their victim. Equations (7) and (8) are utilized to 

mathematically model this situation. Thus, the hunt with new wolf position will be included: 

 

�⃗⃗� = |𝐶 . 𝑋𝑝⃗⃗⃗⃗  ⃗ (𝑡) − 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |  (7) 

 

𝑋 (𝑡 + 1) = 𝑋𝑝⃗⃗⃗⃗  ⃗ (𝑡) − 𝐴𝑋.⃗⃗ ⃗⃗ ⃗⃗  𝐷𝑋,⃗⃗⃗⃗⃗⃗  ⃗  (8) 
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here, t symbolized the existing iteration 𝐴  and 𝐶  represent coefficient vectors, 𝑋𝑝⃗⃗⃗⃗  ⃗ represents position vector 

of the prey, �⃗⃗�  represents distance between the wolf and the victim, and 𝑋  symbolized the situation vector of 

the gray wolf. 𝐴  , 𝐶  and 𝑎  are determent as given in (9), (10), and (11): 

 

𝐴 = 2𝑎 . 𝑟1⃗⃗⃗⃗ − 𝑎  (9) 

 

𝐶 = 2. 𝑟1⃗⃗⃗⃗  (10) 

 

where the prameter of 𝑎  are linearly decreased from 2 to 0 throughout iterations and 𝑟1⃗⃗⃗⃗  & 𝑟2⃗⃗⃗⃗  represent 

random vectors in [0,1]. 
The gray wolves attack the target and try to prevent the movement of the target throughout a hunting 

gear. Such mechanism has been modeled with the use of (9). 𝐴 ⃗⃗  ⃗represents a random vector, and its amount 

ranges in [-𝑎, 𝑎], with value of �̂� detraction linearly pending iterations and existence in the [2, 0] range, as in 

(11), [22], [23]: 

 

𝑎 = (2 − 2 ∗
𝑡

𝑡𝑚𝑎𝑥
) (11) 

 

where tmax symbolized the max number of the iterations and t represents the existing iteration. 

 

b. Mathematical model of the hunting 

Gray wolves are capable of encircling their prey. The numerical model implies the prey has no idea 

where it is. Thus, beta, alpha, and delta have a better idea of where the victims are located. Alpha (1st best 

solution), delta, and beta are the 3 best candidate answers. Omega wolves follow the upper layer wolves and 

reposition themselves. The next (12) and (13) are suggested in this approach [24]: 

 

𝐷𝛼⃗⃗⃗⃗  ⃗ = |𝐶1𝑋⃗⃗⃗⃗ ⃗⃗ ⃗⃗ . 𝑋𝛼⃗⃗⃗⃗  ⃗1 − 𝑋1⃗⃗⃗⃗  ⃗|, 𝐷𝛽⃗⃗ ⃗⃗  ⃗ = |𝐶2⃗⃗ ⃗⃗  . 𝑋𝛽2⃗⃗⃗⃗⃗⃗ ⃗⃗ − 𝑋2⃗⃗⃗⃗  ⃗| , 𝐷𝛿⃗⃗⃗⃗  ⃗ = |𝐶3⃗⃗ ⃗⃗  . 𝑋𝛿3⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑋3⃗⃗⃗⃗  ⃗| (12) 

 

 𝑋1⃗⃗⃗⃗  ⃗ = 𝑋𝛼1⃗⃗⃗⃗ ⃗⃗ ⃗⃗ − 𝐴1.⃗⃗⃗⃗⃗⃗  𝐷𝛼⃗⃗⃗⃗  ⃗ , 𝑋2⃗⃗⃗⃗  ⃗ = 𝑋𝛽2⃗⃗⃗⃗⃗⃗ ⃗⃗ − 𝐴2.⃗⃗⃗⃗⃗⃗  𝐷𝛽⃗⃗ ⃗⃗  ⃗ , 𝑋3⃗⃗⃗⃗  ⃗ = 𝑋𝛿3⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝐴3.⃗⃗⃗⃗⃗⃗  𝐷𝛿⃗⃗⃗⃗  ⃗  (13) 

 

the wolf update place can be determined using (14). 

 

𝑋 (𝑡 + 1) =
𝑋1⃗⃗⃗⃗  ⃗+𝑋2⃗⃗⃗⃗  ⃗+𝑋3⃗⃗⃗⃗  ⃗

3
 (14) 

 

where 𝑋 (𝑡 + 1) the updated the wolf location. 

 

3.6.2. Modification grey wolf optimization (MGWO) 

The path can be produced using rout planning algorithms and methods. In previse section 2.6.1, the 

basic theory of the classical GWO has been explained. While in this section, the proposed modification on 

the classical GWO is presented. In particular, the MGWO algorithm stage includes the following parts: 

 

a. First modification: adaptive adjustment approach of the control parameters 

The first modification was proportion to [25],  where non-linear parameter has been suggestion 

deepened upon cosine function and adaptive parameter 𝑎  has been organized, as given [13]: 

 

𝑎 = 1 − 𝑐𝑜𝑠 ((1 −
𝑡

𝑡𝑚𝑎𝑥
)
𝑘

∗ 𝜋)   (15) 

 

where tmax represents the max number of the iterations and t represent existing iteration. k=2 represents 

parameter of non-linear adjustment. The algorithms with 1st and 2nd adjustments have been dubbed as 

MGWO-1 and MGWO-2, respectively, for comparison purposes. 

 

b. Second modification: adaptive variable weights (AVW) approach  

Despite the modifications in the first modification, The averaging weight in (14) the effect is not 

sufficient in our implementation, thus suggesting another modification by (16) was needed. In classic GWO, 

the location vector regarding a grey wolf is guided equally through positions of β, α, and δ wolves as it has 

been presented by (14). In the presented study, a higher value of the weight is given to α wolf, which is 
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succeeded by β and δ wolves in suggested adjustment for calculating location vector regarding the gray wolf 

as: 

 

𝑋 (𝑡 + 1) =
𝑤𝛼∗𝑋1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗+𝑤𝛽∗𝑋2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗+𝑤𝛿∗𝑋3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

6
 (16) 

 

in which w𝛽, w𝛼, and w𝛿 represent weight values for 𝛽, 𝛼, and 𝛿 wolves, respectively. The adaptive variable 

weight (AVW) is utilized for reducing solution effort and time, and the technique for taking into 

consideration the weights, as well as the number of search iterations, is described in the next step [26]: 

 

c. Step 1: selection weights’ condition 

The value regarding all of the wights is limited in (1) and summed of wight calculate through (17). 

 

w𝛼 + w𝛽+ w𝛿 = 1 (17) 

 

The weights of beta wolf w𝛽, alpha wolf w𝛼, and the delta wolf w 𝛿 must always satisfy w𝛼 ≥ w𝛽 ≥ w𝛿. 

As the search progresses, the alpha weight will decrease from 1 to 0.33. From 0 to 0.33, beta and delta 

weights rise. The cos function may be entered in order to depict w𝛼 when we limit the angle 𝜃 to vary in 
range [0, cos-1(0.33)]. 

 

d. Step 2: calculating wα,wβ and wδ 

The following is a proposed new update positions technique with varying weights [26]:  

 

𝑤𝛼 =  𝑐𝑜𝑠 (𝜃) (18) 

 

𝑤𝛽 =  0.5 ∗ 𝑠𝑖𝑛(𝜃)  ∗ 𝑐𝑜𝑠(𝜑) (19) 

 

𝑤𝛿 = 1 −  𝑤𝛼 −  𝑤𝛽  (20)  

 

where the 𝜗 and Ө are angular and theta angle, respectively estimated by [26]: 

 

𝜗 = 0.5 ∗ tan−1(𝑡) (21) 

 

θ =
2

π
∗ cos−1 0.33 ∗  tan−1(t) (22) 

 

where t is the existing iteration, and the pseudocode of MGWO is described in Algorithm 1. The algorithmic 

flowchart regarding the suggested algorithm has been depicted in Figure 5. 

 
Algorithm 1. MGOW  

Initialize the grey wolf population Xi (i=1,2,…,n) 

Initialize a⃗  , r1, r2 
Calculate A and C 

Calculate the fitness value of each search agent  

Xα⃗⃗ ⃗⃗   = the best search agent 

 Xβ⃗⃗ ⃗⃗   = the second search agent 

 Xδ ⃗⃗ ⃗⃗  ⃗= the third search agent 
while t <Maxitration do 

  for each agent  

   Update current search position according to (16) 

  Endfor 

 MGWO : Update a⃗  by (15) 
 Update A, C by (9), (10)  

  Evaluate the fitness value of each search agents 

 Update postion of Xα⃗⃗ ⃗⃗  , Xβ⃗⃗ ⃗⃗  , and Xδ⃗⃗⃗⃗  (16) 
t=t+1 

 End while 

Return Xα⃗⃗ ⃗⃗    
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Figure 5. Flowchart of the proposed navigation algorithm in an unknown environment 

 

 

4. RESULTS AND DISCUSSION 

Feature of computer that using for test have, Win. 10 OS, Intel(R)Core (TM) i7-8550 U processor, 

20 GB RAM and 1.80 GHz using for tests. where the simulation result test used of MATLAB package R2016 

b. Table 1 lists the emulation parameters that were rated for the suggested approach. 

 

 

Table 1. Factors tuning for simulations 
Optimization parameters 

Number of the search agents 10 

lmax 10 
Dimension 1 

Upper bound 5 

Lower bound -5 

 

 

Use three cases for testing without obstacle, and (obstacle static, dynamic) unknown environment, 

the last example for the dynamic target, to further test performance of the MGWO algorithm upon specific 

issues. Previous research is compared to the suggested approach as seen in Figures 6-10 was comparation 

between fuzzy-wind driven optimization (FWDO) and APSO in subfigure (a) and MGWO result in subfigure 

(b). Table 1 summarizes the simulation findings for the static unknown map, where as Table 2 explains the 

reinforcement rates in the fitness function path lengths for the various approaches.  
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(a) 

 
(b) 

 

Figure 6. Map (1) simulation graph robot path planning without obstacle the starting point of (0,0) and an 

end-point at (400,150) in (a) FWDO [11] and (b) MGWO 

 

 

 
(a) 

 
(b) 

 

Figure 7. Map (2) simulation graph robot path planning in the narrow escaping environment with the starting 

point at (0,0) and end-point at (45,45) in (a) APSO [15] and (b) MGWO 

 

 

 
(a) 

 
(b) 

 

Figure 8. Map (3) simulation graph robot path planning in local minima environment with starting point at 

(0,0) and end-point at (45,45) in (a) APSO [15] and (b) MGWO 
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(a) 

 
(b) 

 

Figure 9. Map (4) simulation graph obstacle avoidance in trap condition with starting point at (0,0) and end-

point at (45,45) in (a) APSO [15] and (b) MGWO 

 

 

 
(a) 

 
(b) 

 

Figure 10. Map (5) simulation graph robot path planning in maze environment with starting point at (0,0) and 

end-point at (30,20) in (a) APSO [15] and (b) MGWO 

 

 

As shown in Figure 6 the simulation results in without obstacle environment compared with FWDO, 

and in Figures 7-10 obstacle avoidance compared with APSO. Table 2 show the path length to reach the goal 

of the proposed algorithm in different maps with the latest literature APSO. From Table 2, it is obvious the 

enhancement rate in the path length. We can notice that the best result algorithm depends on the enhancement 

rate in path length. The best algorithm result was achieved by MGWO. 

 

 

Table 2. The path length is covered by the latest literature and MGWO 

No. Map No. Figure Type of  algorithm 
Average path length 

Pixel CM 

MAP 1 Figure 6 
Hybrid Fuzzy-WDO [11] 2237.31 59.19549375 

MGWO 2132.069 56.410992292 

MAP 2 Figure 7 
APSO [15] 1285.56 34.013775 

MGWO 1239.71275 32.800733177 

MAP 3 Figure 8 
APSO [15] 1784.71 59.19549375 

MGWO 1678.3087 44.405251021 

MAP 4 Figure 9 
APSO [15] 2237.31 59.19549375 

MGWO 2214.4432 58.590476333 

MAP5 Figure 10 
APSO [15] 470.45 12.447322917 

MGWO 466.1981 12.334824729 
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Table 3. Enhancement rate n the path lengths of our proposed algorithm  
No. Map Enhancement rates  

MAP 1  4.70391% 
MAP2 3.56633% 

MAP3 5.96183 % 

MAP4 1.02207% 
MAP5 0.903794% 

 

 
Figure 11 shows how mobile robots can readily avoid two moving obstacles in a dynamic 

environment utilizing MGWO, the beginning of the robot's mobility is seen in Figure 11(a), with dynamic 

obstacles moving in environment. The two obstacles in Figure 11(b) are extremely close to robot path. In 

order to prevent collisions, the robot detects an obstacle inside safety sensor range, as illustrated in Figure 

11(c), and the algorithm begins working on avoidance by giving the robots a negative velocity, causing them 

to begin moving back to avoid obstacle 1. Figure 11(d) shows the robots steady progress toward the goal. 

Figure 12 displays the movement of mobile robots around a dynamic target. Figure 12 shows how unknown 

environment with a moving target. 

 

 

 
(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 11. Simulation graph robot path planning with dynamic obstacle unknown environment test of 

proposed MGWO (a) start move, (b) obstacle near to robot, (c) obstacle far to robot, and (d) robots reach to 

the goal 
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Figure 12. Simulation graph robot path planning with dynamic goal unknown environment test of proposed 

MGWO 

 

 

The results that are shown in Figures 11 and 12 for the dynamic obstacle and the dynamic target the 

time took were 6.05453, 4.0969 with a path length of 30.459172 cm, 38.3  cm. The environment with a 

moving target has been successfully tested, in which the robot could successfully follow and reach the 

moving target. Moreover, the mobile robot has done well in avoiding moving obstacles in a dynamic 

environment  

 

 

5. CONCLUSION  

In an unknown environment with a range of dynamic and static obstacles, the path of effective 

navigation was created with the use of an online process and designed technique, which is MGWO. The 

adaptive adjusting technique regarding the MGWO control parameters achieves a balance between search as 

well as expansion capabilities related to GWO, also adaptive weighting is utilized for updating a wolf 

location, reducing time, and speeding up convergence. The suggested work is divided into two phases: the 

reading of sensors and the route account. Furthermore, this algorithm calculates the shortest route for a single 

mobile robot system with a successful obstacle avoidance mechanism in a short amount of time. In the case 

when there are moving obstacles and goals in the environment, the suggested method also performs best. The 

simulation results are compared with other intelligent approaches including the APSO with average 

enhancement path rates obtained by MGWO was 2.86%, and the enhancement path rate compared to the 

hybrid fuzzy-WDO was 4.70391%. Formation path planning is considered as one of the hottest topics 

nowadays which can be a common issue in UAV to be focus on in the future. 
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