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1. INTRODUCTION

The millimeter-wave (mmWave) spectrum is nowadays considered the best-promising frequency
band for the next generation of wireless communication systems [1]. This is due to the enormous bandwidth
and high data rate it offers [2]. On the other hand, the development of autonomous driving systems and the
rising of government policies for vehicle safety have led to considerable growth of automotive radar
technologies in recent years [3]-[7]. Hence, bandpass filter (BPFs) will significantly impact the overall system
performance [8]-[10], and the multiband function is preferred since applications are evolving daily [11]-[13].
However, these filters should be compact to ease their integration with other radiofrequency (RF) components,
highly selective, deep transmission zeros around the passbands, and low insertion loss [11]. Several techniques
and methods have been investigated throughout the literature to design high-frequency multiband BPFs [14],
among them, multi-mode resonators. A dual-band filter is designed in [15] using stub-loaded multiple mode
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resonators for 5G mid-band applications. Likewise, two coupled open-loop resonators loaded with stubs, spiral
resonators, and lumped capacitors are utilized to offer a dual-band behavior in reference [11]. A filter based on
folded dual-mode quarter-wave resonators, presented in [16], allows obtaining a three-band response for global
system for mobile communications (GSM), global positioning system (GPS), and wireless fidelity (Wi-Fi)
applications. Although these filters achieve good performance, using vias leads to a complex manufacturing
process. A mmWave single band BPF based on coupled line and center-tapped upper and lower stepped
impedance resonators (SIR) is presented in [17], however, the overall circuit size is quite big. Altaf et al. [18],
a dual-mode ring resonator with two folded half-wavelength stepped impedance resonator (SIR) is used to
design two mmWave single bands BPFs for 34 GHz and 40 GHz, respectively. Furthermore, a non-resonating
U-shape node is studied and combined with two dual-mode open-loop resonators to design a dual-band BPF
for 5G mmWave applications [12]. Similarly, a Conventional microstrip line structure is used to design a
millimeter-wave BPF operating at 28 GHz [19]. Nevertheless, some of these filters are bulky in size, others
have a poor return loss, and more importantly, tunable bandwidths or independent control of the passbands was
only achieved in [16].

More advanced techniques, such as substrate integrated waveguide (SIW), low-temperature cofired
ceramic (LTCC), and complementary metal-oxide-semiconductor (CMOS) or Gallium Arsenic (GaAs) were
respectively used in [10], [20]-[22] to desigh mmWave BPFs. These approaches have advantages such as
miniaturization, selectivity improvement, and insertion loss mitigation, however, the fabrication cost and
complexity are among their major weaknesses. Therefore, considering mmWave applications’ filtering
requirements such as circuit size and ease of integration with less complexity, microstrip filters appear to be
the best options for 5G mmWave applications [13], [23]-[26]. Consequently, a compact wideband dual-band
BPF based on microstrip single layer reduction (SLR) is presented in this paper for augmented reality (AR) at
24 GHz and 5G mmWave at 28 GHz. This filter is analyzed using the even-odd mode approach because of its
symmetrical structure. However, the novelties of the proposed filter are the independent tuning of the
bandwidths which is demonstrated in the sections ahead and its simple and compact design. To validate the
design approach, the filter was printed on Rogers 3,010 substrate material and measured. A good agreement
between simulated and experimental results was observed. The remaining part of this work is structured as
shown in; Section 2 focuses on the mathematical modeling, and section 3 highlights the design concept while
in Section 4 the results are analyzed and interpreted.

2. MATHEMATICAL MODELING

The proposed filter is designed by folding dual-mode SLRs. An SLR is typically made of a
transmission line with uniform impedance and an open or short-circuited stub (Figure 1). Here, a quarter-
wavelength (1/4) transmission line is employed to design a U-shaped SLR whose lengths are calculated at 24
GHz, which provides the desired bandwidths. Therefore, the elements of the filter can be analyzed through the
input impedance of a microstrip transmission line [14] given as (1). Considering the symmetrical structure of
the filter, input impedances can be expressed through the even-odd mode method which simplifies and reduces
the analysis to half [27].

Z1+jZy tan(6)

Ly =7
n 0 Zo+jzy, tan(8)

1
where @=L is the electrical length of the line, L its physical length, and /3 the phase constant, given by (2):
V€e
B =2nf, "M 2)

where ¢ represents the speed of light in the free space, f, the resonant frequency, and e,sis the dielectric
constant given by (3):

1
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where &, is the substrate relative permittivity, w is the width of the line, and # is the dielectric thickness. The
basic structure of an SLR is given in Figure 1(a), and its even and odd mode configuration in Figure 1(b) and
Figure 1(c) respectively [14]. Based on (1), the even input impedance of the SLR, which corresponds to an
open circuit, (Z, = 0) can be expressed as (4).
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Similarly, the odd input impedance which is equivalent to a short circuit (Z, = o) is calculated using (3).
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Figure 1. Stub-loaded resonator configurations in (a) topology of a basic SLR, (b) even mode configuration,
and (c) odd mode configuration

The resonance condition of the even mode is 1/Zm,(e) = 0and that of the odd mode is 1/Zm,(o) =0.

Therefore, this approach is applied to all the elements shown in Figure 2 to obtain their input impedances
expressed in terms of characteristic impedances (Z,) and electrical lengths (8). As the T-shaped resonator
(Figure 2(a-b)) is equivalent to the basic SLR topology presented in Figure 1, the mathematical expressions
remain the same. However, the corresponding even and odd input impedances of the inverted U-shaped element
(Figure 2(c-d)) is given as (6) and (7), and that of the middle U-shaped resonator (Figure 2(e-f)) by (8) and (9),
and finally for the E-shaped resonator (Figure 2(g-h)) by (10) and (12). It is important to mention that the
resonant frequencies are obtained by combining the resonance condition and the phase constant equation of
the quasi-TEM mode behavior of the microstrip line [15].
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where K, = j—s,Ks = §—7 Kg = ?and betweenKy = % are impedance ratios betweenZs and Z,, Z,and Zg, Zg4
4 6 8 9

and Zg, Zi, and Zgwhile 6, = BL,, 05 = PLs;s, 0 =PLs, 0; = BLy/2,05 = BLg, 09 =Ly, and
610 = BLqare electrical lengths of the corresponding stubs.
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Figure 2. Even and odd mode configurations of the filter building blocks based on (a-b) T-shaped, (c-d),
Inverted U-shaped, (e-f) middle U-shaped, and (g-h) E-shaped resonators.

3. FILTER DESIGN

The design simulations (Figure 3) were carried out using Ansys high-frequency structural simulator
(HFSS) and the layout was printed on a 1.231, x 2.024, Rogers RO3010 substrate material with a thickness
of 1.28 mm, dielectric constant &, = 10.2, and loss tangent tand = 0.0022 where 1 is the guided wavelength
at the center frequency (26 GHz). This configuration provides a multimode behavior that gives multiple
resonant frequencies which can be independently controlled [14]. To obtain the desired dual-band response, a
U-shaped quarter-wavelength resonator is placed at the center of the structure and edge-coupled with the
L-shaped resonator, which acts here as the main feedline. However, each of these two resonators exhibits a
dual-mode behavior, which resulted in a quad-band response as shown in Figure 3(a). To suppress undesired
harmonics, a small stub of length L is, firstly attached to the L-shaped, which becomes a quasi T-shaped
resonator. Consequently, the band located around 30 GHz is eliminated (Figure 3(b)). Second, an inverted U-
shaped element is weakly coupled with the circuit which not only eliminates the band located around 20 GHz
but provides wide bands at desired frequencies 24 and 28 GHz (Figure 3(c)). Table 1 summarizes the optimum
dimensions of the filter elements.

Finally, to improve the insertion loss and to deepen the transmission zeros (TZ) which represent
frequencies where perfect attenuation occurs, thus improving the selectivity of the Filter, an E-shaped resonator
is added in Figure 3(d) and a parasitic element is attached to the mainline to obtain the final structure show as
in Figure 3(e).
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Figure 3. The proposed filter design process that yields the optimum configuration in (a) U-shaped coupled
with the feedline, (b) Lsstub is added, (c) adding the inverted U-shaped resonator, and (d) coupled E-shaped
resonator, and (e) final topology of the proposed dual-band BPF
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Table 1. Dimensions (mm) of the proposed dual-band bandpass filter

Parameter Value Parameter Value Parameter Value
L1 4.1 w1 0.6 L10 1.15
L2 1.8 W2 0.4 W10 0.2
L3 0.75 W3 0.25 L 0.65
L4 21 W4 0.2 D 15
L5 3.4 W5 0.4 Gl 0.1
L6 1.25 W6 0.55 G2 0.3
L7 1.35 W7 0.6 G3 0.25
L8 1.2 W8 0.4
L9 3.1 W9 0.5

4. RESULTS AND DISCUSSION

A compact dual-band BPF based on folded SLRs with tunable bandwidths is designed and fabricated
in this paper. Two resonators T-shaped and U-shaped (Figure 2(a-e)) are employed to obtain the targeted
frequency bands, while the two others inverted U-shaped and E-shaped (Figure 2(c-g)) are used for harmonics
suppression and performance improvement. However, the advantage of this structure is that the bandwidths
can be independently controlled (Figure 4). It has been found that the lower bandwidth can be tuned by
adjusting the value of G, while the upper bandwidth is fixed, hence the gap between L, and L, as shown in
Figure 4(a). This band may be adjusted from 23.14 GHz to 23.48 GHz on the lower side and from 24.45 GHz
to 24.53 GHz in the upper part of the bandwidth reading at 10 dB of the return loss. Likewise, the second
bandwidth can be tuned from 27.90 GHz to 28.18 GHz of its lower part and from 28.95 GHz to 29.80 GHz of
its upper part by adjusting the length of the stub L5 as shown in Figure 4(b). This proves that the proposed filter
has the capability of independent control of the passbands. Furthermore, to validate the prototype made with
the 3D electromagnetic (EM) simulator Ansys HFSS, the filter was printed on Rogers RO3010 having a
thickness of 1.28 mm, a dielectric constant of 10.2, and a loss tangent equal to 0.0022, and measured using a
Rohde and Schwarz ZVA50 vector network analyzer (VNA).

The simulated and measured results of the proposed filter are shown in Figure 5. A good agreement
can be observed between the two with slight changes in terms of insertion loss and bandwidth. This is because
of the fabrication errors and the losses introduced by SMA connectors. However, the simulated insertion losses
are 1.94 dB and 2.74 dB in the lower and upper bands against 3.87 dB and 3.64 dB of the measured results at
center frequencies 23.92 GHz and 28.38 GHz respectively. The measured return losses are better than 17 dB
while the simulated reflection coefficients are greater than 19 dB at both bands. On the other hand, a large
bandwidth greater than 1 GHz is obtained throughout the simulations while 660 MHz of bandwidth is measured
in the lower band covering the short-range radar (SRR) application, and 880 MHz of bandwidth is obtained in
the upper band for 5G mmWave application. Additionally, three simulated TZs are respectively generated at
19.24GHz, 25.88 GHz, and 30.43 GHz. However, only two deep TZs are obtained through the measurements.
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Figure 4. Process of tuning the Dualband filter bandwidths, in (a) lower band tuning by adjusting G2 and (b)
the upper band tuning by varying L3

The third measured TZ located at 28.87 GHz is not as deep as its equivalent obtained via simulation.
This difference can be caused by the losses and mismatches of connectors and the prototype, and also the high

Indonesian J Elec Eng & Comp Sci, Vol. 27, No. 1, July 2022: 309-317



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 0 315

loss sensitivity of mmWave circuits. The performance of this filter with similar works is presented in Table 2.
It can be observed that the proposed dual-band bandpass filter achieves a good trade-off between size and loss.
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Figure 5. Simulated and measured transmission and reflection coefficient with the printed prototype

Table 2. Performance comparison with similarly published works

Ref Freqg. (GHz)  IL (dB) RL (dB) Technique Size (mm2)
Linetal. [19] 28 4 10 Microstrip 3.281, x 3.534,
Keinicke etal. [28] 36.5 3.44 8 Microstrip N/A
Haraz et al. [29] 14.5/28.2 1.9/4.7 135 Microstrip 0.442, x 1.412,
Yeh et al. [30] 35 45 12 CPWonCMOS  0.225 x 0.55
[This work] 23.92/28.38  3.87/3.64 17.2/19.15 Microstrip 1.2314 x 2.024,

5. CONCLUSION

In this paper, a compact wideband dual-band (23.92/28.38 GHz) bandpass filter with tunable
bandwidths has been presented for automotive radar and 5G mmWave wireless applications. The dual-band
response was realized by employing a 1/4 U-shaped resonator coupled with a T-shaped element acting as the
principal feedline. To improve the performance of the filter and to suppress undesired harmonics, an inverted
U-shaped and an E-shaped resonator were added. The simulations were carried out using Ansys HFSS and the
prototype with an overall size of 58.8 mm? was fabricated on Rogers RO3010 having a thickness of 1.28 mm,
a dielectric constant of 10.2, and a loss tangent of 0.0022. The measured insertion losses are less than 3.9 dB
at both center frequencies and the return losses are better than 17 dB. The measured bandwidths are respectively
660 MHz and 880 MHz. Finally, TZs were generated which improve the roll-off skirts and the stopbands
performance of the filter. The proposed BPF has many advantages such as wide and tunable bandwidths, low
loss, and compact size. Its compactness eases its integration with other RF front-end components which makes
it a great candidate for automotive radar and 5G mmWave applications.
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