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 A compact dual wideband bandpass filter for automotive radar (AR) and 5G 

millimeter-wave (mmWave) applications with adjustable bandwidths is 

presented in this work. The filter is based on microstrip dual-mode edge-

coupled stub-loaded resonators (SLR). The novelty of this configuration is 

that it allows independent control of the bandwidths which is not obvious for 

many reported SLR-based filters. To achieve an overall size of 1.23λ_g× 

2.02λ_g, these resonators are coupled and bent into U-shape, T-shape, and E-

shape. The U-shaped resonator, based on a quarter-wavelength transmission 

line, is coupled to the T-shaped element which constitutes the main feed line 

to obtain the dual-band response. Having a symmetrical structure, the design 

is studied using the even-odd mode analysis. The layout is made using the 

Ansys high-frequency structural simulator (HFSS) and fabricated on Rogers 

RO3010 with a thickness of 1.28 mm, a dielectric constant of 10.2, and a loss 

tangent of 0.0022. The measured bandwidths are 660 MHz and 880 MHz at 

central frequencies of 23.92 GHz and 28.38 GHz respectively. The measured 

insertion losses are less than 3.9 dB and the return losses are greater than 17 

dB in both bands. A good agreement is obtained between simulated and 

experimental results. 
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1. INTRODUCTION  

The millimeter-wave (mmWave) spectrum is nowadays considered the best-promising frequency 

band for the next generation of wireless communication systems [1]. This is due to the enormous bandwidth 

and high data rate it offers [2]. On the other hand, the development of autonomous driving systems and the 

rising of government policies for vehicle safety have led to considerable growth of automotive radar 

technologies in recent years [3]–[7]. Hence, bandpass filter (BPFs) will significantly impact the overall system 

performance [8]–[10], and the multiband function is preferred since applications are evolving daily [11]–[13]. 

However, these filters should be compact to ease their integration with other radiofrequency (RF) components, 

highly selective, deep transmission zeros around the passbands, and low insertion loss [11]. Several techniques 

and methods have been investigated throughout the literature to design high-frequency multiband BPFs [14], 

among them, multi-mode resonators. A dual-band filter is designed in [15] using stub-loaded multiple mode 

https://creativecommons.org/licenses/by-sa/4.0/
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resonators for 5G mid-band applications. Likewise, two coupled open-loop resonators loaded with stubs, spiral 

resonators, and lumped capacitors are utilized to offer a dual-band behavior in reference [11]. A filter based on 

folded dual-mode quarter-wave resonators, presented in [16], allows obtaining a three-band response for global 

system for mobile communications (GSM), global positioning system (GPS), and wireless fidelity (Wi-Fi) 

applications. Although these filters achieve good performance, using vias leads to a complex manufacturing 

process. A mmWave single band BPF based on coupled line and center-tapped upper and lower stepped 

impedance resonators (SIR) is presented in [17], however, the overall circuit size is quite big. Altaf et al. [18], 

a dual-mode ring resonator with two folded half-wavelength stepped impedance resonator (SIR) is used to 

design two mmWave single bands BPFs for 34 GHz and 40 GHz, respectively. Furthermore, a non-resonating 

U-shape node is studied and combined with two dual-mode open-loop resonators to design a dual-band BPF 

for 5G mmWave applications [12]. Similarly, a Conventional microstrip line structure is used to design a 

millimeter-wave BPF operating at 28 GHz [19]. Nevertheless, some of these filters are bulky in size, others 

have a poor return loss, and more importantly, tunable bandwidths or independent control of the passbands was 

only achieved in [16].  

More advanced techniques, such as substrate integrated waveguide (SIW), low-temperature cofired 

ceramic (LTCC), and complementary metal-oxide-semiconductor (CMOS) or Gallium Arsenic (GaAs) were 

respectively used in [10], [20]–[22] to design mmWave BPFs. These approaches have advantages such as 

miniaturization, selectivity improvement, and insertion loss mitigation, however, the fabrication cost and 

complexity are among their major weaknesses. Therefore, considering mmWave applications’ filtering 

requirements such as circuit size and ease of integration with less complexity, microstrip filters appear to be 

the best options for 5G mmWave applications [13], [23]–[26]. Consequently, a compact wideband dual-band 

BPF based on microstrip single layer reduction (SLR) is presented in this paper for augmented reality (AR) at 

24 GHz and 5G mmWave at 28 GHz. This filter is analyzed using the even-odd mode approach because of its 

symmetrical structure. However, the novelties of the proposed filter are the independent tuning of the 

bandwidths which is demonstrated in the sections ahead and its simple and compact design. To validate the 

design approach, the filter was printed on Rogers 3,010 substrate material and measured. A good agreement 

between simulated and experimental results was observed. The remaining part of this work is structured as 

shown in; Section 2 focuses on the mathematical modeling, and section 3 highlights the design concept while 

in Section 4 the results are analyzed and interpreted. 

 

 

2. MATHEMATICAL MODELING  

The proposed filter is designed by folding dual-mode SLRs. An SLR is typically made of a 

transmission line with uniform impedance and an open or short-circuited stub (Figure 1). Here, a quarter-

wavelength (𝜆/4) transmission line is employed to design a U-shaped SLR whose lengths are calculated at 24 

GHz, which provides the desired bandwidths. Therefore, the elements of the filter can be analyzed through the 

input impedance of a microstrip transmission line [14] given as (1). Considering the symmetrical structure of 

the filter, input impedances can be expressed through the even-odd mode method which simplifies and reduces 

the analysis to half [27].  

 

𝑍𝑖𝑛 = 𝑍0
𝑍𝐿+𝑗𝑍𝑜 tan(𝜃)

𝑍0+𝑗𝑍𝐿 tan(𝜃)
 (1) 

 

where L   is the electrical length of the line, L its physical length, and  the phase constant, given by (2): 

 

𝛽 = 2𝜋𝑓𝑟
√𝜀𝑒𝑓𝑓

𝑐
 (2) 

 

where c  represents the speed of light in the free space, 𝑓𝑟 the resonant frequency, and 𝜀𝑒𝑓𝑓is the dielectric 

constant given by (3): 

 

𝜀𝑒𝑓𝑓 =
𝜀𝑟+1

2
+

𝜀𝑟−1

2
(1 + 12

ℎ

2
)

−
1

2
 (3) 

 

where 𝜀𝑟 is the substrate relative permittivity, 𝑤 is the width of the line, and ℎ is the dielectric thickness. The 

basic structure of an SLR is given in Figure 1(a), and its even and odd mode configuration in Figure 1(b) and 

Figure 1(c) respectively [14]. Based on (1), the even input impedance of the SLR, which corresponds to an 

open circuit, (𝑍𝐿 = 0) can be expressed as (4).  
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𝑍𝑖𝑛,(𝑒) = −𝑗𝑍2
𝑍2 𝑡𝑎𝑛 𝜃1 𝑡𝑎𝑛 𝜃2−𝑍1

𝑍1 𝑡𝑎𝑛 𝜃2+𝑍2 𝑡𝑎𝑛 𝜃1
 (4) 

 

Similarly, the odd input impedance which is equivalent to a short circuit (𝑍𝐿 = ∞) is calculated using (3).  

 

𝑍𝑖𝑛,(𝑜) = 𝑗𝑍1 𝑡𝑎𝑛 𝜃1 (5) 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 1. Stub-loaded resonator configurations in (a) topology of a basic SLR, (b) even mode configuration, 

and (c) odd mode configuration 

 

 

The resonance condition of the even mode is 1/𝑍𝑖𝑛,(𝑒)
= 0and that of the odd mode is 1/𝑍𝑖𝑛,(𝑜)

= 0. 

Therefore, this approach is applied to all the elements shown in Figure 2 to obtain their input impedances 

expressed in terms of characteristic impedances (𝑍0) and electrical lengths (𝜃). As the T-shaped resonator 

(Figure 2(a-b)) is equivalent to the basic SLR topology presented in Figure 1, the mathematical expressions 

remain the same. However, the corresponding even and odd input impedances of the inverted U-shaped element 

(Figure 2(c-d)) is given as (6) and (7), and that of the middle U-shaped resonator (Figure 2(e-f)) by (8) and (9), 

and finally for the E-shaped resonator (Figure 2(g-h)) by (10) and (12). It is important to mention that the 

resonant frequencies are obtained by combining the resonance condition and the phase constant equation of 

the quasi-TEM mode behavior of the microstrip line [15]. 

 

𝑍𝑖𝑛(𝑒)

(∩)
= 𝑗𝑍4

𝑡𝑎𝑛 𝜃4 𝑡𝑎𝑛 𝜃5−𝐾4

𝑡𝑎𝑛 𝜃5+𝐾4 𝑡𝑎𝑛 𝜃4
 (6) 

 

𝑍𝑖𝑛(𝑜)

(∩)
= 𝑗𝑍4 𝑡𝑎𝑛 𝜃4 (7) 

 

𝑍𝑖𝑛(𝑒)

(𝑈)
= 𝑗𝑍6

𝑡𝑎𝑛 𝜃6 𝑡𝑎𝑛 𝜃7−𝐾6

𝑡𝑎𝑛 𝜃7+𝐾6 𝑡𝑎𝑛 𝜃6
 (8) 

 

𝑍𝑖𝑛(𝑜)
= 𝑗𝑍6 𝑡𝑎𝑛 𝜃6 (9) 

 

𝑍𝑖𝑛(𝑒)

(𝐸)
= 𝑍8

𝑍𝐿+𝑗𝑍8 𝑡𝑎𝑛 𝜃8

𝑍8+𝑗𝑍𝐿 𝑡𝑎𝑛 𝜃8
 (10) 

 

𝑍𝐿 = 𝑗𝑍9
𝑡𝑎𝑛 𝜃9 𝑡𝑎𝑛 𝜃10−𝐾9

1+𝐾9 𝑡𝑎𝑛 𝜃9
 (11) 

 

𝑍𝑖𝑛(𝑜)

(𝐸)
= 𝑗𝑍8

𝑡𝑎𝑛 𝜃8+𝐾8 𝑡𝑎𝑛 𝜃9

1−𝐾8 𝑡𝑎𝑛 𝜃8 𝑡𝑎𝑛 𝜃9
 (12) 

 

where 𝐾4 =
𝑍5

𝑍4
,𝐾6 =

𝑍7

𝑍6
, 𝐾8 =

𝑍9

𝑍8
and between𝐾9 =

𝑍10

𝑍9
 are impedance ratios between𝑍5 and 𝑍4, 𝑍7and 𝑍6, 9Z  

and 𝑍8, 𝑍10 and 𝑍9while 𝜃4 = 𝛽𝐿4, 𝜃5 = 𝛽𝐿5/2, 𝜃6 = 𝛽𝐿6, 𝜃7 = 𝛽𝐿7/2,𝜃8 = 𝛽𝐿8, 𝜃9 = 𝛽𝐿9/2 and 

 𝜃10 = 𝛽𝐿10are electrical lengths of the corresponding stubs.  
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(a) (b) (c) 

   

   
(d) (e) (f) 

   

   
(g) (h) 

 

Figure 2. Even and odd mode configurations of the filter building blocks based on (a-b) T-shaped, (c-d), 

Inverted U-shaped, (e-f) middle U-shaped, and (g-h) E-shaped resonators. 

 

 

3. FILTER DESIGN  

The design simulations (Figure 3) were carried out using Ansys high-frequency structural simulator 

(HFSS) and the layout was printed on a 1.23𝜆𝑔 × 2.02𝜆𝑔 Rogers RO3010 substrate material with a thickness 

of 1.28 mm, dielectric constant 𝜀𝑟 = 10.2, and loss tangent 𝑡𝑎𝑛𝛿 = 0.0022 where 𝜆𝑔 is the guided wavelength 

at the center frequency (26 GHz). This configuration provides a multimode behavior that gives multiple 

resonant frequencies which can be independently controlled [14]. To obtain the desired dual-band response, a 

U-shaped quarter-wavelength resonator is placed at the center of the structure and edge-coupled with the  

L-shaped resonator, which acts here as the main feedline. However, each of these two resonators exhibits a 

dual-mode behavior, which resulted in a quad-band response as shown in Figure 3(a). To suppress undesired 

harmonics, a small stub of length 𝐿3 is, firstly attached to the L-shaped, which becomes a quasi T-shaped 

resonator. Consequently, the band located around 30 GHz is eliminated (Figure 3(b)). Second, an inverted U-

shaped element is weakly coupled with the circuit which not only eliminates the band located around 20 GHz 

but provides wide bands at desired frequencies 24 and 28 GHz (Figure 3(c)). Table 1 summarizes the optimum 

dimensions of the filter elements.  

Finally, to improve the insertion loss and to deepen the transmission zeros (TZ) which represent 

frequencies where perfect attenuation occurs, thus improving the selectivity of the Filter, an E-shaped resonator 

is added in Figure 3(d) and a parasitic element is attached to the mainline to obtain the final structure show as 

in Figure 3(e). 
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(a) 

  

  
(b) 

 

  
(c) 

  

  
(d) 

 

 
(e) 

 

Figure 3. The proposed filter design process that yields the optimum configuration in (a) U-shaped coupled 

with the feedline, (b) L3 stub is added, (c) adding the inverted U-shaped resonator, and (d) coupled E-shaped 

resonator, and (e) final topology of the proposed dual-band BPF 
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Table 1. Dimensions (mm) of the proposed dual-band bandpass filter 
Parameter Value Parameter Value Parameter Value 

L1 4.1 W1 0.6 L10 1.15 

L2 1.8 W2 0.4 W10 0.2 
L3 0.75 W3 0.25 L 0.65 

L4 2.1 W4 0.2 D 1.5 

L5 3.4 W5 0.4 G1 0.1 
L6 1.25 W6 0.55 G2 0.3 

L7 1.35 W7 0.6 G3 0.25 

L8 1.2 W8 0.4   
L9 3.1 W9 0.5   

 

 

4. RESULTS AND DISCUSSION 

A compact dual-band BPF based on folded SLRs with tunable bandwidths is designed and fabricated 

in this paper. Two resonators T-shaped and U-shaped (Figure 2(a-e)) are employed to obtain the targeted 

frequency bands, while the two others inverted U-shaped and E-shaped (Figure 2(c-g)) are used for harmonics 

suppression and performance improvement. However, the advantage of this structure is that the bandwidths 

can be independently controlled (Figure 4). It has been found that the lower bandwidth can be tuned by 

adjusting the value of 𝐺2 while the upper bandwidth is fixed, hence the gap between 𝐿2 and 𝐿4 as shown in 

Figure 4(a). This band may be adjusted from 23.14 GHz to 23.48 GHz on the lower side and from 24.45 GHz 

to 24.53 GHz in the upper part of the bandwidth reading at 10 dB of the return loss. Likewise, the second 

bandwidth can be tuned from 27.90 GHz to 28.18 GHz of its lower part and from 28.95 GHz to 29.80 GHz of 

its upper part by adjusting the length of the stub 𝐿3 as shown in Figure 4(b). This proves that the proposed filter 

has the capability of independent control of the passbands. Furthermore, to validate the prototype made with 

the 3D electromagnetic (EM) simulator Ansys HFSS, the filter was printed on Rogers RO3010 having a 

thickness of 1.28 mm, a dielectric constant of 10.2, and a loss tangent equal to 0.0022, and measured using a 

Rohde and Schwarz ZVA50 vector network analyzer (VNA). 

The simulated and measured results of the proposed filter are shown in Figure 5. A good agreement 

can be observed between the two with slight changes in terms of insertion loss and bandwidth. This is because 

of the fabrication errors and the losses introduced by SMA connectors. However, the simulated insertion losses 

are 1.94 dB and 2.74 dB in the lower and upper bands against 3.87 dB and 3.64 dB of the measured results at 

center frequencies 23.92 GHz and 28.38 GHz respectively. The measured return losses are better than 17 dB 

while the simulated reflection coefficients are greater than 19 dB at both bands. On the other hand, a large 

bandwidth greater than 1 GHz is obtained throughout the simulations while 660 MHz of bandwidth is measured 

in the lower band covering the short-range radar (SRR) application, and 880 MHz of bandwidth is obtained in 

the upper band for 5G mmWave application. Additionally, three simulated TZs are respectively generated at 

19.24GHz, 25.88 GHz, and 30.43 GHz. However, only two deep TZs are obtained through the measurements. 

 

 

  
(a) (b) 

 

Figure 4. Process of tuning the Dualband filter bandwidths, in (a) lower band tuning by adjusting G2 and (b) 

the upper band tuning by varying L3 

 

 

The third measured TZ located at 28.87 GHz is not as deep as its equivalent obtained via simulation. 

This difference can be caused by the losses and mismatches of connectors and the prototype, and also the high 
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loss sensitivity of mmWave circuits. The performance of this filter with similar works is presented in Table 2. 

It can be observed that the proposed dual-band bandpass filter achieves a good trade-off between size and loss. 

 

 

 
 

 
 

Figure 5. Simulated and measured transmission and reflection coefficient with the printed prototype 

 

 

Table 2. Performance comparison with similarly published works 
Ref Freq. (GHz) IL (dB) RL (dB) Technique Size (mm2) 

Lin et al. [19] 28 4 10 Microstrip 3.28𝜆𝑔 × 3.53𝜆𝑔 

Keinicke et al. [28] 36.5 3.44 8 Microstrip N/A 
Haraz et al. [29] 14.5/28.2 1.9/4.7 13.5 Microstrip 0.44𝜆𝑔 × 1.41𝜆𝑔 

Yeh et al. [30] 35 4.5 12 CPW on CMOS 0.225 × 0.55 

[This work] 23.92/28.38 3.87/3.64 17.2/19.15 Microstrip 1.23𝜆𝑔 × 2.02𝜆𝑔 

 

 

5. CONCLUSION 

In this paper, a compact wideband dual-band (23.92/28.38 GHz) bandpass filter with tunable 

bandwidths has been presented for automotive radar and 5G mmWave wireless applications. The dual-band 

response was realized by employing a 𝜆/4 U-shaped resonator coupled with a T-shaped element acting as the 

principal feedline. To improve the performance of the filter and to suppress undesired harmonics, an inverted 

U-shaped and an E-shaped resonator were added. The simulations were carried out using Ansys HFSS and the 

prototype with an overall size of 58.8 mm2 was fabricated on Rogers RO3010 having a thickness of 1.28 mm, 

a dielectric constant of 10.2, and a loss tangent of 0.0022. The measured insertion losses are less than 3.9 dB 

at both center frequencies and the return losses are better than 17 dB. The measured bandwidths are respectively 

660 MHz and 880 MHz. Finally, TZs were generated which improve the roll-off skirts and the stopbands 

performance of the filter. The proposed BPF has many advantages such as wide and tunable bandwidths, low 

loss, and compact size. Its compactness eases its integration with other RF front-end components which makes 

it a great candidate for automotive radar and 5G mmWave applications.  
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