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Abstract  
To achieve highest performance in rapidly growing advancement in multi-core technology, there 

is need to minimize the large gap between faster processor speed and memory. It becomes more critical 
issue when branch occurs with penalty of cache miss. Many researchers proposed different branch 
prediction, instruction perfecting methods and algorithms but the CPU pipeline performance couldn’t be the 
maximal. A prototype model has been designed in this paper which has no prediction for branch and no 
chance of CPU core to be idle. Analysisis carried out on the benchmarks suite and Transactional Slice 
(TS) has been proposed in contrast with traditional delay slot and dynamic prediction fetch branch. In 
proposed mechanism hit rate will be maximal.  Pin Tool is used to analyze the Transactional Slice with 
SPEC 2006 benchmark. 
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1. Introduction 

Currently there is a huge discussion carried out on the processor speed with cache 
synchronization. Keeping the execution core full of activity, there must be efficient techniques 
required for instruction cache performance. It is necessarythatinstruction blocks must be 
perfected in instruction cache, prior the core request, to avoid the processor to be idle.  

Many processors have high clock cycle’s frequencies leading to longer pipe line. 
Pentium 4 has 20 and IBM Power has 14 stages [1, 2]. Due to longer size pipeline instruction 
takes more time to reach execution stage because branches take longer to resolve. So the 
branch misprediction is morecritical issue in those processors. On the other hand few 
researchers have the opposite concept that if the pipeline will be deeper,with large enough on-
chip cache, the processor frequency will be increase to 100%. 

It is observed that majority of application instructions references depend on 
predictions.Processor resources are utilized on branch predictions in high performance 
computing. Branches are categorized in static branches may cause 20% mispredictionsand 
63% mispredictions may be caused by dynamic branches [3]. Conditional branch prediction is 
common from the decades in high performance processors [4, 5]. It is also past practice to 
execute instructions speculatively. There is less chance of incorrect branch prediction and 
resources available to speculative instructions [6, 7, 8]. For some special applicationsconfidence 
hybrid branch predicators’ mechanism were introduced on prediction histories [9, 10].  

Unfortunately, due to the unpredictable nature of code and data streams,the pipeline 
cannot always be filled correctly and theflushing of the pipeline exposes the latency. For 
resolving the above issues different effective fetching techniques have beenintroduced. Prefetch 
aware cache management, SHIP hit predictor on last level cache policies introduces to measure 
the pre-fetch policies dynamically and avoid cache pollution [11, 12, 13, 14, 15]. Stream 
prefetcher for mid-level cache used in Intel Core i7 processor [16]. Next-line instruction 
prefetcher [17, 18], correlating prefetchers [19, 20], allowing the branch predictor to run ahead 
of instruction fetch. Even though with all these counter measures L1 caches miss rate is over 
40% of the execution time [21, 22]. So the researchers have proposed different mechanism to 
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build a bridge between L1 instruction cache size and the necessity of low-latency access to 
instructions. 

The paper is organized in different sections. Section 2 elaborates the branch 
misprediction ration comparing the performance with pipeline stages. Section 3 describes our 
analytical approach of Transactional Slice. Section 4 contains relative work. System 
configuration of our experimental machine is detailed in section 5. In section 6 we have 
concluded the paper. 

 
 

2. Pipeline Branch Misprediction Ration 
In this section the useful duration of pipeline with its stagesis analyzed and assesed. 

Here branchmisprediction algorithm proposed in [23] is referred; 
 

(*   -   )m sB N cycle Time Overhead Time      
(1) 

 

Where Bm  is Branch misprediction, Ns is No. of stages.   

Analysis is done on 2.66 GHz system having 375ps cycle time and has 14 stages per 
core.Branch misprediction factor is computed with different constantoverheadworkloads as 
described in Table1. Instruction pipeline is completely filled up for the maximum Transactional 
Slice length to satisfy our model. 

 
   -   Useful T im e cycle T im e Overhead T im e     (2) 

 
   375 -  . Useful Time Const Overhead      (3) 

 
*  m sB N U sefu l T im e        

(4) 

 
 

Table 1. Performance Ration with Branch Misprediction  
Performance (%) Const. overhead 

89.33 40 

84.00 60 

78.67 80 

76.00 90 

 
 

3. Transactional Slice Behavior 
The Transactional Slice  is block of instructions which must end with branch instruction. 

Figure 1 shows the block diagram of TS to pipeline where each TS is in series with pipeline. In 
traditional system prefetch proceeds to fetch contiguous blocks in memory until a branch 
predicted as taken reachesthe fetch unit. Branch misprediction and prefetch overhead are two 
performance losses in front end CPI. After branch occurs there are several mechanism for 
maximum hit rate in pipeline. For example if the instruction stream has encountered a 
conditional branch then the CPU cannot know whether the next instruction is the one following 
the branch or the instruction at the target location until it has evaluated the branch, resulting in a 
bubble in the pipeline. Hence to handle such a situation some RISC architectures have a 
branch delay slot, wherein the instruction after the branch will always be executed, no matter 
whether the branch is opted or not, to improve the efficiency of pipeline.In OOO processor delay 
slot doesn’t exist so if branch is mispredicted then wait for pipeline to get empty is big loss. On a 
deeply pipelined processor this would often take longer than the typical number of instructions 
between branches, so one can be completely stalled. The other mechanism is dynamically 
predicted branch; predictor can runahead of the instruction cache fetch. The blocks are fetched 
by branch predictor, put into the prefetch queue and then accessed either from fetch target 
buffers or branch target buffers. However execution performanceis strictly limited by fetch 
performance. In our mechanism of Transactional Slice instructions are inserted dynamically in 
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front of the branch instruction. In this technique there will be enough instructions before the 
conditional branch. 

 
3.1. Count and Trace Mechanism for Transactional Slice  

Intel PIN TOOL is used to calulate the Transactional Slice using different workloads of 
SPEC 2006 benchmarks in this manuscript. The exiting builtin instruction count and instruction 
trace tools are modified. In this process first simple C++ and C programs are tested to verify the 
tools. Different types of instruction as well as traces of the branches are analyzed. After 
verifying on simple applications this Tool is run on SPEC 2006 suite. The experiment results of 
cpu2006 INT benchmarks are shown in Figure 2 and FLOAT benchmarks are shown in Figure 
3, ref data is used for both benchmarks. There is utility in Intell Pin Tool to sychronize with 
different benchmarks. We configure the config file of cpu2006 accroding our system. First 
environment variable were set and then run the tool directoly from benchmark prompt. The 
simulation results show the number of Transcational slice and the number of instructions in 
each Transactional Slice. 

 
 

 
 

Figure 1. Instructions to Pipeline 
 
 

3.2. Cycles per Transactional Slice  
The formula for calculating the CPU time given in Equation (5) will be used further to 

calculate Cycle per instruction in benchmark workload. 
 

    *  *    CPU Time IC CPI clk Cycle Time     (5) 

 
Again the Intell PIN TOOL is used to calculate the number of instructions dynamically in each 
benchmark workload with same system configuration. Number of instruction were calculated 
with builtin Tool. 

For proposed Transactional Slice the number of cycles will be calculated using above 
general formula. CPU time to execute one benchmark workload EWT (Execution Workload 
Time) can be calculated using equation 6. 
 

 *   *    EWT NIW CPIW clk Cycle Time      (6) 
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*   

EW T
CPIW

NIW clk Cycle Time
       (7) 

 
Where NIW (Number of Instructions in Workload), CPIW (Cycle Per Instruction Workload), 
CPTS (Cycles per Transactional Slice), STS (Size of Transactional Slice) 

Cycle per Instruction of one benchmark workload can be calculated form Equation 7. 
The SPEC 2006 benchmarks CPIW are calculated using the same formula and results are 
given in Table 2(a) for C benchmarks and in 2(b) C++ benchmarks. This CPIW can be used to 
calculate Cycle perTransactional Slice. 

 
*  T SC PT S S C PIW         (8) 

 
Or for calculating the Size we can write the above equation as: 
 

TS

CPTS
S

CPIW
          (9) 

 
The TS time per instruction in Pipeline (TSTPI) can be determined using Equation 10. 

 
     *  TSTPI clk Cycle T ime CPIW        (10) 

 
So the Transactional Slice sizewill be equal to the product of number of pipeline stages 

and Time of Transactional Slice per instruction. 
 

  *  TS SS N TSTPI         (11) 

 
With this equation we may find in future instruction cache size and the maximum 

Pipeline utilization.   
 
 

Figure 2. Trasactional Slices in SPEC 2006 
INT Benchmarks 

Figure 3. Transactional Slices in SPEC 2006 
FLOAT Benchmarks 
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Table 2(a). C Benchmarks Table 2(b). C++ Benchmarks 

Benchmark       
CPI 

      Benchmark        
CPI 

400.perlbench 1.30 458.sjeng 0.88 
401.bzip2 5.88 462.libquantum 1.17 
403.gcc 11.27 464.h264ref 10.32 
429.mcf  4.67 433.milc 1.67 
445.gobmk  5.40 470.lbm 2.19 
456.hmmer  1.68 482.sphinx3 0.92 

 

Benchmark CPI         Benchmark CPI 
471.omnetpp 7.26 444.namd 7.40 
473.astar 2.25 450.soplex 4.15 
483.xalancbmk 1.66 453.povray 0.85 

 

 
 

4. Related Work 
Authors in [24] emphasis on elimination of branch mispredictions which arecaused by 

slow predecessors as compared to faster microarchitecture core and proposed CFD for 
separable branches. Authors in [25] described Proactive Instruction fetching technique that 
records exact sequence number. It implements stall less Fetch-instruction pre-fetcher to 
improve the performance of L1 instruction cache, avoids the instability and randomness ofthe 
instruction sequence introduced by the microarchitecture. GPU conditional branch handling 
mechanism with divergent paths is proposed in [26, 23] measure the performance of processor 
in terms if branch misprediction latency and fastest branch recovery. Authors in [27] explore the 
causes of performance loss due to branchmispredictions. They separate it into different 
categories, e.g.  Serialization, window-fill penalty and the Pipeline-fill penalty which is focus of 
our work. The reason of measuring the size and CPIW of Transactional Slice is to fill up core-
pipe line at the peak value to avoid the core to be ideal. 

 
 

5. System Configuration 
We have used Dell machine with linux operating system detailed in below table. 
 

 
Table 3. System Configuration  

Parameters Description  
CPU Intel(R) Core(TM)2 Quad CPU Q8400 @ 2.66GHz 
vendor: Intel Corp. 
size: 2666MHz 
width: 64 bits 
clock: 1333MHz 
cores 4 
enabledcores 4 
threads 4 
L1 cache 
size: 256KiB 
capacity: 256KiB 
memory 
size: 4GiB 
OSgcc version 4.6.3 
 x86_64 GNU/Linux Ubuntu 12.04.2 LTS 

 
 

6. Conclusion 
In this paper an efficient instruction pipeline mechanism is described on the analysis of 

branch misprediction to get maximum hit ratio. It is observed during this analysis that it has high 
impact on processor performance vs cache size. The idea of Transactional Slice is proposed in 
this manuscript, which fill up the pipeline on maximum level. Proposed model will make 
agreeable change in processor pipeline line and cache synchronization to improve 100% 
performance. 
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