
TELKOMNIKA, Vol.11, No.11, November 2013, pp. 6454~6459
e-ISSN: 2087-278X
  6454

Received March 19, 2013; Revised July 1, 2013; Accepted July 15, 2013

Instruction Pipeline Efficient Mechanism with Maximum
Hit Ratio

Shahnawaz Talpur*1,2, Yizhuo Wang1, Shahnawaz Farhan Khahro1, XiaoJun Wang1,
Xu Chen1, Feng Shi1

1Beijing Institute of Technology Beijing, China
2Mehran University of Engineering and Technology , Jamshoro, Sindh

Corresponding authors, e-mail: talpur@bit.edu.cn, frankwyz@126.com

Abstract
To achieve highest performance in rapidly growing advancement in multi-core technology, there

is need to minimize the large gap between faster processor speed and memory. It becomes more critical
issue when branch occurs with penalty of cache miss. Many researchers proposed different branch
prediction, instruction perfecting methods and algorithms but the CPU pipeline performance couldn’t be the
maximal. A prototype model has been designed in this paper which has no prediction for branch and no
chance of CPU core to be idle. Analysisis carried out on the benchmarks suite and Transactional Slice
(TS) has been proposed in contrast with traditional delay slot and dynamic prediction fetch branch. In
proposed mechanism hit rate will be maximal. Pin Tool is used to analyze the Transactional Slice with
SPEC 2006 benchmark.

Keywords: conditional branch, branch misprediction, performance evaluation, transactional slice, pipeline
processing

Copyright © 2013 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

Currently there is a huge discussion carried out on the processor speed with cache
synchronization. Keeping the execution core full of activity, there must be efficient techniques
required for instruction cache performance. It is necessarythatinstruction blocks must be
perfected in instruction cache, prior the core request, to avoid the processor to be idle.

Many processors have high clock cycle’s frequencies leading to longer pipe line.
Pentium 4 has 20 and IBM Power has 14 stages [1, 2]. Due to longer size pipeline instruction
takes more time to reach execution stage because branches take longer to resolve. So the
branch misprediction is morecritical issue in those processors. On the other hand few
researchers have the opposite concept that if the pipeline will be deeper,with large enough on-
chip cache, the processor frequency will be increase to 100%.

It is observed that majority of application instructions references depend on
predictions.Processor resources are utilized on branch predictions in high performance
computing. Branches are categorized in static branches may cause 20% mispredictionsand
63% mispredictions may be caused by dynamic branches [3]. Conditional branch prediction is
common from the decades in high performance processors [4, 5]. It is also past practice to
execute instructions speculatively. There is less chance of incorrect branch prediction and
resources available to speculative instructions [6, 7, 8]. For some special applicationsconfidence
hybrid branch predicators’ mechanism were introduced on prediction histories [9, 10].

Unfortunately, due to the unpredictable nature of code and data streams,the pipeline
cannot always be filled correctly and theflushing of the pipeline exposes the latency. For
resolving the above issues different effective fetching techniques have beenintroduced. Prefetch
aware cache management, SHIP hit predictor on last level cache policies introduces to measure
the pre-fetch policies dynamically and avoid cache pollution [11, 12, 13, 14, 15]. Stream
prefetcher for mid-level cache used in Intel Core i7 processor [16]. Next-line instruction
prefetcher [17, 18], correlating prefetchers [19, 20], allowing the branch predictor to run ahead
of instruction fetch. Even though with all these counter measures L1 caches miss rate is over
40% of the execution time [21, 22]. So the researchers have proposed different mechanism to

TELKOMNIKA e-ISSN: 2087-278X 

Instruction Pipeline Efficient Mechanism with Maximum Hit Ratio (Shahnawaz Talpur)

6455

build a bridge between L1 instruction cache size and the necessity of low-latency access to
instructions.

The paper is organized in different sections. Section 2 elaborates the branch
misprediction ration comparing the performance with pipeline stages. Section 3 describes our
analytical approach of Transactional Slice. Section 4 contains relative work. System
configuration of our experimental machine is detailed in section 5. In section 6 we have
concluded the paper.

2. Pipeline Branch Misprediction Ration
In this section the useful duration of pipeline with its stagesis analyzed and assesed.

Here branchmisprediction algorithm proposed in [23] is referred;

(* -)m sB N cycle Time Overhead Time
(1)

Where Bm is Branch misprediction, Ns is No. of stages.

Analysis is done on 2.66 GHz system having 375ps cycle time and has 14 stages per
core.Branch misprediction factor is computed with different constantoverheadworkloads as
described in Table1. Instruction pipeline is completely filled up for the maximum Transactional
Slice length to satisfy our model.

 - Useful T im e cycle T im e Overhead T im e (2)

 375 - . Useful Time Const Overhead (3)

* m sB N U sefu l T im e

(4)

Table 1. Performance Ration with Branch Misprediction
Performance (%) Const. overhead

89.33 40

84.00 60

78.67 80

76.00 90

3. Transactional Slice Behavior
The Transactional Slice is block of instructions which must end with branch instruction.

Figure 1 shows the block diagram of TS to pipeline where each TS is in series with pipeline. In
traditional system prefetch proceeds to fetch contiguous blocks in memory until a branch
predicted as taken reachesthe fetch unit. Branch misprediction and prefetch overhead are two
performance losses in front end CPI. After branch occurs there are several mechanism for
maximum hit rate in pipeline. For example if the instruction stream has encountered a
conditional branch then the CPU cannot know whether the next instruction is the one following
the branch or the instruction at the target location until it has evaluated the branch, resulting in a
bubble in the pipeline. Hence to handle such a situation some RISC architectures have a
branch delay slot, wherein the instruction after the branch will always be executed, no matter
whether the branch is opted or not, to improve the efficiency of pipeline.In OOO processor delay
slot doesn’t exist so if branch is mispredicted then wait for pipeline to get empty is big loss. On a
deeply pipelined processor this would often take longer than the typical number of instructions
between branches, so one can be completely stalled. The other mechanism is dynamically
predicted branch; predictor can runahead of the instruction cache fetch. The blocks are fetched
by branch predictor, put into the prefetch queue and then accessed either from fetch target
buffers or branch target buffers. However execution performanceis strictly limited by fetch
performance. In our mechanism of Transactional Slice instructions are inserted dynamically in

  e-ISSN: 2087-278X

TELKOMNIKA Vol. 11, No. 11, November 2013: 6454 – 6459

6456

front of the branch instruction. In this technique there will be enough instructions before the
conditional branch.

3.1. Count and Trace Mechanism for Transactional Slice

Intel PIN TOOL is used to calulate the Transactional Slice using different workloads of
SPEC 2006 benchmarks in this manuscript. The exiting builtin instruction count and instruction
trace tools are modified. In this process first simple C++ and C programs are tested to verify the
tools. Different types of instruction as well as traces of the branches are analyzed. After
verifying on simple applications this Tool is run on SPEC 2006 suite. The experiment results of
cpu2006 INT benchmarks are shown in Figure 2 and FLOAT benchmarks are shown in Figure
3, ref data is used for both benchmarks. There is utility in Intell Pin Tool to sychronize with
different benchmarks. We configure the config file of cpu2006 accroding our system. First
environment variable were set and then run the tool directoly from benchmark prompt. The
simulation results show the number of Transcational slice and the number of instructions in
each Transactional Slice.

Figure 1. Instructions to Pipeline

3.2. Cycles per Transactional Slice
The formula for calculating the CPU time given in Equation (5) will be used further to

calculate Cycle per instruction in benchmark workload.

 * * CPU Time IC CPI clk Cycle Time (5)

Again the Intell PIN TOOL is used to calculate the number of instructions dynamically in each
benchmark workload with same system configuration. Number of instruction were calculated
with builtin Tool.

For proposed Transactional Slice the number of cycles will be calculated using above
general formula. CPU time to execute one benchmark workload EWT (Execution Workload
Time) can be calculated using equation 6.

 * * EWT NIW CPIW clk Cycle Time (6)

TELKOMNIKA e-ISSN: 2087-278X 

Instruction Pipeline Efficient Mechanism with Maximum Hit Ratio (Shahnawaz Talpur)

6457

*

EW T
CPIW

NIW clk Cycle Time
 (7)

Where NIW (Number of Instructions in Workload), CPIW (Cycle Per Instruction Workload),
CPTS (Cycles per Transactional Slice), STS (Size of Transactional Slice)

Cycle per Instruction of one benchmark workload can be calculated form Equation 7.
The SPEC 2006 benchmarks CPIW are calculated using the same formula and results are
given in Table 2(a) for C benchmarks and in 2(b) C++ benchmarks. This CPIW can be used to
calculate Cycle perTransactional Slice.

* T SC PT S S C PIW (8)

Or for calculating the Size we can write the above equation as:

TS

CPTS
S

CPIW
 (9)

The TS time per instruction in Pipeline (TSTPI) can be determined using Equation 10.

 * TSTPI clk Cycle T ime CPIW (10)

So the Transactional Slice sizewill be equal to the product of number of pipeline stages

and Time of Transactional Slice per instruction.

 * TS SS N TSTPI (11)

With this equation we may find in future instruction cache size and the maximum

Pipeline utilization.

Figure 2. Trasactional Slices in SPEC 2006
INT Benchmarks

Figure 3. Transactional Slices in SPEC 2006
FLOAT Benchmarks

1

5

25

125

625

3125

15625

N
o
. o

f
Tr
an

sa
ct
io
n
al
 S
lic
es

No. of Instructions

Peralbench bzip2 gcc
mcf gobmk hmmer

1

5

25

125

625

3125

15625

N
o
. o

f
Tr
an

sa
ct
io
n
al
 S
lic
es

No. of Instructions

milc namd soplex povray

  e-ISSN: 2087-278X

TELKOMNIKA Vol. 11, No. 11, November 2013: 6454 – 6459

6458

Table 2(a). C Benchmarks Table 2(b). C++ Benchmarks

Benchmark
CPI

 Benchmark
CPI

400.perlbench 1.30 458.sjeng 0.88
401.bzip2 5.88 462.libquantum 1.17
403.gcc 11.27 464.h264ref 10.32
429.mcf 4.67 433.milc 1.67
445.gobmk 5.40 470.lbm 2.19
456.hmmer 1.68 482.sphinx3 0.92

Benchmark CPI Benchmark CPI
471.omnetpp 7.26 444.namd 7.40
473.astar 2.25 450.soplex 4.15
483.xalancbmk 1.66 453.povray 0.85

4. Related Work
Authors in [24] emphasis on elimination of branch mispredictions which arecaused by

slow predecessors as compared to faster microarchitecture core and proposed CFD for
separable branches. Authors in [25] described Proactive Instruction fetching technique that
records exact sequence number. It implements stall less Fetch-instruction pre-fetcher to
improve the performance of L1 instruction cache, avoids the instability and randomness ofthe
instruction sequence introduced by the microarchitecture. GPU conditional branch handling
mechanism with divergent paths is proposed in [26, 23] measure the performance of processor
in terms if branch misprediction latency and fastest branch recovery. Authors in [27] explore the
causes of performance loss due to branchmispredictions. They separate it into different
categories, e.g. Serialization, window-fill penalty and the Pipeline-fill penalty which is focus of
our work. The reason of measuring the size and CPIW of Transactional Slice is to fill up core-
pipe line at the peak value to avoid the core to be ideal.

5. System Configuration
We have used Dell machine with linux operating system detailed in below table.

Table 3. System Configuration

Parameters Description
CPU Intel(R) Core(TM)2 Quad CPU Q8400 @ 2.66GHz
vendor: Intel Corp.
size: 2666MHz
width: 64 bits
clock: 1333MHz
cores 4
enabledcores 4
threads 4
L1 cache
size: 256KiB
capacity: 256KiB
memory
size: 4GiB
OSgcc version 4.6.3
 x86_64 GNU/Linux Ubuntu 12.04.2 LTS

6. Conclusion
In this paper an efficient instruction pipeline mechanism is described on the analysis of

branch misprediction to get maximum hit ratio. It is observed during this analysis that it has high
impact on processor performance vs cache size. The idea of Transactional Slice is proposed in
this manuscript, which fill up the pipeline on maximum level. Proposed model will make
agreeable change in processor pipeline line and cache synchronization to improve 100%
performance.

Acknowledgment

This work is partially supported by National Nature Science Foundation of China under
grant No. 60973010.

TELKOMNIKA e-ISSN: 2087-278X 

Instruction Pipeline Efficient Mechanism with Maximum Hit Ratio (Shahnawaz Talpur)

6459

References
[1] PN Glaskowsky. Pentium 4 (Partially) Previewed. Microprocessor Report. 2000; 14(8): 1,11-13.
[2] K Krewell. IBM’s Power4 Unveiling Continues. Microprocessor Report. 2000; 1-4.
[3] Jacobsen E, Rotenberg E, Smith JE. Assigning confidence to conditional branch predictions. In

proceedings of the 29th annual ACM/IEEE symposium on Microarchitecture. 1996; 142-152.
[4] Lee JK, Smith AJ. Branch Prediction Strategies and Branch Target Buffer Design. Computer. 1984;

(1): 6-22.
[5] Pan ST, So K, Rahmeh JT. Improving the Accuracy of Dynamic Branch Prediction Using Branch

Correlation. ACM SIGPLAN Notices. 1992; 27(9): 76-84.
[6] Linley Gwennap. MIPS R10000 Uses Decoupled Architecture. Microprocessor Report. 1994; (8): 18-

22.
[7] Michael Slater. AMD’s K5 Designed to Outrun Pentium. Microprocessor Report. 1994; (8)1: 6-11.
[8] McFarlin DS, Tucker C, Zilles C. Discerning the Dominant Out-of-Order Performance Advantage: Is it

Speculation or Dynamism. Proceedings of the 18th international conference on Architectural support
for programming languages and operating systems, ACM. 2013; 241-252.

[9] Evers M, Chang PY, Patt YN. Using Hybrid Branch Predictors to Improve Branch Prediction Accuracy
in the Presence of Context Switches. In ACM SIGARCH Computer Architecture News. 1996; (24)2: 3-
11.

[10] S McFarling. Combining Branch Predictors. Digital Western Research Lab Technical Note TN-36.
1993.

[11] Carole-Jean Wu, Aamer Jaleel, Margaret Martonosi, Simon C Steely Jr Joel Emer. PACMan:
Prefetch-Aware Cache Management for High Performance Caching. MICRO. Porto Alegre, Brazil,
ACM, 2011; 442-453

[12] Carole-Jean Wu, Aamer Jaleel, Margaret Martonosi, Simon C Steely Jr Joel Emer. SHiP: Signature-
based Hit Predictor for High Performance Caching, MICRO. Porto Alegre, Brazil, ACM. 2011;430-441

[13] M Chaudhuri. Pseudo-LIFO: The foundation of a new family of replacement policies for LLCs. In
Proceedings of the 42nd International Symposium on Microarchitecture. 2009; 401-412

[14] Mark McDermott. Queued-Stack Dataflow Processing Element for a Cognitive Sensor Platform.
International Journal of Reconfigurable and Embedded Systems (IJRES). 2012; (1) 3: 75-86.

[15] Yang W, Guofeng Q. A Multicore Load Balancing Model Based on Java NIO. TELKOMNIKA
Indonesian Journal of Electrical Engineering. 2012; (10) 6: 1490-1495.

[16] Intel Core i7 Processors.http://www.intel.com/products/processor/corei7/.
[17] Norman P Jouppi. Improving direct-mapped cache performance by the addition of a small fully-

associative cache and prefetch buffers. In Proceedings of the 17th Annual International Symposium
on Computer Architecture, IEEE. 1990; 364-373.

[18] Alan Jay Smith. Sequential program prefetching in memory hierarchies. Computer. 1978; 11(12): 7-
21.

[19] I-Cheng K Chen, Chih-Chieh Lee, Trevor N Mudg. Instruction prefetching using branch prediction
information. In Proceedings of the International Conference on Computer Design. 1997; 593-601.

[20] Glenn Reinman, Brad Calder, Todd Austin. Fetch directed instruction prefetching. In Proceedings of
the 32nd Annual International Symposium on Microarchitecture. IEEE. 1999; 16-27.

[21] Stavros Harizopoulos, Anastassia Ailamaki. STEPS towards cache-resident transaction processing. In
Proceedings of the 30th International Conference on Very Large Databases. 2004; (30): 660-671.

[22] Lawrence Spracklen, Yuan Chou, Santosh G. Abraham.Effective instruction prefetching in chip
multiprocessors for modern commercial applications. In Proceedings of the 11th International
Symposium on High-Performance Computer Architecture, IEEE. 2005; 225-236.

[23] Eric Sprangle, Doug Carmean. Increasing Processor Performance by Implementing Deeper
Pipelines.Proceedings of the 29th Annual International Symposium on Computer Architecture
(ISCA.02), IEEE. 2002; 25-34.

[24] Rami Sheikh, James Tuck, Eric Rotenberg. Control-Flow Decoupling. IEEE/ACM 45th Annual
International Symposium on Microarchitecture, IEEE. 2012; 329-340.

[25] Michael Ferdman, CansuKaynak, BabakFalsafi. Proactive Instruction Fetch. MICRO’11, Porto Alegre,
Brazil, ACM. 2011; 152-162

[26] Veynu Narasiman, Michael Shebanow, Chang Joo Lee. Improving GPU Performance via Large Warps
and Two-Level Warp Scheduling. MICRO ’11, Porto Alegre, Brazil, ACM 978-1-4503-1053-6/11/12.
2011; 308-317.

[27] Juan L Aragón, José González, Antonio González James E Smith. Dual Path Instruction ProcessingIn
Proceedings of the 16th international conference on Supercomputing. ACM 1-58113-483-5/02/0006.
2002; 220-229.

