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 Named entity recognition is an essential task for various applications related 

to natural language processing (NLP). It aims to retrieve a variety of named 

entities (NEs) from text and categorize them according to predetermined 

target categories. In many cases, using the entire feature set can be time-

consuming and negatively impact the performance. Moreover, it is 

challenging to find the relevant subsets of features for a particular task due 

to the high number. The feature selection technique is an unsupervised 

process for selecting informative features by creating a new subset of 

informative features. This technique is used to enhance the underlying 

algorithm's performance. This article implements an effective feature 

selection algorithm using particle swarm optimization (PSO) to identify and 

classify the Arabic NEs in the text from social media. PSO is a search 

algorithm that utilizes a population of particles in a multidimensional space. 

The proposed method is evaluated using two publicly available Arabic 

Dialect social media datasets. It is demonstrated through comparisons with 

both baselines and previous models that the new approach achieves 

significant accuracy with considerably reduced feature sets in all parameters. 
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1. INTRODUCTION 

Named entity recognition (NER) identifies and classifies names in a text into predetermined 

categories like people, places, and organizations [1]. It is an essential task in various natural language 

processing (NLP) applications like question answering [2], machine translation [3] and information retrieval 

[4]. Its significance has recently emerged in opinion mining, which uses it as a preprocessing stage to obtain 

increased performance. However, a NER system's efficiency through machine learning depends on the 

features used in the training and testing phases. 

Nowadays, researchers in machine learning and similar fields recognize the importance of reducing 

the dimensionality of analyzed data. Such high-dimensional data affects learning models, increasing both 

search space and computational time, and may also be considered information-poor [5], [6]. Moreover, due to 

the high-dimensional data and many features, constructing an appropriate machine learning model may be 

challenging and even unsuccessful in many cases. We are confronted with the "curse of dimensionality" 

related to a well-known phenomenon when analyzing data in high-dimensional spaces. It states that data in 

high-dimensional spaces eventually become sparse [7]. 

Researchers mainly use two approaches to address the problems that arise from the data's high 

dimensionality. The first is feature extraction, which involves the creation of a new feature space with low 

https://creativecommons.org/licenses/by-sa/4.0/
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dimensionality. The second is feature selection, which focuses primarily on removing irrelevant and 

redundant features from the original feature set and selecting a small subset of relevant features. Selecting a 

set of features out of 𝑁 features can be solved with 2N possible solutions (or subsets of features). The 

complexity is doubled with each additional element. For example, a data set with 1,000 characteristics per 

instance has 21000 possible characteristic subsets. We apply the feature selection technique to decrease 

dimensionality and enhance system performance. Our feature selection algorithm relies on a wrapper 

approach formulated as an optimization problem. 

Particle swarm optimization (PSO) represents an evolutionary technique inspired by the social 

behavior of birds. Some of PSO's inherent features, including avoidance of becoming locked into local 

optima, parallel selection capability, and the ability to handle noisy environments, have led us to adopt PSO 

as our method of selection. In addition, compared to other evolutionary algorithms, PSO can be easily 

implemented and requires few parameters to be adjusted. Motivated by the strength of the evolutionary 

algorithm, in this paper, we apply PSO [8] as an underlying optimization strategy. Several recent studies 

demonstrate that PSO converges more rapidly than other widely used optimization techniques [9]. Most of 

the original benefits of meta-heuristic algorithms, such as the capability to deal with complex non-linearities, 

discontinuities in the objective function, discrete variable treatment, multi-objective optimization, etc., are 

still available in the proposed efficient approaches. Motivated by this finding, a PSO is applied in this study. 

The main contributions of this paper are as: i) proposal of a feature selection technique using PSO in the 

extraction of named entities, ii) analysis of feature selection on word representation features, and iii) impact 

of feature selection on our system.  

In order to evaluate the impact of the feature selection techniques, we experimented using all feature 

sets and features minimized by PSO. In addition, we perform experiments on two different data sets, as 

follows the tweets dataset and the news dataset. The evaluation results demonstrate that we obtain 

meaningful performance improvements using feature selection. Furthermore, the highest efficiency of the 

system was achieved when we applied the feature selection technique based on PSO. 

The remainder of this paper is organized as follows: section 2 provides an overview of the Arabic 

language and the challenges related to recognizing Arabic-named entities. Section 3 presents an overview of 

the PSO algorithm, followed by a description of the proposed approach in section 4. Section 5 presents a 

dataset to be used and features for entity extraction. Section 6 presents the experimental results. Finally, a 

conclusion and future direction are provided in section 7. 

 

 

2. BACKGROUND 

2.1.  Evolution of NER 

During the sixth message understanding conference (MUC-6) [10], the terminology "named entity" 

(NE) was first used to recognize the names of organizations, persons, and locations in the text, as well as 

expressions of currency, time, and percentage. The interest in NERs has increased since MUC-6, and 

numerous scientific events. For example: CoNLL03 [11], ACE [12], IREX [13], and TREC entity track [14]) 

are making a great deal of effort on this issue. 

 

2.2.  Language aspects and challenges 

Arabic has a rich morphology and difficult syntax [15]. There are three significant kinds of Arabic: 

Classical Arabic, the Holy Koran language, used for over 1,500 years. Modern standard Arabic is one of the 

six official languages of the United Nations, while most research on NLP Arabic focuses on informal Arabic 

as a colloquial Arabic language. This language is irregular and differs from country to country and region to 

region. By comparison with English NER, here are some examples of challenges for Arab NER [16]. 

− Lack of capitalization: the capitalization in foreign languages is a powerful indicator of the named 

entity. However, Arabic does not capitalize letters, making identifying NEs more difficult. 

− Noun confusion: certain words may be proper nouns, nouns, or adjectives. For example, jamiyolap = 

 which signifies "beautiful" can be either a proper noun or an adjective. Another example, jamAl ",جميلة "

 .which means "beauty," would be a noun but can be a common noun or proper noun ",جمال" =

− Agglutination: named entity (NE) can be attached to different clitics due to Arabic's agglutinating 

nature. A morphological analysis pre-processing step must be carried out to identify and categorize 

these entities. This feature makes the task of the Arabic NER more difficult. Examples include 

conjunctions such as  و (wāw, and) and  ف (fāʾ, if), prepositions such as ل (lām, for),  ك (kāf, as), and  ب 

(bāʾ, by), or a combination of both such as ول (wāw-lām, and-for). 

− Optional short vowels: short (diacritical) vowels are facultative in Arabic. Most written modern standard 

Arabic (MSA) texts do not contain diacritics, leading to considerable ambiguity since a single 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Towards an approach based on particle swarm optimization for Arabic named entity … (Brahim Ait Ben Ali) 

1591 

undiacritized word refers to different terms or meanings. Such ambiguity can often be resolved through 

contextual information [4]. 

In addition to the challenges previously mentioned, Arabic NER faces other challenges for dialectal 

Arabic:  

− Insufficient labeled data: for the supervised Dialect Arabic NER. 

− Absence of standard spelling or language academics [17]: In contrast to the MSA, many forms of the 

same word in DA can be rewritten, e.g., mAtEyT$ =" تعيطش "= $mtEyt ",ما  متعيتش   ," which means "do 

not cry," are all acceptable forms since there is no single standard. 

− Absence of comprehensive gazetteers: an issue confronting any NER system for any language that deals 

with NERs in the texts of social media, as those media, by definition, have a ubiquitous occurrence of 

very public nouns exemplified by the use of pseudonyms; thus, the class PERSON in NERs in social 

media will always face a coverage issue. 

The application of NLP tools developed for MSA to DA yields significantly lower performance, requiring 

resources and tools specifically addressing DA [18]. 

 

2.3.  Feature selection 

Feature selection is a process that selects a subset of original features based on some criteria. It is 

essential and commonly utilized as a reduction technique for data mining. Feature selection is an area of 

research that has been actively pursued for decades in machine learning and data mining. 

Typically, a feature selection process has four fundamental steps (shown in Figure 1), including the 

generation of subsets, the evaluation of subsets, the stopping criterion, and the validation of results. Subset 

generation is a search process that generates subsets of characteristics that are candidates for evaluation on 

the basis of a specific search strategy. A candidate subset is evaluated by comparing each candidate subset 

with the best previous one on the basis of a particular evaluation criterion. If the new subset is found to be 

better, it replaces the previous one. The process of generating and evaluating the assemblies is repeated until 

a certain stopping criterion is reached. Then the chosen best subset usually has to be validated by prior 

knowledge or different tests using synthetic and/or real-world datasets. 

 

 

 
 

Figure 1. The iterative process of feature selection 

 

 

3. PARTICLE SWARM OPTIMIZATION 

PSO is a smart metaheuristic strategy derived from the social behavior of the swarm for its survival 

[19]. It is a population-based technique that birds and fish perceive to determine the optimal path. Generally, 

the PSO comprises a swarm of particles, with each particle having its particular position in the search space 

and moving at a specific velocity in the search space. The particle chooses the best path in each iteration 

based on its memory and learning which path the swarm has previously followed. 

The new position is selected based on the previous knowledge acquired through its self-control 

position and the swarm's better position. As a meta-heuristic model, PSO produces limited or no assumptions 

regarding the problem to be optimized and can generate large areas of candidate solutions. This makes PSO 

very effective for optimization [20]. Two variables are iterated in the algorithm: the best global position 
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indicates the highest promising vector identified so far. The best personal position denotes the best particular 

solution for the particle. 

 

3.1.  Algorithm: PSO based feature selection 

- At first, we randomly determine the population of swarms. Each swarm particle consists of binary-

valued elements of length n (total number of features) with its position and the velocity of its movement 

in the search space. In math, the position and velocity of a particle are expressed as �⃗� (𝒊) and �⃗� (𝒊) 

respectively: 

 

�⃗� (𝑖)  =  (𝑝(𝑖, 1), 𝑝(𝑖, 2), . . . . . , 𝑝(𝑖, 𝑛)) 

 

�⃗� (𝑖)  =  (𝑣(𝑖, 1), 𝑣(𝑖, 2), . . . . . , 𝑣(𝑖, 𝑛)) 

 

 
where P(i, j) ∈ {0, 1}, i = 1, 2, ...,N and j = 1, 2, ..., n where N is no. of particle. The particle retains the 

best position (�⃗� (𝑖)) it has obtained so far and the best overall position (𝐺 ) i.e., the best position of the 

particle with the best solution. 

− Position value �⃗� (𝑖) of the particle is taken to be {0, 1} based on the following expression: 

 

𝑃(𝑖, 𝑗) = {
1, 𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 ≥ 0.5
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

- The fitness function (value of the F-measure) for each particle 𝑓(�⃗� (𝑖)) is used to evaluate the particle. 

The memory is updated with the best position and the best overall position. 

- Initially, the best position value �⃗� (𝑖)) of each particle is taken as 0. In each iteration k, the value of the 

best position is set to the values: 

 

𝑓 (�⃗� (𝑖)) = 𝑚𝑎𝑥 (𝑓 (�⃗� (𝑖))
𝑘
, 𝑓 (�⃗� (𝑖))

𝑘−1
) 

 

- Updating the value of the best overall position is performed when the fitness function 𝑓 (�⃗� (ⅈ)) in the 

swarm is higher than the current 𝑓(𝐺 ). 

- Initially, the velocity vector is randomly generated. Then, at each iteration, the velocity of the particle is 

then calculated using the formula: 
 

 𝑣(𝑖, 𝑗)  =  𝜔 ∗  𝑣(𝑖, 𝑗) +  𝜑1 (𝑏(𝑖, 𝑗) − 𝑝(𝑖, 𝑗)) + 𝜑2 (𝑔(𝑗) − 𝑝(𝑖, 𝑗)) 

 

where 𝜔 (0<𝜔<1), 𝜑1, and 𝜑2 are also known as inertia weights. These parameters are initialized using 

a uniformly generated random number across the range (0,1). The b(i,j), p(i,j) and g(j) denote the j-th 

components of �⃗� (i), P(i), and G, respectively. 

- The particle position is updated using the following mathematical formula: 

 

𝑃(𝑖, 𝑗) = {
1, 𝑖𝑓 (𝑟𝑎𝑛𝑑𝑜𝑚 < 𝑆(𝑣(𝑖, 𝑗))
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

where 0<random<1 is a random uniform number, 

 

𝑆(𝑣(𝑖, 𝑗)) =
1

1 + exp (−𝑣(⃗⃗⃗⃗ 𝑖, 𝑗))
 

 

in other words, a sigmoid function. Then the value of the position of the particle changes from 0 or 1 

according to the value of the velocity. 

- Repeat steps (d) to (g) until convergence. 
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4. PROPOSED FEATURE SELECTION TECHNIQUE 

4.1.  Proposed approach 

The proposed approach consists of five major steps, as shown in Figure 2. The first step concerns 

the data to be utilized in the experiments. The tweet and news datasets [21] are employed for this purpose. 

The second step is to normalize and segment the data into an appropriate processing format. The third step is 

to extract features from the transformed form of the data. As a contribution to this study, the fourth step is 

where feature selection is carried out on the retrieved features to choose the optimized ones. Lastly, an SVM 

classifier is employed for classifying the named entities. 

 

4.2.  PSO based feature technique 

This section proposes our technique for the selection of features. All features are coded within a 

vector. At first, the value of the vector is randomly initialized, using values to determine if feature is present 

or not. Then, using a classifier, SVM, the combination of features that are represented as a vector is coached 

and tested using the validation set. Next, we calculate the value of the F-score, applied for each vector as a 

fitness function. The F-score value is computed to update the features in the following iterations. Finally, the 

optimized feature set is obtained. This set of characteristics serves as a final assessment of the test set. Tables 

1-4 overview of the proposed feature selection for one iteration. A flowchart of the methodology employed in 

this work is shown in Figure 2. 

 

 

 
 

Figure 2. The architecture of the proposed system: PSO-based selection of features 

 

 

Table 1. Sample tokens with their features 
Token Feature1 Feature2 Feature3 Feature4 Feature5 

 morning” 0 1 0 1 0“ صباح

 Good” 1 0 1 0 1“ الخير

 and” 0 0 0 0 1“ و 

 happiness” 0 1 1 1 0“ السعادة

 to” 1 0 0 0 1“ على

 everyone” 1 1 0 0 1“ الجميع

 

 

Table 2. Particles position initializations 
Particles Feature1 Feature2 Feature3 Feature4 Feature5 

P1 0 1 0 1 0 

P2 1 0 1 0 1 

P3 0 0 0 0 1 

P4 0 1 1 1 0 

P5 1 0 0 0 1 

P6 1 1 0 0 1 
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Table 3. Optimization process after iteration-(i) global best position value=62.79 
Particles Feature1 Feature2 Feature3 Feature4 Feature5 Fitness value Best position 

P1 0 1 0 1 0 42.05 42.05 

P2 1 0 1 0 1 41.54 41.54 

P3 0 0 0 0 1 35.80 35.80 

P4 0 1 1 1 0 59.45 59.45 

P5 1 0 0 0 1 60.48 60.48 

P6 1 1 0 0 1 62.59 62.59 

 

 

Table 4. Optimization process after iteration-(i+1) global best position value=65.74 
Particles Feature1 Feature2 Feature3 Feature4 Feature5 Fitness value Best position 

P1 1 1 1 0 1 45.63 46.20 

P2 1 0 0 0 0 47.91 47.91 

P3 1 0 1 0 1 65.74 65.74 

P4 1 0 0 1 1 62.72 62.72 

P5 1 0 0 1 1 59.37 60.14 

P6 1 1 0 1 1 61.81 62.61 

 

 

The PSO optimization process: (Tables 1 and 2) A sample token has specific features to illustrate 

the feature selection process during each iteration by the PSO algorithm. The value 1 indicates the selection 

of the feature, and the value 0 indicates the pruning of the feature. (Tables 3 and 4) Random initialization of 

the position of the particles after iteration i and the following iteration (i+1), the shaded line indicates the 

most suitable particles in this iteration. After each iteration, the value of the best overall position indicates the 

best overall solution obtained. All fitness values are hypothetical. 

 

 

5. DATASETS AND FEATURES 

5.1.  Evaluation scheme 

The standard CoNLL NER evaluation script was used to evaluate the proposed approach. As 

detailed in [22], The CoNLL evaluation methods are the strongest because they give no sub-credit to a sub-

extracted named entity. After running the CoNLL evaluation script, the results are presented in terms of 

precision, recall, and f-score for each class of NE [23]. 

− True positive (TP): entities recognized by NER and corresponding to the ground truth. 

− False positive (FP): entities recognized by NER do not correspond to ground truth. 

− False negative (FN): entities annotated in the ground truth that NER does not recognize. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

 

F1 is the harmonic mean of precision and recall, and the balanced F-score is the most used: 

 

𝐹 − 1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
 (10) 

 

5.2.  Datasets 

The primary dataset evaluated within this model consists of the news dataset, a corpus annotated for 

the Arabic NER process, developed by [21]. The news dataset contains 292 sentences extracted in the RSS 

feed for the Arabic (Egypt) language site news.google.com as of October 6, 2012. It includes news from 

various sources and covers local and international information related to finance, politics, sports, health, 

technology, and entertainment. The data set has been split into training, testing, and validation datasets of 

70%, 20%, and 10%, respectively. 

The second dataset we used for evaluation is the tweet dataset. We use the split of the training and 

test data provided in [21], where the training dataset comprises 3,646 tweets randomly selected and extracted 

from tweets written between May 3 and May 7, 2012. The tweets were retrieved from Twitter using the 

lang:ar request. The test data consists of 1,423 tweets randomly extracted from tweets written between 

November 23, and November 27, 2011. This dataset was similarly tested by [24]. The two datasets follow the 

ACE tagging guidelines of the linguistics data consortium [25]. Table 5 shows data statistics. 
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Table 5. Twitter evaluation of data statistics 
  Tokens PER LOC ORG 

Twitter Train 55k 788 713 449 

Twitter Test 26k 464 587 316 

 

 

5.3.  Entities extraction features 

The feature extraction of the entities is very important in the NER task. On the basis of the different 

possible combinations of word and label contexts available, the key features task are determined. To build a 

PSO-based NER system, we use the following features: 

a. Contextual feature: It consists of the local contextual characteristic related with tokens appearing in the 

5-word window, meaning 2 to the left and 2 to the right of the current token. 

b. Word prefixes and suffixes: these features refer to fixed-length character sequences stripped from either 

the leftmost or rightmost positions of words. 

c. Gazetteer (GAS): A binary characteristic that indicates the word's occurrence in an Individual gazetteer. 

According to this method, the gazetteer consists of a union of the following elements: i) ANERGaz 

(http://users.dsic.upv.es/~ybenajiba/resources/, s.d.): as provided by Benajiba and Rosso [26], which 

comprises 2183 LOC, 402 ORG, and 2308 PER; and ii) WikiGaz: Wikipedia: extensive Wikipedia 

gazetteer [24], which comprises 50141 LOC, 17092 ORG, and 65557 PER. 

d. Affix stemmer: The term "affix" is defined as either a prefix or a suffix. This approach enables 

removing prefixes and suffixes from words. It removes the longest possible string of characters from a 

word based on a set of rules. 

e. Morphological characteristics (MORPH): These characteristics are generated by the MADAMIRA tool. 

Five morphological characteristics have been selected to be used in this work: 

− Aspect: refers to the aspect of an Arabic verb. There are four possible values: command, 

imperfect, perfective, not applicable. However, since none of the NEs can be verbal, we apply this 

characteristic as a binary characteristic specifying whether a word is marked for Aspect or not; 

− Gender: the nominal gender. It has three values: female, male, not applicable; 

− Person: it indicates information about the person. Possible values are 1, 2, 3, not applicable. As for 

the aspect, we use it as a binary feature which indicates if a word is tagged for the person or not; 

− Proclitic2: conjunction proclitic. The Madamira tool creates a total of nine different values related 

to this characteristic: non-proclitic, not applicable, Conjunction ( ف) fa, related particle fa, 

conditional response fa, Subordinate conjunction fa, Particle (و) wa, Subordinate conjunction wa; 

− Voice: the voice of the verb. Values for this feature are as follows: active, passive, not applicable, 

undefined. 

f. Part of speech (PoS) information: PoS gives meaningful syntactic evidence to detect named entities 

(NEs). We utilize the part of speech information of the current token and/or the surrounding token(s) as 

a feature. The PoS information was retrieved from Madamira tools. 

g. Brown clustering IDs (BC IDs): provided by Brown et al. [27], is an approach to hierarchical clustering 

providing maximum information about each other's bigram words. Word representations, particularly 

brown clustering, have enhanced the NER system's performance when added as a feature [28]. 

h. Word2vec cluster IDs (W2V Cluster ID): is an embedding learning algorithm that uses a model of 

neural network provided by [29]. The embeddings get mapped onto a set of latent variables, wherein a 

particular instance of these variables is representing the individual words. The system applies K-means 

clustering over word vectors and uses the cluster IDs as features. 

i. Word embedding (W2V) (also called "distributed word representations") convinces a latent real-valued 

semantics or vector syntax of individual words in a large untagged corpus through the use of space-

continuous model languages [30]. An improved word can be gained if we have a considerable amount 

of training data, as the real value obtained from Speech vectors become more representative. We 

employ the well-known word2vec1 tool provided by [31] to retrieve vector representations of words. 

 

5.4.  Pre-processing 

Standardization is the process of producing the canonical form of a token and/or a word to maximize 

the matching between a query token and document collection tokens. In its basic form, normalization 

pretreats the tokens into a unique form, but in a lightweight way. This is frequently performed in various pre-

processing steps in order to make the multiple forms of a specific letter into a single unicode representation, 

for example, substituting the undotted Arabic letter "ى" with a final dotted letter ي"  " , when that letter occurs 

at the ending of an Arabic word. 

In its complicated shapes, normalization is employed for dealing with morphological variation and 

word inflation [32]. This is known as stemming. Stemming is the process of making the various inflected 
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forms and variants of a given word into a single term, called "stem.". Whereas a root is derived as well from 

model words. Classifiers and index builders/searchers need to have this derivation process as it reduces the 

dependence on particular word forms making vocabularies smaller in size and otherwise having to include all 

available forms. In the present work, the MADAMIRA tool was used [33]. 

 

 

6. EXPERIMENT AND RESULTS 

6.1.  Parameter's settings 

As previously mentioned, particle swarm optimization offers a sensible medium-term between the 

complexity of the research and the quality of the solution. Therefore, it could be applied to selecting the static 

classifier [34]. However, several parameters require adjustment to obtain a better convergence by using PSO 

with constriction factors: population size, Vmax, ∅ and the number of iterations. In order to adjust the 

parameters mentioned, we exclusively applied SVMs that have been first learned on the training data of the 

tweet and news datasets and then tested on the corresponding validation data of the same corpus. 

Table 6 provides an overview of the parameter value ranges. For example, Vmax is supposed to be 

2*Xmax, wherein Xmax equals 1. The SVM was applied to calculate each candidate's performance in terms 

of the F-score as a fitness function. We considered the maximum F-score of the classifier as our decision 

metric. 

 

 

Table 6. PSO parameters 
Parameters Range Step size Selected value 

Φ [1.00,2.50] 0.02 1.49 

Iteration Size [50,100] 10 60 

Population Size [1-3] * particle size 1 2* particle size 

Vmax - - 2 

 

 

6.2.  Results and analysis 

Research on NER tasks has shown that the SVM-based NER task needed less time and performed 

better than the CRF-based NER task to recognize named entities when applying similar features [35]. For 

that perpose we create the baseline to evaluate our proposed approach for each dataset. The SVM was used as 

a base classifier for training the model. 

Baseline: the baseline is learned utilizing a full set of features detailed in subsection 5.3. Based on 

the two-stage SVM approach, the effect of feature selection using PSO was investigated. In the first stage, the 

optimal features were retrieved using PSO, and in the second stage, SVM was performed with all the 

features. A common information extraction metric was used for the evaluation: precision, recall, and F-

measure. We apply our PSO-based feature selection to the baseline models to identify the best feature set for 

each task. The findings are shown in Tables 7 and 8 for the tweets dataset and Tables 9 and 10 for the news 

dataset. The results indicate that only a smaller subset could reach higher performance for each dataset; this 

shows the effectiveness of our proposed approach. Interestingly, models developed utilizing the pruned 

feature sets reach a higher F1 across all datasets. The results from feature selection based on the PSO are also 

significantly better than the baseline. 

 

 

Table 7. SVM results using all features for the tweet 

dataset 
SVM Precision (%) Recall (%) F-Score 

LOC 87.92 63.84 73.97 

ORG 66.54 36.57 47.20 

PERS 82.17 65.92 73.15 

Overall 81.04 57.41 67.21 
 

Table 8. Results with SVM-PSO for tweets 

dataset 
PSO-SVM Precision (%) Recall (%) F-Score 

LOC 89.46 70.69 78.97 

ORG 79.17 43.93 56.50 

PERS 92.59 62.50 74.63 

Overall 88.28 55.82 68.40 
 

 

 

Table 9. SVM results using all features for the 

news dataset 
SVM Precision (%) Recall (%) F-Score 

LOC 91.08 74.13 81.74 

ORG 71.38 39.39 50.77 

PERS 90.76 71.79 80.17 

Overall 87.82 65.67 75.15 
 

 

Table 10. Results with SVM-PSO for news dataset 
PSO-SVM Precision (%) Recall (%) F-Score 

LOC 85.64 81.46 83.5 

ORG 88.28 55.84 68.6 

PERS 95.82 89.20 92.4 

Overall 91.67 75.12 82.57 

*Significant results are in bold. 
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6.3.  PSO parameters sensitivity analysis  

A number of different experiments are performed with various PSO parameters, and thus, sensitivity 

analysis is provided to determine the optimal PSO setting. Shi and Eberhart [36] defined the parameters ω as 

0.7298 and Φ1=Φ2 as 1.49618. M. Erik et al. [37] proposed a single method of obtaining the different 

parameter values based on scenarios of optimization. On the basis of the detailed studies of previous work 

[38], [39], and after having carried out various experiments with a different parameterization of the validation 

set, the various PSO parameter values were finally determined. 

The outcomes utilizing the five optimal combinations of parameters from the training dataset are 

presented in Table 11. Such combinations are referred to as PSO-1 and PSO-2. The swarm size (population) 

was set to 20 particles with a number of iterations of 60 for all our experiments. 

 

 

Table 11. PSO-based feature selection results with different parameter settings 

PSO-RUN 
Parameter settings 

Tweet's dataset 
News 

dataset Inertia weight Φ1 Φ2 

PSO-1 0.7298 1.49618 1.49618 68.40 80.15 

PSO-2 0.3925 1.5586 1.3358 65.48 82.50 

PSO-3 −0.4349 −0.6504 2.2073 63.79 79.58 

PSO-4 0.4091 2.1304 1.0575 68.12 81.78 

PSO-5 −0.3593 −0.7238 2.0289 67.41 80.16 

*Significant results are in bold. 

 

 

For the tweet dataset, the optimal outcome is achieved using the combination of inertia weight, 

learning parameter I, and learning parameter II at "0.7298", "1.49618", and "1.49618", respectively. For the 

news dataset, the best accuracy was obtained by setting the inertia weight to "0.3925", training parameter I to 

"2.5586," and training parameter II to "1.3358". 

 

6.4.  Comparisons with the existing systems 

6.4.1.  News dataset 

This section compares our system to other state-of-the-art approaches that utilize similar datasets to 

conduct the experiments. The findings results demonstrate that the use of PSO on the basis of feature 

selection has considerably improved the system's overall performance, yielding an enhancement of 7.42 

points in the F1 score. This approach was compared with three other models. The highest scoring model for 

this task is [40]. Their system employs a feature selection technique based on a genetic algorithm. They 

achieved 81.5 points in the F1 score. The second system is provided by [41]. They use a deep co-learning 

approach using semi-labels and BI-LSTM-CRF on top of the system. They achieved 74.1 points in the F1 

score. Finally, the same news dataset was utilized by [21] to test their model, which provides multilingual 

features and knowledge bases in English via multilingual links. They achieved 63.9 points in the F1 score. 

Table 12 shows an overview. 

 

 

Table 12. Comparison of our system with three other models on news dataset 

Systems 
Loc Org Pers Overall 

F1 F1 F1 Avg. F1 

K. Darwish 2013 [21] 73.1 42.1 69.5 63.9 

C. Helwe 2019 [41] 81.6 52.7 82.4 74.1 

B. Ait benali 2020 [40]  82.7 66.7 90.9 81.5 

Our system 83.5 68.6 92.4 82.5 

*Significant results are in bold. 

 

 

6.4.2.  Tweets dataset 

Several different experiments representing the combination of multiple features have been 

performed on our model to determine their impact on the Arabic NER system on the tweet dataset. The 

results of these experiments are presented. Compared with the literature results, the system outperforms the 

state-of-the-art Arab NER systems applied to the tweet dataset, illustrated in Table 13. As a result, the 

approach outperforms previous approaches in terms of F1 for NE retrieval between locations, organizations, 

and persons in tweet, with an overall F1 of 68.4%. 

We conclude that our approach using PSO based on feature selection significantly improves the 

Arabic NER task's performance. The Arabic NER systems in Table 13 employ similar corpora and 

assessment settings to those previously reported for this work, i.e., a Darwish dataset and assessment settings. 
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This study demonstrates that our new system outperforms the current system by 0.70%. The performance of 

the proposed method is improved due to the better SVM-based particle swarm optimization technique and its 

ability to efficiently handle overlapping features for existing systems. 

 

 

Table 13. Comparison of our system with other models on tweets dataset 

Systems 
Loc Org Pers Overall 

F1 F1 F1 Avg. F1 

K. Darwish 2014 [24] 76.7 55.6 55.8 65.2 

A. Zirikly 2015 [42] 61.0 41.8 68.9 59.5 

C. Helwe 2019 [41] 65.3 39.7 61.3 59.2 

B. Ait benali 2020 [40] 72.4 46.7 73.7 65.6 

B. Ait benali 2020 [43] 76.7 47.5 73.5 67.7 

Our system 78.9 56.5 74.6 68.4 

*Significant results are in bold. 

 

 

6.5.  Error analysis 

The results obtained for each data set are analyzed for potential biases. The errors are classified in 

three ways, as shown: 

− Boundary error: it is due to the incorrect recognition of the boundary of the entities; this type of case is 

mainly observed when entities take long and compound word forms. 

− Invalid type of entity: it is issued once the entity has been correctly recognized, but belongs to its wrong 

class. This error is more significant for the tweet dataset, and this could be explained by the fact that 

most of the tweets are in dialect Arabic. By applying the PSO, we can see that the classification errors 

are considerably decreased. For news, the system mostly classified the named entity due to the news 

dataset where the tweets are composed of 2 languages, Dialect and modern standard Arabic. 

− Missed entity: our system is missing a considerable amount of NE instances. We notice that false 

negatives are 983 and 287 for tweet and news, respectively. However, all these NEs are incorrectly 

categorized and classified as "other than NEs". 

 

 

7. CONCLUSION 

This paper presents a PSO-based feature selection technique for Arabic named entity recognition on 

social media. We evaluated our approach on publicly available social media datasets for Arabic NER 

systems, such as tweets and news datasets. It is concluded that a model with SVM as a classifier outperforms 

a restricted set of features compared to the model developed using a full set of features. The evaluation 

results show that using binary PSO to select features improves a classification model's accuracy and 

reliability on datasets. Furthermore, a thorough sensitivity analysis of the PSO parameters is performed, and 

their effects on the overall system performance are demonstrated. The effectiveness of our proposed 

technique is also proven by detailed comparative studies with other existing methods. However, our system 

suffers from a set of limitations. It can be challenging to specify the initial set of design parameters in certain 

cases, and it is challenging to address scattering issues. For future work, an optimization multi-objective 

(MOO) based feature selection technique could be developed to maximize more than a single measure of 

classification quality simultaneously. Besides, the effectiveness of the MOO for other types of datasets would 

also be measured. 
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