
TELKOMNIKA, Vol.11, No.11, November 2013, pp. 6447~6453
e-ISSN: 2087-278X
  6447

Received April 11, 2013; Revised June 28, 2013; Accepted July 13, 2013

An Efficient Algorithm for Optimal Addition Chains

Daxin Zhu1, Xiaodong Wang*1,2
1Quanzhou Normal University, Quanzhou, China

2Fuzhou University, Fuzhou, China
*Corresponding author, e-mail: wangxiaodong@qztc.edu.cn

Abstract
The computational aspects of finding the shortest addition chains for an integer are investigated

in this work. Theoretically developed lower and upper bounds for the minimal length of the addition chains
for an integer are exploited to construct a subtle pruning function for backtracking algorithm. These
techniques are finally combined to build an efficient algorithm for finding the optimal addition chains.

Keywords: addition chains, lower bounds, upper bounds

Copyright © 2013 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

The encryption and decryption in the RSA scheme consist of the power exponentiation
nx [6]. This operation is very important for prime testing and integer factoring algorithms.

Exponentiation has become important as many cryptographic algorithms have this operation at
their core. Optimizing exponentiation can have significant impact on the running time of
cryptographic algorithms. Let us have a look at the operation. For example, we can use 6

multiplications to calculate 23x as follows:

232010532 ,,,,,, xxxxxxx

It is not difficult to prove that the calculation of 23x for given x needs at least 6
multiplications. Therefore the above calculation sequence is optimal. In this sequence, the
power chain ,20,231,2,3,5,10 forms an addition chain of the integer 23 .

In general, an addition chain for an integer n is defined as the sequence

naaa r =<<<=1 10 

riijkaaa kji ,1,2,=,<,0= 

The number of calculation steps r is called the length of the addition chain for n . The

minimal length for which there exists an addition chain for n is denoted by)(nl . An optimal

addition chain is one of the addition chain with a shortest length)(nl . The optimal addition

chains are not necessarily unique and the elements of an addition chain may be formed in more
than one way.

Addition chains give a very easy way of computing nx for given x and n . The optimal

addition chain for an integer n gives the least number of multiplications needed to compute nx .
The length of an optimal addition chain for an integer n is usually denoted by)(nl . Tables of

optimal addition chain lengths have been used to benchmark new algorithms. Many
counterintuitive properties of)(nl are known and this makes the subject interesting to study.

Positive integer addition on the shortest chain issues, has made , has been a lot of meaningful
results [2, 3, 5, 7]. However, most of these studies the theoretical study of mathematics.

Many researches and explorations concentrate on finding a short, not necessary
minimal addition chain, while few papers study generating all optimal addition chains [1, 4, 8,
10]. The depth first search algorithms to find optimal addition chains has been improved by

  e-ISSN: 2087-278X

TELKOMNIKA Vol. 11, No. 11, November 2013: 6447 – 6453

6448

proposing various pruning techniques that cut down the search time for generating optimal
chains. a new method based on a directed acyclic graph to find optimal addition chains was
proposed recently. We are interested in Thurber's algorithm to generate optimal addition chains.
We exploit the upper and lower bounds of the theoretical results to design an efficient algorithm
to generate optimal addition chains for given integers.

The organization of the paper is as follows.
In the following 4 sections we describe our presented algorithms and our computational

experience with these algorithms. In section 2 we describe the standard backtrack algorithm for
finding optimal addition chains and in section 3 an improved iterative deepening search
algorithm is presented. In section 4 the algorithm is improved further by a lower bound of the
problem and a pruning function is discussed. In section 4 the upper bound and lower bound are
combined to speed up the search engine. Some concluding remarks are in section 5.

2. Backtracking Algorithm

The most intuitive algorithm to generate optimal addition chains for a given integer is
backtracking algorithm. In the state space tree of the problem, the son node 1ia of the node ia

is composed by ijkaa kj  , .

The state space tree depth-first backtracking search algorithm for solving addition chain
problems can be described as follows.

Algorithm 1)(stepBacktrack
1: if nstepa =][then
2: if beststep < then
3: stepbest 

4: achain 
5: end if
6: return
7: else
8: for stepi  downto1 do
9: if][>][*2 stepaia then

10: for ij  downto1 do
11:][][jaiak 
12: kstepa 1][
13: if][> stepak and nk <= then
14: 1)(stepBacktrack
15: end if

16:end for
17:end if
18: end for
19: end if

TELKOMNIKA e-ISSN: 2087-278X 

An Efficient Algorithm for Optimal Addition Chains (Daxin Zhu)

6449

In the state space tree for addition chain problem, each node of level k has at least
1k son nodes, so the number of paths from the root to any node of level k is at least !k .

Therefore, the size of state space tree is growing exponentially. A standard backtracking
algorithm can only generate the optimal addition chains for small integer n .

3. Proposed Algorithm

In the standard backtracking algorithm for generating the optimal addition chains
described above, a depth-first search method is used to search the state space tree. It is natural
for this technique that the first addition chain found by the algorithm is not necessarily the
optimal addition chain.

If we use breadth-first search method to search state space tree, then the first addition
chain found by the algorithm must be the optimal addition chain. But the space overhead of this
approach too big. The iterative deepening search algorithm can guarantee the first addition
chain found by the algorithm is an optimal addition chain, and it does not need too much space
overhead. The basic idea of the iterative deepening search algorithm is to control the search
depth d in the backtracking algorithm. Beginning from 1=d , the search depth d is increased
by 1 after each backtrack search until an optimal addition chain is found.

The iterative deepening search algorithm for finding optimal addition chains can be
described as follows.

Algorithm 2 IterativeDeepening
1: 1 nbest
2: found false
3: 2d
4: while not found do
5: 1[1]a
6: (1)Backtrack
7: 1 dd
8: end while

In the algorithm, the search engine)(stepBacktrack is modified to control the search

depth up to d as follows.

Algorithm 3)(stepBacktrack

1: if not found then
2: if nstepa =][then
3: { an addition chain is found }
4: if beststep < then
5: stepbest 

6: achain 
7: found true
8: return
9: end if
10: else

  e-ISSN: 2087-278X

TELKOMNIKA Vol. 11, No. 11, November 2013: 6447 – 6453

6450

11: if dstep < then
12: { control the search depth }
13: for stepi  downto1 do
14: if][>][*2 stepaia then

15: for ij  downto1 do
16:][][jaiak 
17: kstepa 1][
18: if][> stepak and nk <= then
19: 1)(stepBacktrack
20: end if
21: end for
22: end if
23: end for
24: end if
25: end if
26: end if

4. Results and Discussion

Let  nn log=)(2 and)(n be the number of 1's in the binary representation of n .

Theoretically developed lower bounds for the length)(nl of an optimal addition chain for an

integer n provide better starting values from which to start the search. It is well known [9] that

)(log)(2 nn  is a lower bound of)(nl . We can use this fact to speed up the search in

iterative deepening search algorithm by setting the initial search depth d to )(log)(2 nn  .

On the other hand, pruning functions also help to speed up the algorithm by pruning the
search tree.

Let ia and ja be two elements of an addition chain, and j
m

i aa 2> . As the doubling

step is the fastest way to increase the value of an element of the addition chain, that is
riaa ii   ,12 1 , from ja to ia needs at least m steps.

If we expect to find an addition chain of n on the level d of the state space tree T ,
then in the subtree rooted at the node ia of level i , a necessary condition to find such a chain

at level d is nai
id 2 . It can therefore be seen that it is impossible to find an addition chain of

n in the level d of the subtree rooted at the node ia , if nai
id <2  . In this case, the subtree

rooted at ia can be pruned off.

When n is an odd number, this pruning condition can be strengthened further. In fact,
we can assert that the last element jkaaa kjr  ,= of the shortest addition chain must be an

odd number provided n is odd. It can thus be extrapolated that jk < , otherwise ra would be

even. It can be deduced from the minimality of r that 1= rj . Therefore, 1<,= 1  rkaaa krr

. If we can find an optimal addition chain at level d , that is dr = , then naa dd   21 . From

21 2   dd aa we know nad 23 . In this case nad 36 as 32 2   dd aa . In general, for

2,0,1,= di  we have nai
id   2)(23 . In other words, when nai

id <23 2)( , it is

TELKOMNIKA e-ISSN: 2087-278X 

An Efficient Algorithm for Optimal Addition Chains (Daxin Zhu)

6451

impossible to find an optimal addition chain before level d in the subtree rooted at node ia , and
thus the subtree rooted at the node ia can be pruned off.

This pruning condition can be concluded as follows.
Suppose in the iterative deepening search algorithm for optimal addition chains of the

integer n , the current search depth be d . A pruning condition for the subtree rooted at the node

ia of level i is:








diddian

didian

i

i

1>)/(log

20>2)/3(log

2

2

It is readily seen that the unique addition chain is m,21,2,4, for integer mn 2= . For the

case of n is not a power of 2, we can express the integer n as 0>1),(22= kkn t  . For this

more general case, we can generalize above pruning condition to a more general condition as
follows.

Theorem 1 Suppose in the iterative deepening search algorithm for optimal addition
chains of the integer n , the current search depth be d , and the integer n can be expressed as

0>1),(22= kkn t  . A pruning condition for the subtree rooted at the node ia of level i is:








ditddian

tdidian

i

i

1>)/(log

20>2)/3(log

2

2

Proof.

In the case of 20  tdi and dian i >2)/3(log2  , we have nai
id <23 2)( .

From 2 tdi and 1t we know 3 di . Therefore, at least 3 steps are left to find an
addition chain at the level d in the subtree rooted at the node ia . If mjsaaa sjm <,=  ,

1> im , and ma is not a doubling node, that is 12  mm aa , then jk < . It follows that

211,  mjsmj .

Therefore,

)(32=

)(22=

22

2)(

2)(

2)(1)(
21

i
im

ii
im

i
im

i
im

mmm

a

aa

aa

aaa













It follows from nam
md 2 , the necessary condition to find an addition chain at the level

d in the subtree rooted atthe node ma that

nn

aan
idid

i
immd

m
md

=))2/(3(3)(2<

)(3222
22

2








A contradiction.
In the case of ma being doubling nodes for all 1> im , if an addition chain is found at

the level d in the subtree rooted at node ia , then we have 1
1)(2== 


i
id

d aan . This means
1)(2  id is divisible by n . On the other hand, it follows from 2 tdi that 11  tid .

Therefore, 0=2mod1)(22 1 tt k . That is 12 k is divisible by 2. This is a contradiction.

Therefore, in the case of 20  tdi and dian i >2)/3(log2  , the subtree rooted at ia can

be pruned off.
The proof for the case of ditd  1 is similar.
The proof is complete.
We can further improve the standard backtracking algorithm for constructing the

shortest addition chain in several aspects as follows.

  e-ISSN: 2087-278X

TELKOMNIKA Vol. 11, No. 11, November 2013: 6447 – 6453

6452

(1) Using the iterative deepening search strategy.
(2) Getting an accurate estimation of search depth by the lower bound)(nlb on)(nl .

(3) Speeding up the search engine by appropriate pruning function.
(4) Constructing a more accurate upper bound)(nub on)(nl by the power tree.

When)(=)(nubnlb the addition chain given by power tree is exactly the optimal

addition chain.
When)(<)(nubnlb , the optimal addition chain can be found by following improved

iterative deepening search algorithm starting from depth)(= nlbd .

The improved iterative deepening search algorithm can be described as follows.

Algorithm 4 Search

1:)(nlowerlb  { )(log)(=)(2 nnnlower  }
2:)(npowerub  {)(npower constructed by power
tree}
3:)(ngettt  { 11),(22=  kkn t }
4: if ublb < then
5: found false
6: while not found do
7: 1[1]a
8: (1)Backtrack
9: 1 lblb
10: if ublb = then
11: found true
12: end if
13: end while
14: end if

Algorithm 5)(stepBacktrack

1: if not found then
2: if nstepa =][then
3: { an addition chain is found }
4: stepbest 

5: achain 
6: found true
7: return
8: else
9: if dstep < then
10: { control the search depth }
11: for stepi  downto1 do

TELKOMNIKA e-ISSN: 2087-278X 

An Efficient Algorithm for Optimal Addition Chains (Daxin Zhu)

6453

12: if][>][*2 stepaia then

13: for ij  downto1 do
14:][][jaiak 
15: kstepa 1][
16: if][> stepak and nk <= then
17:{a pruning function of Theorem 1}
18: if not 1)(stepprune then
19: 1)(stepBacktrack
20: end if
21: end if
22: end for
23: end if
24: end for
25: end if
26: end if
27: end if

5. Conclusion
In the previous sections, we present an efficient algorithm to solve the addition chain

problem. The improved algorithm speeds up the generation of optimal addition chains in three
aspects. An iterative deepening search algorithm is exploited to search the optimal addition
chains. The upper bound and lower bound of the addition chain problem are combined to speed
up the search engine.

The computational experiments demonstrate that the achieved results are not only of
theoretical interest, but also that the techniques developed may actually lead to considerably
faster algorithm.

Acknowledgements
The authors acknowledge the financial support of Natural Science Foundation of Fujian

under Grant No.2013J0101, Science and Technology Key Project of Fujian under Grant
No.2012Y0101 and the Haixi Project of Fujian under Grant No.A099.

The authors are grateful to the anonymous referee for a careful checking of the details
and for helpful comments that improved this paper.

References
[1] DM Gordon. A survey of fast exponentiation methods. Journal Algorithms. 1998; 122: 129-146.
[2] H Bahig. A new strategy for generating shortest addition. Computing. 2011; 91: 285-306.
[3] F Bergeron, J Berstel, S Brlek, CDuboc. Addition chains using continued fractions. Journal Algorithms.

1989; 10: 403-412.
[4] P Downey, B Leong, R Sethi. Computing sequences with addition chains, SIAM Journal Comput.

1981; 10: 638-646.
[5] W Jiang, J Zhang, J Li. A Multiagent Supply Chain Information Coordination Mode Based on Cloud

Computing. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2013; 11(11): 61-85.
[6] H Bahig. Improved generation of minimal addition chains. Computing. 2006; 78: 161-172.
[7] D Dobkin, RJ Lipton. Addition chain methods for the evaluation of specific polynomials, SIAM J.

Comput. 1980; 9: 121-125.
[8] MC Neill. Calculating optimal addition chains. Computing. 2011; 91: 265-284.
[9] R Monteiro, L Reis, AC Pereira. Humanoid Dynamic Controller. TELKOMNIKA Indonesian Journal of

Electrical Engineering. 2012; 10(8).
[10] EG Thurber. Addition chains - an erratic sequence. Discrete Math. 1993; 122; 287-305.

