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Abstract 
The computational aspects of finding the shortest addition chains for an integer are investigated 

in this work. Theoretically developed lower and upper bounds for the minimal length of the addition chains 
for an integer are exploited to construct a subtle pruning function for backtracking algorithm. These 
techniques are finally combined to build an efficient algorithm for finding the optimal addition chains. 
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1. Introduction 

The encryption and decryption in the RSA scheme consist of the power exponentiation 
nx [6]. This operation is very important for prime testing and integer factoring algorithms. 

Exponentiation has become important as many cryptographic algorithms have this operation at 
their core. Optimizing exponentiation can have significant impact on the running time of 
cryptographic algorithms. Let us have a look at the operation. For example, we can use 6 

multiplications to calculate 23x  as follows:  
 

232010532 ,,,,,, xxxxxxx  
 

It is not difficult to prove that the calculation of 23x  for given x  needs at least 6 
multiplications. Therefore the above calculation sequence is optimal. In this sequence, the 
power chain ,20,231,2,3,5,10  forms an addition chain of the integer 23 . 

In general, an addition chain for an integer n  is defined as the sequence 
 

naaa r =<<<=1 10   

riijkaaa kji ,1,2,=,<,0=   

 
The number of calculation steps r  is called the length of the addition chain for n . The 

minimal length for which there exists an addition chain for n  is denoted by )(nl . An optimal 

addition chain is one of the addition chain with a shortest length )(nl . The optimal addition 

chains are not necessarily unique and the elements of an addition chain may be formed in more 
than one way. 

Addition chains give a very easy way of computing nx  for given x  and n . The optimal 

addition chain for an integer n  gives the least number of multiplications needed to compute nx . 
The length of an optimal addition chain for an integer n  is usually denoted by )(nl . Tables of 

optimal addition chain lengths have been used to benchmark new algorithms. Many 
counterintuitive properties of )(nl  are known and this makes the subject interesting to study. 

Positive integer addition on the shortest chain issues, has made , has been a lot of meaningful 
results [2, 3, 5, 7]. However, most of these studies the theoretical study of mathematics. 

Many researches and explorations concentrate on finding a short, not necessary 
minimal addition chain, while few papers study generating all optimal addition chains [1, 4, 8, 
10]. The depth first search algorithms to find optimal addition chains has been improved by 
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proposing various pruning techniques that cut down the search time for generating optimal 
chains. a new method based on a directed acyclic graph to find optimal addition chains was 
proposed recently. We are interested in Thurber's algorithm to generate optimal addition chains. 
We exploit the upper and lower bounds of the theoretical results to design an efficient algorithm 
to generate optimal addition chains for given integers. 

The organization of the paper is as follows. 
In the following 4 sections we describe our presented algorithms and our computational 

experience with these algorithms. In section 2 we describe the standard backtrack algorithm for 
finding optimal addition chains and in section 3 an improved iterative deepening search 
algorithm is presented. In section 4 the algorithm is improved further by a lower bound of the 
problem and a pruning function is discussed. In section 4 the upper bound and lower bound are 
combined to speed up the search engine. Some concluding remarks are in section 5. 
 
 
2. Backtracking Algorithm 

The most intuitive algorithm to generate optimal addition chains for a given integer is 
backtracking algorithm. In the state space tree of the problem, the son node 1ia  of the node ia  

is composed by ijkaa kj  , . 

The state space tree depth-first backtracking search algorithm for solving addition chain 
problems can be described as follows. 
 

Algorithm 1 )(stepBacktrack  
1: if nstepa =][ then 
2: if beststep < then 
3: stepbest   

4: achain   
5: end if 
6: return 
7: else 
8: for stepi  downto1 do 
9: if ][>][*2 stepaia  then 

10: for ij  downto1 do 
11: ][][ jaiak   
12: kstepa 1][  
13: if ][> stepak and nk <= then 
14: 1)( stepBacktrack  
15: end if 

16:end for 
17:end if 
18: end for 
19: end if 
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In the state space tree for addition chain problem, each node of level k  has at least 
1k  son nodes, so the number of paths from the root to any node of level k  is at least !k . 

Therefore, the size of state space tree is growing exponentially. A standard backtracking 
algorithm can only generate the optimal addition chains for small integer n . 
 
 
3. Proposed Algorithm 

In the standard backtracking algorithm for generating the optimal addition chains 
described above, a depth-first search method is used to search the state space tree. It is natural 
for this technique that the first addition chain found by the algorithm is not necessarily the 
optimal addition chain.  

If we use breadth-first search method to search state space tree, then the first addition 
chain found by the algorithm must be the optimal addition chain. But the space overhead of this 
approach too big. The iterative deepening search algorithm can guarantee the first addition 
chain found by the algorithm is an optimal addition chain, and it does not need too much space 
overhead. The basic idea of the iterative deepening search algorithm is to control the search 
depth d  in the backtracking algorithm. Beginning from 1=d , the search depth d  is increased 
by 1 after each backtrack search until an optimal addition chain is found. 

The iterative deepening search algorithm for finding optimal addition chains can be 
described as follows. 
 

Algorithm 2 IterativeDeepening 
1: 1 nbest  
2: found false 
3: 2d  
4: while not found  do 
5: 1[1]a  
6: (1)Backtrack  
7: 1 dd  
8: end while 

 
In the algorithm, the search engine )(stepBacktrack  is modified to control the search 

depth up to d  as follows. 
 

Algorithm 3 )(stepBacktrack  

1: if not found then 
2: if nstepa =][ then 
3: { an addition chain is found } 
4: if beststep < then 
5: stepbest   

6: achain   
7: found  true 
8: return 
9: end if 
10: else 
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11: if dstep < then 
12: { control the search depth } 
13: for stepi  downto1 do 
14: if ][>][*2 stepaia  then 

15: for ij  downto1 do 
16: ][][ jaiak   
17: kstepa 1][  
18: if ][> stepak and nk <= then 
19: 1)( stepBacktrack  
20: end if 
21: end for   
22: end if 
23: end for 
24: end if 
25: end if 
26: end if 

 
 
4. Results and Discussion 

Let  nn log=)( 2  and )(n  be the number of 1's in the binary representation of n . 

Theoretically developed lower bounds for the length )(nl  of an optimal addition chain for an 

integer n  provide better starting values from which to start the search. It is well known [9] that 

 )(log)( 2 nn   is a lower bound of )(nl . We can use this fact to speed up the search in 

iterative deepening search algorithm by setting the initial search depth d  to  )(log)( 2 nn  . 

On the other hand, pruning functions also help to speed up the algorithm by pruning the 
search tree. 

Let ia  and ja  be two elements of an addition chain, and j
m

i aa 2> . As the doubling 

step is the fastest way to increase the value of an element of the addition chain, that is 
riaa ii   ,12 1 , from ja  to ia  needs at least m  steps. 

If we expect to find an addition chain of n  on the level d  of the state space tree T  , 
then in the subtree rooted at the node ia  of level i , a necessary condition to find such a chain 

at level d  is nai
id 2 . It can therefore be seen that it is impossible to find an addition chain of 

n  in the level d  of the subtree rooted at the node ia , if nai
id <2  . In this case, the subtree 

rooted at ia  can be pruned off. 

When n  is an odd number, this pruning condition can be strengthened further. In fact, 
we can assert that the last element jkaaa kjr  ,=  of the shortest addition chain must be an 

odd number provided n  is odd. It can thus be extrapolated that jk < , otherwise ra  would be 

even. It can be deduced from the minimality of r  that 1= rj . Therefore, 1<,= 1  rkaaa krr

. If we can find an optimal addition chain at level d , that is dr = , then naa dd   21 . From 

21 2   dd aa  we know nad 23 . In this case nad 36  as 32 2   dd aa . In general, for 

2,0,1,= di   we have nai
id   2)(23 . In other words, when nai

id <23 2)(  , it is 
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impossible to find an optimal addition chain before level d  in the subtree rooted at node ia , and 
thus the subtree rooted at the node ia  can be pruned off. 

This pruning condition can be concluded as follows. 
Suppose in the iterative deepening search algorithm for optimal addition chains of the 

integer n , the current search depth be d . A pruning condition for the subtree rooted at the node 

ia  of level i  is: 

 








diddian

didian

i

i

1>)/(log

20>2)/3(log

2

2  

 

It is readily seen that the unique addition chain is m,21,2,4,  for integer mn 2= . For the 

case of n  is not a power of 2, we can express the integer n  as 0>1),(22= kkn t  . For this 

more general case, we can generalize above pruning condition to a more general condition as 
follows. 

Theorem 1 Suppose in the iterative deepening search algorithm for optimal addition 
chains of the integer n , the current search depth be d , and the integer n  can be expressed as 

0>1),(22= kkn t  . A pruning condition for the subtree rooted at the node ia  of level i  is:  
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

ditddian

tdidian

i

i

1>)/(log

20>2)/3(log

2

2  

 
Proof. 

In the case of 20  tdi  and dian i >2)/3(log2  , we have nai
id <23 2)(  . 

From 2 tdi  and 1t  we know 3 di . Therefore, at least 3 steps are left to find an 
addition chain at the level d  in the subtree rooted at the node ia . If mjsaaa sjm <,=   , 

1> im , and ma  is not a doubling node, that is 12  mm aa , then jk < . It follows that 

211,  mjsmj .  

Therefore,  

)(32=

)(22=

22

2)(

2)(

2)(1)(
21

i
im

ii
im

i
im

i
im

mmm

a

aa

aa

aaa













 

It follows from nam
md 2 , the necessary condition to find an addition chain at the level 

d  in the subtree rooted atthe node ma  that  
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A contradiction. 
In the case of ma  being doubling nodes for all 1> im , if an addition chain is found at 

the level d  in the subtree rooted at node ia , then we have 1
1)(2== 


i
id

d aan . This means 
1)(2  id  is divisible by n . On the other hand, it follows from 2 tdi  that 11  tid . 

Therefore, 0=2mod1)(22 1 tt k . That is 12 k  is divisible by 2. This is a contradiction. 

Therefore, in the case of 20  tdi  and dian i >2)/3(log2  , the subtree rooted at ia  can 

be pruned off. 
The proof for the case of ditd  1  is similar. 
The proof is complete. 
We can further improve the standard backtracking algorithm for constructing the 

shortest addition chain in several aspects as follows. 
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(1) Using the iterative deepening search strategy. 
(2) Getting an accurate estimation of search depth by the lower bound )(nlb  on )(nl . 

(3) Speeding up the search engine by appropriate pruning function. 
(4) Constructing a more accurate upper bound )(nub  on )(nl  by the power tree. 

When )(=)( nubnlb  the addition chain given by power tree is exactly the optimal 

addition chain. 
When )(<)( nubnlb , the optimal addition chain can be found by following improved 

iterative deepening search algorithm starting from depth )(= nlbd . 

The improved iterative deepening search algorithm can be described as follows. 
 

Algorithm 4 Search 

1: )(nlowerlb   {  )(log)(=)( 2 nnnlower  } 
2: )(npowerub  { )(npower constructed by power 
tree} 
3: )(ngettt   { 11),(22=  kkn t } 
4: if ublb < then 
5: found false 
6: while not found do 
7: 1[1]a  
8: (1)Backtrack  
9: 1 lblb  
10: if ublb = then 
11: found true 
12: end if 
13: end while 
14: end if 

 
Algorithm 5 )(stepBacktrack  

1: if not found then 
2: if nstepa =][ then 
3: { an addition chain is found } 
4: stepbest   

5: achain   
6: found  true 
7: return 
8: else 
9: if dstep < then 
10: { control the search depth } 
11: for stepi  downto1 do 
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12: if ][>][*2 stepaia  then 

13: for ij  downto1 do 
14: ][][ jaiak   
15: kstepa 1][  
16: if ][> stepak and nk <= then 
17:{a pruning function of Theorem 1} 
18: if not 1)( stepprune then 
19: 1)( stepBacktrack  
20: end if 
21: end if 
22: end for 
23: end if 
24: end for 
25: end if 
26: end if 
27: end if 

 
 

5. Conclusion 
In the previous sections, we present an efficient algorithm to solve the addition chain 

problem. The improved algorithm speeds up the generation of optimal addition chains in three 
aspects. An iterative deepening search algorithm is exploited to search the optimal addition 
chains. The upper bound and lower bound of the addition chain problem are combined to speed 
up the search engine. 

The computational experiments demonstrate that the achieved results are not only of 
theoretical interest, but also that the techniques developed may actually lead to considerably 
faster algorithm. 
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